共查询到20条相似文献,搜索用时 15 毫秒
1.
Insects can prepare themselves to tolerate subzero temperatures through various physiological changes, such as the alteration in body water or glycerol content. Indeed, it has been hypothesized that increasing glycerol body content has the benefit of decreasing the temperature necessary to freeze their body water and therefore increasing the supercooling point (SCP) and the cold hardiness. We here studied physiological plasticity in cold tolerance in Ophraella communa LeSage (Coleoptera: Chrysomelidae), a potential biological control agent of an invasive plant, the common ragweed, Ambrosia artemisiifolia L. (Asteraceae). Pupae of O. communa were collected from June to October, and the water and glycerol contents and the SCP of emerging adults were assessed. We found that SCP, water, and glycerol contents of beetles fluctuated significantly with season. Glycerol content of males and females increased with decreasing temperature between July and October, and glycerol content reached a maximum in October in the field. The lowest SCP was observed in adults in October prior to overwintering, and the highest SCP was evident in the summer population in July. Thus, cold hardiness of the beetles in the autumn population was significantly higher than in the summer population. We therefore conclude that cold tolerance, via changes in the relative composition of their body fluids and fats, is a plastic trait that can be influenced by fluctuations in abiotic factors (e.g., temperature) throughout the breeding season of the insect. 相似文献
2.
Mating activities of the rice stem borer, Chilo suppressalis, were compared between rice‐ and wateroat‐feeding populations, and two potential temporal factors that may act as reproductive barriers were examined. Seasonal data of the number of moths attracted to pheromone traps showed that the peak of emergence at the rice field was approximately 10 days earlier than that at the wateroat vegetation in the first flight season, although there was a broad overlap of emergence at the two locations. Both field observations and a laboratory experiment showed that moths from the rice field started mating earlier than those from the wateroat vegetation. However, whereas the difference was distinctive in the laboratory experiment, mating activity at the wateroat vegetation shifted significantly to an earlier time phase than that observed in the laboratory. Body size data showed that the male moths attracted to the pheromone traps at the wateroat vegetation were significantly larger than those at the rice field, suggesting that the traps at the two locations mainly attracted moths originating from different host plants. However, pheromone‐trapped males at the rice field were significantly larger than those reared from overwintering samples. These results support the idea that males from the wateroat vegetation migrate to the rice field. The differences in seasonal and temporal mating activity and their effects on development of reproductive isolation between host‐associated populations are discussed. 相似文献
3.
4.
5.
Gbor Vtek Veronika Fekete Mrta Ladnyi Elena Cargnus Pietro Zandigiacomo Richrd Olh Martin Schebeck Axel Schopf 《Agricultural and Forest Entomology》2020,22(3):231-237
- The invasive sawfly Aproceros leucopoda causes severe defoliation of various elm species and thus can be a major pest in forest stands and urban environments.
- The overwintering biology of A. leucopoda has not been investigated so far; therefore, the aim of this study was to determine the cold tolerance strategy and cold hardiness of hibernating A. leucopoda eonymphs.
- The supercooling points (SCPs) of overwintering individuals varied geographically, monthly and interannually and ranged between ?12.14 °C and ?24.22 °C.
- As none of the eonymphs survived once the SCP had been reached, A. leucopoda is classified as a freeze‐avoidant species.
- Survival rates of overwintering eonymphs exposed to different sub‐zero temperatures above the SCP (?1.6 °C and ?4.0 °C for 10, 20 and 30 days and ?10.5 °C for 9 days) ranged between 89.2% and 100%, suggesting that A. leucopoda is not a chill‐susceptible species.
- Our results suggest that low winter temperatures may not be expected to be an important limiting factor for the overwintering success of A. leucopoda.
6.
Asha Wijerathna Héctor Cárcamo Maya Evenden 《Entomologia Experimentalis et Applicata》2024,172(5):436-445
Overwintering conditions affect the physiological state of ectotherms, and therefore, their cold hardiness and survival. A measure of the lethal and sublethal impacts of overwintering conditions on pest populations is crucial to predict population dynamics and to manage pests the following spring. The impact of winter conditions can be most intense for invasive insects undergoing range expansion. Insect herbivores can display plastic host use behaviours that depend on their body condition following winter. The pea leaf weevil, Sitona lineatus L. (Coleoptera: Curculionidae), is an invasive pest of field peas, Pisum sativum L., and faba bean, Vicia faba L. (Fabaceae). Pea leaf weevil has expanded its range in North America to include the Prairie Provinces of Canada. This study investigated the effects of temperature and microhabitat on overwintering survival and cold hardiness of pea leaf weevil in its expanded range. Further, we investigated the sublethal effect of overwintering temperature and duration on post-overwintering survival, feeding, and oviposition of pea leaf weevil. We also investigated the role of juvenile hormone in modulating body condition of overwintering weevils. The overwintering survival of pea leaf weevil adults increased with soil temperature and varied with region and microhabitat. More weevils survived winters when positioned near tree shelterbelts compared to open alfalfa fields. The supercooling point of pea leaf weevil varied throughout its expanding range but did not differ for weevils held in the two microhabitats. The average threshold lethal temperature of pea leaf weevil at all three sites was −9.4 °C. Weevils that overwintered for a longer duration and at a higher temperature subsequently fed more on faba bean foliage and laid more eggs compared to those which overwintered for a shorter duration at a lower temperature. Our findings highlight that warm winters would increase overwintering survival and post-overwintering fitness, facilitating further pea leaf weevil invasion northward in the Prairie Provinces of Canada. 相似文献
7.
【目的】探讨取食不同浓度外源海藻糖对室内饲养的花绒寄甲 Dastarcus helophoroides 成虫存活和耐寒性的影响。【方法】在室内分别用含3%, 6%和9%海藻糖的半人工饲料饲养花绒寄甲成虫,以取食不含海藻糖的半人工饲料的花绒寄甲成虫为对照组,统计饲养10周后的存活率,测定未经低温处理和10℃低温处理3 d的成虫过冷却点和含水量。【结果】取食含6%海藻糖的半人工饲料的花绒寄甲成虫存活率最高,为86.67%。不管是否经低温处理,取食含9%海藻糖的半人工饲料的成虫与取食含3%和6%海藻糖的半人工饲料的成虫以及不含海藻糖的半人工饲料的成虫(对照)相比,其过冷却点均最低,其中未经低温处理的成虫过冷却点为-19.30℃,而经低温处理的成虫过冷却点为-21.60℃。低温处理对取食不含海藻糖的半人工饲料的成虫的含水量有显著影响,而对取食含海藻糖的半人工饲料的成虫含水量无显著影响。【结论】外源海藻糖对花绒寄甲成虫的存活和过冷却点有显著影响,可以利用外源海藻糖提高室内饲养花绒寄甲成虫的存活率和耐寒性。 相似文献
8.
Influence of soil moisture on egg cold hardiness in the migratory locust Locusta migratoria (Orthoptera: Acridiidae) 总被引:1,自引:0,他引:1
Abstract. The present study investigates the influence of environmental moisture on cold hardiness of the migratory locust, Locusta migratoria . The water content of locust eggs kept in soil at 30 °C varies according to the moisture content of the substrate. In turn, it can significantly affect the supercooling point of locust eggs (range from −26 to −14.8 °C) and the mortality when exposed to subzero temperatures. Environmental moisture influences the supercooling capacity of eggs and their survival at low temperature. When locust eggs of the same water content are exposed to subzero temperatures under different soil moistures, their mortality varies between short-time exposure and long-time exposure at subzero temperatures. Given a short-time exposure, mortality in wet soil is lower than in dry soil due to the buffering effect of soil water against temperature change. The pattern of egg mortality is reversed after long-time exposure at low temperature, suggesting that inoculative freezing may be an important mortality factor. It is suggested that interactions between soil moisture and low temperature can influence the cold hardiness of locust eggs, and partial dehydration is beneficial to over-wintering eggs of the migratory locust. 相似文献
9.
重阳木锦斑蛾越冬幼虫的耐寒性变化 总被引:1,自引:0,他引:1
【目的】重阳木锦斑蛾Histia rhodope是为害重阳木Bischofia polycarpa的重要害虫之一。本研究旨在了解重阳木锦斑蛾幼虫的抗寒能力,并为探讨抗寒机理提供理论基础。【方法】在越冬期的不同阶段(2017年11月7日、2017年12月7日、2018年1月5日、2018年2月4日和2018年3月5日)分别采集室外重阳木锦斑蛾越冬幼虫,对其体重、过冷却点、结冰点、含水量、脂肪、总糖和总蛋白质含量进行测定。【结果】重阳木锦斑蛾幼虫的过冷却点在越冬期不同月份有显著差异,与环境温度呈显著正相关(P<0.05),最低值出现在1月份,为-15.26℃,最高值出现在3月份,为-13.30℃;结冰点变化趋势与过冷却点一致;体重和脂肪含量在越冬期间逐渐下降,与过冷却点无相关性(P>0.05);过冷却能力随着虫体游离水含量的升高而降低,随其降低而升高,而结合水含量的变化趋势恰好相反;总糖含量在11月最高,为14.95 μg/mg,显著高于3月份的5.07 μg/mg;总蛋白质含量在越冬期间呈先升高后降低的趋势,在1月份含量最高,为23.66 μg/mg,显著高于11月份的含量(16.69 μg/mg)。【结论】重阳木锦斑蛾幼虫的耐寒性在越冬期间随气温的降低逐渐增强,随气温的回升又逐渐减弱;蛋白质可能是该虫重要的耐寒物质。 相似文献
10.
Geographical variation in egg cold hardiness: a study on the adaptation strategies of the migratory locust Locusta migratoria L. 总被引:9,自引:0,他引:9
Abstract. 1. For many species of insect, cold hardiness is an important trait that enables a population to develop in the next season and to extend its range. To elucidate the role of cold hardiness of the migratory locust Locusta migratoria L. in its outbreak and distribution areas, egg cold hardiness was examined in locusts derived from four locations from latitude 18°23'N to latitude 41°10'N in eastern China.
2. The supercooling points of eggs from different geographic populations did not differ significantly for the first development stage, with an average ± SE of −24.5 ± 0.51 °C, or for the second stage, −22.06 ± 0.68 °C, however there was a significant difference for the embryonic development phase among the four geographical populations. The egg supercooling point increased gradually from neonatal egg to old egg; eggs prior to hatching always had a much higher supercooling point.
3. Comparisons of the cold hardiness of four populations were carried out by validating the close correlation between latitude and the effects of cold on hatching, low lethal temperature (Ltemp50 ), and low lethal time (Ltime50 ). There were significant differences among the four populations; the northern population was more cold hardy than the southern population, and the two mid-latitude populations were intermediately cold hardy.
4. The cold hardiness of all populations was enhanced to various degrees by short-term cold acclimation at 0 °C and 5 °C. For most populations, a 2-day acclimation period seemed to be optimal. 相似文献
2. The supercooling points of eggs from different geographic populations did not differ significantly for the first development stage, with an average ± SE of −24.5 ± 0.51 °C, or for the second stage, −22.06 ± 0.68 °C, however there was a significant difference for the embryonic development phase among the four geographical populations. The egg supercooling point increased gradually from neonatal egg to old egg; eggs prior to hatching always had a much higher supercooling point.
3. Comparisons of the cold hardiness of four populations were carried out by validating the close correlation between latitude and the effects of cold on hatching, low lethal temperature (Ltemp
4. The cold hardiness of all populations was enhanced to various degrees by short-term cold acclimation at 0 °C and 5 °C. For most populations, a 2-day acclimation period seemed to be optimal. 相似文献
11.
The complete mitochondrial genomes (mitogenomes) of Cnaphalocrocis medinalis and Chilo suppressalis (Lepidoptera: Pyralidae) were determined and analyzed. The circular genomes were 15,388 bp long for C. medinalis and 15,395 bp long for C. suppressalis. Both mitogenomes contained 37 genes, with gene order similar to that of other lepidopterans. Notably, 12 protein-coding genes (PCGs) utilized the standard ATN, but the cox1 gene used CGA as the initiation codon; the cox1, cox2, and nad4 genes in the two mitogenomes had the truncated termination codons T, T, and TA, respectively, but the nad5 gene was found to use T as the termination codon only in the C. medinalis mitogenome. Additionally, the codon distribution and Relative Synonymous Codon Usage of the 13 PCGs in the C. medinalis mitogenome were very different from those in other pyralid moth mitogenomes. Most of the tRNA genes had typical cloverleaf secondary structures. However, the dihydrouridine (DHU) arm of the trnS1(AGN) gene did not form a stable stem-loop structure. Forty-nine helices in six domains, and 33 helices in three domains were present in the secondary structures of the rrnL and rrnS genes of the two mitogenomes, respectively. There were four major intergenic spacers, except for the A+T-rich region, spanning at least 12 bp in the two mitogenomes. The A+T-rich region contained an 'ATAGT(A)'-like motif followed by a poly-T stretch in the two mitogenomes. In addition, there were a potential stem-loop structure, a duplicated 25-bp repeat element, and a microsatellite '(TA)(13)' observed in the A+T-rich region of the C. medinalis mitogenome. A poly-T motif, a duplicated 31-bp repeat element, and a 19-bp triplication were found in the C. suppressalis mitogenome. However, there are many differences in the A+T-rich regions between the C. suppressalis mitogenome sequence in the present study and previous reports. Finally, the phylogenetic relationships of these insects were reconstructed based on amino acid sequences of mitochondrial 13 PCGs using Bayesian inference and maximum likelihood methods. These molecular-based phylogenies support the traditional morphologically based view of relationships within the Pyralidae. 相似文献
12.
The threats posed by climate change make it important to expand knowledge concerning cold and heat tolerance in stenothermal species from habitats potentially threatened by temperature changes. Thermal limits and basal metabolism variations were investigated in Pseudodiamesa branickii (Diptera: Chironomidae) under thermal stress between ‐20 and 37 °C. Supercooling point (SCP), lower (LLTs) and upper lethal temperatures (ULTs), and oxygen consumption rate were measured in overwintering young (1st and 2nd instar) and mature (3rd and 4th instar) larvae from an Alpine glacier‐fed stream. Both young and mature larvae were freezing tolerant (SCPs = ‐7.1 °C and ‐6.4 °C, respectively; LLT100 <SCP and > ‐20 °C) and thermotolerant (ULT50 = 31.7 ± 0.4, 32.5 ± 0.3, respectively). However, ontogenetic differences in acute tolerance were observed. The LLT50 calculated for the young larvae (= ‐7.4 °C) was almost equal to their SCP (= ‐7.1 °C) and the overlapping of the proportion of mortality curve with the CPIF curve highlighted that the young larvae are borderline between freezing tolerance and freezing avoidance. Furthermore, a lower ULT100 in the young larvae (of ca. 1 °C), suggests that they are less thermotolerant than mature larvae. Finally, young larvae exhibit a higher oxygen consumption rate (mgO2/gAFDM/h) at any temperature tested and are overall less resistant to oxygen depletion compared to mature larvae at ≥10 °C. These findings suggest that mature larvae enter into a dormant state by lowering their basal metabolism until environmental conditions improve in order to save energy for life cycle completion during stressful conditions. 相似文献
13.
寄主对桔小实蝇耐寒性的影响 总被引:13,自引:2,他引:13
为了研究寄主营养对桔小实蝇耐寒性的作用,测定了以15种果蔬饲养的桔小实蝇1日龄蛹的过冷却点(supercooling points,SCP); 再选取南瓜、西红柿、柑桔、番石榴和杨桃等5种果蔬,测定了桔小实蝇3龄老熟幼虫、1日龄蛹、3日龄蛹、5日龄蛹、7日龄蛹和雌雄成虫的过冷却点,并观察了1日龄蛹的低温存活力。结果表明:(1)15种果蔬饲养所得的桔小实蝇1日龄蛹SCP均值在-11.03℃~-13.17℃,不同寄主发育的桔小实蝇SCP值存在显著性差异,其中以取食蒲桃的最高,为-11.03℃,取食苦瓜的最低,为-13.17℃。(2)5种果蔬饲养所得的桔小实蝇各虫态的SCP均值存在极显著差异(F(4,863)=35.6,P<0.01); 同一寄主上的桔小实蝇不同虫态之间SCP均值也达到极显著性差异(F(6,863)=392.9,P<0.01); 且寄主和发育龄期之间存在着极显著的交互作用(F(24,863)=9.4,P<0.01)。(3)桔小实蝇各发育阶段,SCP值表现一定变化: 老熟幼虫发育至1日龄蛹,SCP值变化不大; 蛹发育至3、5和7天过冷却能力明显增强,降至-20℃左右,但他们之间没有明显区别; 羽化后3~5天的成虫SCP值又升高至-10℃左右。老熟幼虫、1日龄蛹和2~3日龄成虫与3日龄、5日龄和7日龄蛹的SCP值之间有显著性差异。(4)将5种果蔬饲养所得的桔小实蝇1日龄蛹置于6℃和-3℃下进行较长时间(1~8天)和较短时间(1~8 h)的低温处理,发现番石榴、杨桃和南瓜发育的蛹经低温处理后的校正羽化率较西红柿和柑桔发育的蛹高; 同样在0℃、3℃、6℃和9℃处理(2天)的实验中,得出相似的结果。因此,本实验结果表明桔小实蝇幼虫由于生活寄主的不同使得其下一代蛹的耐寒性产生了差异,引起其差异的原因值得进一步研究。 相似文献
14.
Geographic variation in cold hardiness of eggs and neonate larvae of the yellow-spotted longicorn beetle Psacothea hilaris 总被引:2,自引:0,他引:2
Cold hardiness of eggs and neonate larvae of the yellow-spotted longicorn beetle, Psacothea hilaris (Pascoe) was examined using six geographical populations in Japan. Particular attention was paid to cold hardiness of eggs and neonate larvae of the subtropical population (Ishigaki), because the east Japan populations are considered to have been introduced from a subtropical area, and the overwintering stage in the east Japan populations is incidentally shifted from the original mature larval stage to the egg or neonate larval stages. When the eggs were exposed to low temperatures for 1 h, the decrease in hatchability became significant at –12°C in the southernmost two populations (Ishigaki and Naze), and at –16°C in the northern populations. After 1 h exposure to –20°C, few eggs could hatch in the Ishigaki population, whereas 27–55% of the eggs survived in the northern populations. Pre-chilling of the eggs at 10°C for 10 days enhanced the cold hardiness in all populations. This effect was particularly distinct in the subtropical population; the eggs of the Ishigaki population became as cold hardy as those of the northern populations after acclimation. These results suggest that the subtropical population is capable of establishing itself in east Japan, where the winter is cold. 相似文献
15.
Management of spotted stem borer, Chilo partellus (Swinhoe) by the use of resistant cultivars is being developed at ICRISAT. Different cultivars show resistance based on several mechanisms, one of which affects the establishment of first instar larvae in the plant whorl. However, it has been found that low establishment is a factor associated with resistance only in some cultivars and not in others. A number of physical and chemical plant factors are associated with preferential establishment of the young larvae in the leaf whorl. Among the physical characteristics, erect leaves and curled leaf bases are involved in larval establishment. Detailed chemical analysis of surface extracts showed that the concentration of one compound in the wax is related to resistance at this stage and assessment of physical and chemical plant characters has been used to predict resistance.
Résumé L'Institut International de Recherches sur les Cultures en Régions Semi-Arides (ICRISAT) étudie la protection contre C. partellus Swinhoe par l'utilisation de cultivars résistants. Différents cultivars présentent une résistance à différents stades de croissance de la plante, et à différents stades de l'insecte. La résistance du sorgho à C. partellus dépend de plusieurs mécanismes, l'un d'eux conditionnant l'installation des chenilles du premier stade dans le verticille de la plante. Cependant, la lenteur de l'installation d'est un facteur lié à la résistance que chez quelques cultivars. Plusiers facteurs physiques et chimiques sont associés à l'installation préférentielle des jeunes chenilles dans le verticille foliare. Parmi les caractères physiques, le port érigé des feuilles, la présence de poches à leur base et les cires superficielles sont impliqués dans l'installation des chenilles. Une analyse chimique détaillée d'extraits des structures superficielles a montré que la concentration d'une substance, le C32 marqueur de la lignée résistante IS 2205, était 2 fois plus faible que dans les lignées sensibles IS 1151 et CSH 1.相似文献
16.
Gernot Hoch Edoardo Petrucco Toffolo Sigrid Netherer rea Battisti and Axel Schopf 《Agricultural and Forest Entomology》2009,11(3):313-320
1 Larvae of Thaumetopoea pityocampa (Lepidoptera: Notodontidae) develop throughout the winter, although their feeding activity and survival can be impaired by adverse climatic factors. The present study investigated the survival at low temperature of larvae originating from a population with range expansion in an alpine valley in Northern Italy.
2 The supercooling point of individually analysed larvae averaged at −7 °C. This value insufficiently described the cold hardiness of the larvae; 39% of the tested larvae were alive when returned to room temperature immediately after freezing. When larval colonies inside their nest were exposed to −17 °C for 1 h after gradual temperature decrease, survival was 70.4%.
3 Rearing of larvae in the laboratory at different day/night temperatures indicated an effect of cumulative chill injury on larvae. A logistic regression explained the relationship between negative thermal sum (h°C below 0 °C) received in the laboratory experiment and larval survival. A similar relationship was demonstrated between negative thermal sum and survival of larval colonies in the field.
4 In the laboratory experiment, some tested larvae were able to survive for up to 8 weeks without feeding depending on rearing temperature. As expected, feeding occurred only when larvae were reared at temperatures of 9 °C day/0 °C night.
5 We classify the larvae of T. pityocampa as being moderate freezing tolerant. The winter behaviour allows this species to track climate warming by a rapid expansion into those areas that become compatible with the insect's development. 相似文献
2 The supercooling point of individually analysed larvae averaged at −7 °C. This value insufficiently described the cold hardiness of the larvae; 39% of the tested larvae were alive when returned to room temperature immediately after freezing. When larval colonies inside their nest were exposed to −17 °C for 1 h after gradual temperature decrease, survival was 70.4%.
3 Rearing of larvae in the laboratory at different day/night temperatures indicated an effect of cumulative chill injury on larvae. A logistic regression explained the relationship between negative thermal sum (h°C below 0 °C) received in the laboratory experiment and larval survival. A similar relationship was demonstrated between negative thermal sum and survival of larval colonies in the field.
4 In the laboratory experiment, some tested larvae were able to survive for up to 8 weeks without feeding depending on rearing temperature. As expected, feeding occurred only when larvae were reared at temperatures of 9 °C day/0 °C night.
5 We classify the larvae of T. pityocampa as being moderate freezing tolerant. The winter behaviour allows this species to track climate warming by a rapid expansion into those areas that become compatible with the insect's development. 相似文献
17.
Differences in pupal cold hardiness and larval food consumption between overwintering and non‐overwintering generations of the common yellow swallowtail,Papilio machaon (Lepidoptera: Papilionidae), from the Osaka population 下载免费PDF全文
To clarify differences in pupal cold hardiness and larval food consumption between overwintering and non‐overwintering generations of the common yellow swallowtail, Papilio machaon, we reared larvae from the Osaka population under photoperiods of 16 h light : 8 h dark (LD 16:8) (long day) or LD 12:12 (short day) at 20°C. We examined the relationship between food consumption and weight during the final larval stadium and pupae, and measured the pupal supercooling point (SCP). Although the ratio of assimilation to consumption did not differ significantly between photoperiods, the ratio of assimilation to pupal weight differed significantly between individuals reared under long and short days. All diapausing pupae were brown, whereas 56% of non‐diapausing pupae were green with the remainder brown. The mean pupal body length (L), dorsal width (W1) and lateral width (W2) were larger in non‐diapausing than in diapausing pupae, and the W1/L and W1/W2 ratios differed significantly between non‐diapausing and diapausing pupae. SCP was approximately –20°C and did not differ among pupae 5, 15 and 30 days after pupation under long‐day conditions. However, under short‐day conditions, mean SCP gradually decreased, stabilizing at approximately –24 to –25°C by 30 days after pupation. After freezing, some diapausing pupae emerged as adults, whereas all non‐diapausing pupae died. Both egestion and assimilation were greater under long‐day conditions. The results revealed that pupae of this papilionid exhibit seasonal polyphenism in physiological and morphological traits. Energy from food appears to be expended on increasing cold hardiness in the overwintering generation and on reproduction in the non‐overwintering generation. 相似文献
18.
沙葱萤叶甲的过冷却能力与抗寒性 总被引:5,自引:0,他引:5
【目的】沙葱萤叶甲Galeruca daurica Joannis于2009年开始在内蒙古草原暴发成灾, 发生地区不断扩大, 危害日趋严重, 严重影响内蒙古草原畜牧业的可持续发展和生态安全。低温是影响昆虫生长发育和存活的关键因子, 而昆虫对低温的耐受性决定了其越冬存活率。了解沙葱萤叶甲的过冷却点及抗寒能力有助于预测其分布范围及种群数量动态。【方法】采用热电偶法, 在室内测定了沙葱萤叶甲各发育阶段的过冷却点; 比较了幼虫在不同低温条件下(-6~-14℃)暴露2 h及在-5℃低温条件下暴露不同时间(0.5~8 d)的存活率。【结果】沙葱萤叶甲不同发育阶段的过冷却点存在显著差异, 从低到高依次为卵(-29.8℃)、 1龄幼虫(-14.6℃)、 2龄幼虫(-13.3℃)、 蛹(-12.1℃)、 3龄幼虫(-10.2℃)和成虫(-9.0℃); 越冬卵12月和1月的过冷却点最低, 2月的过冷却点最高。随着处理温度的降低和处理时间的延长, 幼虫的存活率降低。1, 2和3龄幼虫在-5℃下的半致死时间(Ltime50)分别为3.84, 3.80和2.28 d, 低温处理2 h后半致死温度(Ltemp50)分别为-10.1, -9.1和-8.5℃, 高于其过冷却点。【结论】说明沙葱萤叶甲幼虫为不耐寒冷型(chill-intolerant)。 相似文献
19.
中华通草蛉成虫抗寒能力季节性变化 总被引:6,自引:1,他引:6
中华通草蛉(Chrysoperla sinica)成虫在自然条件下抗寒能力的季节性变化研究表明,雌、雄成虫的抗寒能力均呈现出季节性的变化趋势,即随着冬季低温的到来,其抗寒能力逐渐增强,冬季过后又随气温的回升,其抗寒力逐渐减弱.雌、雄成虫的体内含水量、过冷却点(SCP)和结冰点(FP)均随气温的降低而降低,升高而升高,但体内总脂肪的含量却随气温的降低而升高,升高而降低.越冬代在越冬的前期和中期,雌、雄成虫体内的含水量和SCP均显著低于生长季节的其它各代,越冬代后期的含水量和SCP与生长季节其它各代没有显著差异.经回归分析发现,雌、雄成虫体内含水量与SCP之间均存在极显著负相关关系(p<0.01);越冬代成虫(特别是越冬前期)的体内总脂肪含量显著高于其它时期,并且雌成虫体内的总脂肪含量与SCP之间呈显著正相关(p<0.05),雄成虫体内总脂肪含量与SCP之间没有显著相关性(p>0.05).在一年的不同世代中,雌、雄成虫体内含水量只是在越冬前期有显著差异,SCP和体内总脂肪含量却在越冬后期有显著差异. 相似文献
20.
Weihua Ma Xianxin Zhao Chuanlin Yin Fan Jiang Xiaoyong Du Taiyu Chen Qinghua Zhang Lin Qiu Hongxing Xu J. Joe Hull Guoliang Li Wing‐Kin Sung Fei Li Yongjun Lin 《Molecular ecology resources》2020,20(1):268-282
The rice stem borer, Chilo suppressalis, is one of the most damaging insect pests to rice production worldwide. Although C. suppressalis has been the focus of numerous studies examining cold tolerance and diapause, plant–insect interactions, pesticide targets and resistance, and the development of RNAi‐mediated pest management, the absence of a high‐quality genome has limited deeper insights. To address this limitation, we generated a draft C. suppressalis genome constructed from both Illumina and PacBio sequences. The assembled genome size was 824.35 Mb with a contig N50 of 307 kb and a scaffold N50 of 1.75 Mb. Hi‐C scaffolding assigned 99.2% of the bases to one of 29 chromosomes. Based on universal single‐copy orthologues (BUSCO), the draft genome assembly was estimated to be 97% complete and is predicted to encompass 15,653 protein‐coding genes. Cold tolerance is an extreme survival strategy found in animals. However, little is known regarding the genetic basis of the winter ecology of C. suppressalis. Here, we focused our orthologous analysis on those gene families associated with animal cold tolerance. Our finding provided the first genomic evidence revealing specific cold‐tolerant strategies in C. suppressalis, including those involved in glucose‐originated glycerol biosynthesis, triacylglycerol‐originated glycerol biosynthesis, fatty acid synthesis and trehalose transport‐intermediate cold tolerance. The high‐quality C. suppressalis genome provides a valuable resource for research into a broad range of areas in molecular ecology, and subsequently benefits developing modern pest control strategies. 相似文献