首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
Many plant viruses depend on aphids and other phloem‐feeding insects for transmission within and among host plants. Thus, viruses may promote their own transmission by manipulating plant physiology to attract aphids and increase aphid reproduction. Consistent with this hypothesis, Myzus persicae (green peach aphids) prefer to settle on Nicotiana benthamiana infected with Turnip mosaic virus (TuMV) and fecundity on virus‐infected N. benthamiana and Arabidopsis thaliana (Arabidopsis) is higher than on uninfected controls. TuMV infection suppresses callose deposition, an important plant defense, and increases the amount of free amino acids, the major source of nitrogen for aphids. To investigate the underlying molecular mechanisms of this phenomenon, 10 TuMV genes were over‐expressed in plants to determine their effects on aphid reproduction. Production of a single TuMV protein, nuclear inclusion a‐protease domain (NIa‐Pro), increased M. persicae reproduction on both N. benthamiana and Arabidopsis. Similar to the effects that are observed during TuMV infection, NIa‐Pro expression alone increased aphid arrestment, suppressed callose deposition and increased the abundance of free amino acids. Together, these results suggest a function for the TuMV NIa‐Pro protein in manipulating the physiology of host plants. By attracting aphid vectors and promoting their reproduction, TuMV may influence plant–aphid interactions to promote its own transmission.  相似文献   

2.
We compared the settling preferences and reproductive potential of an oligophagous herbivore, the pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae), in response to pea plants, Pisum sativum L. cv. ‘Aragorn’ (Fabaceae), infected with two persistently transmitted viruses, Pea enation mosaic virus (PEMV) and Bean leaf roll virus (BLRV), that differ in their distribution within an infected plant. Aphids preferentially oriented toward and settled on plants infected with PEMV or BLRV in comparison with sham‐inoculated plants (plants exposed to herbivory by uninfected aphids), but aphids did not discriminate between plants infected with the two viruses. Analysis of plant volatiles indicated that plants inoculated with either virus had significantly higher green leaf volatile‐to‐monoterpene ratios. Time until reproductive maturity was marginally influenced by plant infection status, with a trend toward earlier nymph production on infected plants. There were consistent age‐specific effects of plant infection status on aphid fecundity: reproduction was significantly enhanced for aphids on BLRV‐infected plants across most time intervals, though mean aphid fecundity did not differ between sham and PEMV‐infected plants. There was no clear pattern of age‐specific survivorship; however, mean aphid lifespan was reduced on plants infected with PEMV. Our results are consistent with predictions of the host manipulation hypothesis, extended to include plant viruses: non‐viruliferous A. pisum preferentially orient to virus‐infected host plants, potentially facilitating pathogen transmission. These studies extend the scope of the host manipulation hypothesis by demonstrating that divergent fitness effects on vectors arise relative to the mode of virus transmission.  相似文献   

3.
Plants can activate inducible defence mechanisms against pests, pathogens, or chemical elicitors, such as ozone, mediated by reactive oxygen species (ROS), particularly hydrogen peroxide (H2O2). An unfavourable balance between ROS production and the plant antioxidant capacity seems to be responsible for the resulting susceptibility of the plant to insect attack. Arugula plants [Eruca sativa Mill. (Brassicaceae)] and green peach aphids, Myzus persicae (Sulzer) (Hemiptera: Aphididae), were used in this study to test the hypothesis that the growth of an aphid population depends on both plant and insect stress history. We investigated the impact of density and duration of a previous aphid infestation, and the time lag before re‐infestation, on aphid population growth. In a second experiment, we assessed the effect on aphid population growth of previous ozone exposure of arugula plants in open top chambers receiving a continuous O3 fumigation of 100–120 p.p.b., 90 min per day during 3 days. A third experiment was conducted to study the effect of aphid density during a previous infestation on the population growth on an uninfested host. Both previous herbivory and ozone changed the oxidative status of plant tissues and facilitated aphid population growth, which increased with the duration and density of a previous infestation by aphids. Colonization success also depended on the aphids' own history. Aphids coming from high‐density populations and/or longer infestation periods produced larger populations on an (initially) uninfested plant. Pest outbreaks in a polluted environment might be expected to be modulated by the hosts' spatial‐temporal heterogeneity related to the ozone exposure and previous herbivory.  相似文献   

4.
Volatiles modulate the development of plant pathogenic rust fungi   总被引:1,自引:0,他引:1  
Mendgen K  Wirsel SG  Jux A  Hoffmann J  Boland W 《Planta》2006,224(6):1353-1361
Rust fungi are obligate biotrophic pathogens that differentiate a series of specialized cells to establish infection. One of these cells, the haustorium, which serves to absorb nutrients from living host cells, normally develops only in planta. Here, we show that the rust fungus Uromyces fabae (Pers.) Schroet. stimulates volatile emission of its host, broad bean (Vicia faba L.). Volatiles were identified and shown to be perceived by the fungus in in vitro assays that excluded the host. Three of them, nonanal, decanal, and hexenyl acetate promoted the development of haustoria on artificial membranes. In contrast, the terpenoid farnesyl acetate suppressed this differentiation. In assays using whole plants, farnesyl acetate reduced rust disease not only on broad bean but also on several cereals and legumes including soybean. This natural substance was effective against all rusts tested when directly applied to the host. This demonstrated that farnesyl acetate may serve as a powerful novel tool to combat rust fungi including Phakopsora pachyrhizi that currently threatens the production of soybeans world-wide.  相似文献   

5.
Damaging effects of either black bean aphid (Aphis fabae), broad bean rust (Uromyces viciae-fabae), or the combination of both were investigated on a susceptible (cv. Diana) and an aphid resistant (cv. Bolero) cultivar of Vicia faba. When compared with rust, aphids caused greater reductions of root dry weight, shoot dry weight, leaf area, and mean relative growth rate. The mean unit leaf rate was also reduced whereas the leaf area ratio was not affected. The damage caused per aphid was highest on the susceptible cultivar. Rust induced damage did not differ between the cultivars. Concomitant infestation with both pests only resulted in additive damage. The population development of aphids was delayed on partially resistant plants. High temperature and rust infection reduced the total number of aphids the plants were able to support but not the level of resistance. Thus the specific damaging effect per aphid was increased.  相似文献   

6.
Since the beginning of breeding narrow‐leafed lupins [Lupinus angustifolius L. (Fabaceae)] with a low alkaloid content, susceptibility to several aphid species has increased. Therefore, the probing and feeding behavior of Aphis fabae Scopoli, Aphis craccivora Koch, Acyrthosiphon pisum (Harris), Myzus persicae (Sulzer), and the well‐adapted Macrosiphum albifrons Essig (all Hemiptera: Aphididae) was studied over 12 h on narrow‐leafed lupin genotypes containing varying amounts and compositions of alkaloids. We used the electrical penetration graph (EPG) technique to obtain information on the influence of alkaloid content and composition on the susceptibility to various aphid species. Results indicated that the total time of probing of A. fabae, A. craccivora, A. pisum, and M. persicae increased with a reduced alkaloid content, whereas the alkaloid content had no influence on M. albifrons. Almost all of the individuals (>93%) conducted sieve element phases on the highly susceptible genotype Bo083521AR (low alkaloid content). A reduced occurrence of phloem phases was observed during the 12‐h recording on the alkaloid‐rich cultivar Azuro, especially for A. pisum (37.5%) and A. fabae (55.0%). Furthermore, aphids feeding on genotypes with low alkaloid content had in most cases significantly longer sieve element phases than when feeding on resistant genotypes (Kalya: low alkaloid content, yet resistant; Azuro: high alkaloid content, resistant), whereas M. albifrons showed the longest phloem phase on the alkaloid‐rich cultivar Azuro. As most significant differences were found in phloem‐related parameters, it is likely that the most important plant factors influencing aphid probing and feeding behavior are localized in the sieve elements. The aphids’ feeding behavior on the cultivar Kalya, with a low alkaloid content but reduced susceptibility, indicates that not only the total alkaloid content influences the feeding behavior but additional plant factors have an impact.  相似文献   

7.
The symbiosis between grasses and endophytic fungi is a common phenomenon and can affect herbivore performance through acquired, chemical plant defence by fungal alkaloids. In laboratory experiments, two species of common grass aphids, Rhopalosiphum padi and Metopolophium dirhodum were tested, in a population experiment (on four plant cultivars) and individually (on one plant cultivar) for the effects of the endophyte, Neotyphodium lolii, that forms symbiotic associations with perennial ryegrass Lolium perenne. In the population experiment that lasted for four aphid generations both aphid species showed decreased population sizes when feeding on each of the four endophyte-infected cultivars. Individuals of R. padi tested individually showed reduced adult life span and fecundity when feeding on infected plants. Individuals of M. dirhodum showed no response in any of the traits measured. This suggests that R. padi individuals are more sensitive to endophyte infection than M. dirhodum individuals. However, all infected grass cultivars reduced population sizes of both aphid species over four generations. Therefore, fungal endophytes can reduce populations of aphid herbivores independent of plant cultivars.  相似文献   

8.
Specialization on different host plants can promote evolutionary diversification of herbivorous insects. Work on pea aphids (Acyrthosiphon pisum) has contributed significantly to the understanding of this process, demonstrating that populations associated with different host plants exhibit performance trade‐offs across hosts, show adaptive host choice and genetic differentiation and possess different communities of bacterial endosymbionts. Populations specialized on different secondary host plants during the parthenogenetic summer generations are also described for the black bean aphid (Aphis fabae complex) and are usually treated as different (morphologically cryptic) subspecies. In contrast to pea aphids, however, host choice and mate choice are decoupled in black bean aphids, because populations from different summer hosts return to the same primary host plant to mate and lay overwintering eggs. This could counteract evolutionary divergence, and it is currently unknown to what extent black bean aphids using different summer hosts are indeed differentiated. We addressed this question by microsatellite genotyping and endosymbiont screening of black bean aphids collected in summer from the goosefoot Chenopodium album (subspecies A. f. fabae) and from thistles of the genus Cirsium (subspecies A. f. cirsiiacanthoides) across numerous sites in Switzerland and France. Our results show clearly that aphids from Cirsium and Chenopodium exhibit strong and geographically consistent genetic differentiation and that they differ in their frequencies of infection with particular endosymbionts. The dependence on a joint winter host has thus not prevented the evolutionary divergence into summer host‐adapted populations that appear to have evolved mechanisms of reproductive isolation within a common mating habitat.  相似文献   

9.
Pathogens may alter their hosts, which consequently increases transmission efficiency by vectors. We examined the effects of Raspberry leaf mottle virus [RLMV; Closterovirus (Closteroviridae)] and Raspberry latent virus [RpLV; Reovirus (Reoviridae)], alone and in a co‐infection in raspberry, Rubus idaeus L. (Rosaceae) cv. Meeker, on the behavior and performance of its vector, Amphorophora agathonica Hottes (Hemiptera: Aphididae). Longevity was increased in aphids feeding on all infected‐plant treatments compared with healthy plants, but aphid fecundity only increased in the co‐infection treatment. In a two‐way choice study between infected and healthy plants, aphids showed no difference in preference between plants after 30 min of exposure. After 24 h, aphids significantly preferred to settle on plants infected with RLMV over healthy, but healthy plants over plants infected with RpLV. There were no differences in settling preferences between healthy and co‐infected plants. An electrical penetration graph study showed no differences in aphid feeding behavior on plants infected with RLMV and RLMV+RpLV when compared with healthy controls. Our results are consistent with past findings that infected plant's impact vector performance and behavior, but also highlight the need to further investigate greater virus diversity and effects of mixed infections.  相似文献   

10.
Host defenses against parasites do not come for free. The evolution of increased resistance can be constrained by constitutive costs associated with possessing defense mechanisms, and by induced costs of deploying them. These two types of costs are typically considered with respect to resistance as a genetically determined trait, but they may also apply to resistance provided by ‘helpers’ such as bacterial endosymbionts. We investigated the costs of symbiont‐conferred resistance in the black bean aphid, Aphis fabae (Scopoli), which receives strong protection against the parasitoid Lysiphlebus fabarum from the defensive endosymbiont Hamiltonella defensa. Aphids infected with H. defensa were almost ten times more resistant to L. fabarum than genetically identical aphids without this symbiont, but in the absence of parasitoids, they had strongly reduced lifespans, resulting in lower lifetime reproduction. This is evidence for a substantial constitutive cost of harboring H. defensa. We did not observe any induced cost of symbiont‐conferred resistance. On the contrary, symbiont‐protected aphids that resisted a parasitoid attack enjoyed increased longevity and lifetime reproduction compared with unattacked controls, whereas unprotected aphids suffered a reduction of longevity and reproduction after resisting an attack. This surprising result suggests that by focusing exclusively on the protection, we might underestimate the selective advantage of infection with H. defensa in the presence of parasitoids.  相似文献   

11.
12.
D. Adams  A. E. Douglas 《Oecologia》1997,110(4):528-532
To explore the effect of rearing-plant species on the contribution of the symbiotic bacterium, Buchnera, to aphid performance, larvae of Aphis fabae that contained the bacteria (symbiotic aphids) and larvae experimentally deprived of the bacteria (aposymbiotic aphids) were reared on 16 plant species. Mortality of aphids was low on most plant species. The relative growth rate (RGR) of the larvae varied with plant species, and was generally depressed by elimination of the bacteria; the mean values of RGR varied between 0 and 0.29 μg μg−1 day−1 for symbiotic aphids and 0 and 0.17 μg μg−1 day−1 for aposymbiotic aphids. The extent to which RGR was depressed by aposymbiosis varied significantly between plant species, suggesting that aphid host plant may influence the contribution of the bacteria to plant utilisation. It is proposed that the bacteria may be particularly important on plants with phloem sap of high amino acid content of low quality, i.e. low concentrations of essential amino acids. Received: 18 August 1996 / Accepted: 13 January 1997  相似文献   

13.
The plant hormone salicylic acid (SA) is recognized as an effective defence against biotrophic pathogens, but its role as regulator of beneficial plant symbionts has received little attention. We studied the relationship between the SA hormone and leaf fungal endophytes on herbivore defences in symbiotic grasses. We hypothesize that the SA exposure suppresses the endophyte reducing the fungal‐produced alkaloids. Because of the role that alkaloids play in anti‐herbivore defences, any reduction in their production should make host plants more susceptible to herbivores. Lolium multiflorum plants symbiotic and nonsymbiotic with the endophyte Epichloë occultans were exposed to SA followed by a challenge with the aphid Rhopalosiphum padi. We measured the level of plant resistance to aphids, and the defences conferred by endophytes and host plants. Symbiotic plants had lower concentrations of SA than did the nonsymbiotic counterparts. Consistent with our prediction, the hormonal treatment reduced the concentration of loline alkaloids (i.e., N‐formyllolines and N‐acetylnorlolines) and consequently decreased the endophyte‐conferred resistance against aphids. Our study highlights the importance of the interaction between the plant immune system and endophytes for the stability of the defensive mutualism. Our results indicate that the SA plays a critical role in regulating the endophyte‐conferred resistance against herbivores.  相似文献   

14.
Plants in nature have inducible defences that sometimes lead to targeted resistance against particular herbivores, but susceptibility to others. The metabolic diversity and genetic resources available for maize (Zea mays) make this a suitable system for a mechanistic study of within‐species variation in such plant‐mediated interactions between herbivores. Beet armyworms (Spodoptera exigua) and corn leaf aphids (Rhopalosiphum maidis) are two naturally occurring maize herbivores with different feeding habits. Whereas chewing herbivore‐induced methylation of 2,4‐dihydroxy‐7‐methoxy‐1,4‐benzoxazin‐3‐one glucoside (DIMBOA‐Glc) to form 2‐hydroxy‐4,7‐dimethoxy‐1,4‐benzoxazin‐3‐one glucoside (HDMBOA‐Glc) promotes caterpillar resistance, lower DIMBOA‐Glc levels favour aphid reproduction. Thus, caterpillar‐induced DIMBOA‐Glc methyltransferase activity in maize is predicted to promote aphid growth. To test this hypothesis, the impact of S. exigua feeding on R. maidis progeny production was assessed using seventeen genetically diverse maize inbred lines. Whereas aphid progeny production was increased by prior caterpillar feeding on lines B73, Ki11, Ki3 and Tx303, it decreased on lines Ky21, CML103, Mo18W and W22. Genetic mapping of this trait in a population of B73 × Ky21 recombinant inbred lines identified significant quantitative trait loci on maize chromosomes 1, 7 and 10. There is a transgressive segregation for aphid resistance, with the Ky21 alleles on chromosomes 1 and 7 and the B73 allele on chromosome 10 increasing aphid progeny production. The chromosome 1 QTL coincides with a cluster of three maize genes encoding benzoxazinoid O‐methyltransferases that convert DIMBOA‐Glc to HDMBOA‐Glc. Gene expression studies and benzoxazinoid measurements indicate that S. exigua ‐induced responses in this pathway differentially affect R. maidis resistance in B73 and Ky21.  相似文献   

15.
The rosy apple aphid, Dysaphis plantaginea (Passerini) (Hemiptera: Aphididae), is one of the major pests of European apple orchards, commonly controlled by the use of synthetic insecticides. In the present work, the non‐protein amino acid DL‐β‐aminobutyric acid (BABA), known to induce plant resistance against a wide range of abiotic and biotic stresses, has been tested for its protective effect against this pest on apple. We first verified the lack of any contact effect of BABA on the insect itself. Next we applied BABA as a soil drench to apple and monitored its effect on the population development of aphids after artificial infestation. We demonstrated that BABA strongly reduced the population growth and that this compound severely affected various life‐history characteristics of the aphid such as female longevity and fecundity, nymph mortality, and larval development.  相似文献   

16.
The cabbage aphid, Brevicoryne brassicae L. (Hemiptera: Aphididae), is a perennial pest that specializes on plants of the Brassicaceae family, attacking winter canola (Brassica napus L.) mainly during and after flowering. Under field conditions, cabbage aphid colonizes the upper flowering canopy. Population dynamics of aphids in the flowering canopy could be regulated by differences in either plant quality (bottom‐up) or predatory (top‐down) forces. The goal of our study was to determine the effect of feeding location on cabbage aphid demography. A stage‐structured matrix population model was constructed for aphids restricted to reproductive or vegetative plant tissues of canola. We found that feeding location had a large impact on demography of cabbage aphid; the finite rate of increase (λ ± SEM) was higher when aphids were restricted to reproductive tissues, compared to aphids feeding on vegetative tissues: 1.25 ± 0.01 vs. 1.17 ± 0.01 (leaves). Aphids confined to reproductive tissues with higher λ exhibited shorter generation times (T = 14.2 ± 0.2 days) and 53–75% higher net reproductive rates (R0 = 23.3 ± 1.7) than aphids feeding on vegetative tissues. Prospective analyses showed that there was a nymph‐skewed stable stage distribution, and elasticity values revealed that λ is most sensitive to changes in stasis of adults staying in the adult stage and to adult survival. Retrospective analyses indicated that variation in adult fecundity (value of 0.05) had the largest effect on population dynamics but collectively, growth of nymphal stage 2–3, 3–4, and 4 to adult accounted for most of the difference in λ between the treatments. Monitoring programs should target adults and penultimate instars colonizing reproductive tissues of canola plants in the field as aphids on these plant structures contribute most to population growth.  相似文献   

17.
Ecologically important traits of insects are often affected by facultative bacterial endosymbionts. This is best studied in the pea aphid Acyrthosiphon pisum, which is frequently infected by one or more of eight facultative symbiont species. Many of these symbiont species have been shown to provide one ecological benefit, but we have little understanding of the range of effects that a single strain can have. Here, we describe the phenotypes conferred by three strains of the recently discovered bacterium known as X‐type (Enterobacteriaceae), each in their original aphid genotype which also carries a Spiroplasma symbiont. All comparisons are made between aphids that are coinfected with Spiroplasma and X‐type and aphids of the same genotype that harbour only Spiroplasma. We show that in all cases, infection with X‐type protects aphids from the lethal fungal pathogen Pandora neoaphidis, and in two cases, resistance to the parasitoid Aphidius ervi also increases. X‐type can additionally affect aphid stress responses – the presence of X‐type increased reproduction after the aphids were heat‐stressed. Two of the three strains of X‐type are able to provide all of these benefits. Under benign conditions, the aphids tended to suffer from reduced fecundity when harbouring X‐type, a mechanism that might maintain intermediate frequencies in field populations. These findings highlight that a single strain of a facultative endosymbiont has the potential to provide diverse benefits to its aphid host.  相似文献   

18.
Coevolution between hosts and parasites may promote the maintenance of genetic variation in both antagonists by negative frequency‐dependence if the host–parasite interaction is genotype‐specific. Here we tested for specificity in the interaction between parasitoids (Lysiphlebus fabarum) and aphid hosts (Aphis fabae) that are protected by a heritable defensive endosymbiont, the γ‐proteobacterium Hamiltonella defensa. Previous studies reported a lack of genotype specificity between unprotected aphids and parasitoids, but suggested that symbiont‐conferred resistance might exhibit a higher degree of specificity. Indeed, in addition to ample variation in host resistance as well as parasitoid infectivity, we found a strong aphid clone‐by‐parasitoid line interaction on the rates of successful parasitism. This genotype specificity appears to be mediated by H. defensa, highlighting the important role that endosymbionts can play in host–parasite coevolution.  相似文献   

19.
Enzai Du  Jingyun Fang 《Oecologia》2014,174(3):883-892
Plants are frequently attacked by both pathogens and insects, and an attack from one can induce plant responses that affect resistance to the other. However, we currently lack a predictive framework for understanding how pathogens, their vectors, and other herbivores interact. To address this gap, we have investigated the effects of a viral infection in the host plant on both its aphid vector and non-vector herbivores. We tested whether the infection by three different strains of Potato virus Y (PVYNTN, PVYNO and PVYO) on tomato plants affected: (1) the induced plant defense pathways; (2) the abundance and fecundity of the aphid vector (Macrosiphum euphorbiae); and (3) the performance of two non-vector species: a caterpillar (Trichoplusia ni) and a beetle (Leptinotarsa decemlineata). While infection by all three strains of PVY induced the salicylate pathway, PVYNTN induced a stronger and longer response. Fecundity and density of aphids increased on all PVY-infected plants, suggesting that the aphid response is not negatively associated with salicylate induction. In contrast, the performance of non-vector herbivores positively correlated with the strength of salicylate induction. PVYNTN infection decreased plant resistance to both non-vector herbivores, increasing their growth rates. We also demonstrated that the impact of host plant viral infection on the caterpillar results from host plant responses and not the effects of aphid vector feeding. We propose that pathogens chemically mediate insect–plant interactions by activating the salicylate pathway and decreasing plant resistance to chewing insects, which has implications for both disease transmission and insect community structure.  相似文献   

20.
Heritable bacterial endosymbionts are common in aphids (Hemiptera: Aphididae), and they can influence ecologically important traits of their hosts. It is generally assumed that their persistence in a population is dependent on a balance between the costs and benefits they confer. A good example is Hamiltonella defensa Moran et al., a facultative symbiont that provides a benefit by strongly increasing aphid resistance to parasitoid wasps, but becomes costly to the host in the absence of parasitoids. Regiella insecticola Moran et al. is another common symbiont of aphids and generally does not influence resistance to parasitoids. In the green peach aphid, Myzus persicae (Sulzer), however, one strain (R5.15) was discovered that behaves like H. defensa in that it provides strong protection against parasitoid wasps. Here we compare R5.15‐infected and uninfected lines of three M. persicae clones to test whether this protective symbiont is costly as well, i.e., whether it has any negative effects on aphid life‐history traits. Furthermore, we transferred R5.15 to two other aphid species, the pea aphid, Acyrthosiphon pisum (Harris), and the black bean aphid, Aphis fabae Scopoli, where this strain is also protective against parasitoids and where we could compare its effects with those of additional, non‐protective strains of R. insecticola. Negative effects of R5.15 on host survival and lifetime reproduction were limited and frequently non‐significant, and these effects were comparable or in one case weaker than those of R. insecticola strains that are not protective against parasitoid wasps. Unless the benefit of protection is counteracted by detrimental effects on traits that were not considered in this study, R. insecticola strain R5.15 should have a high potential to spread in aphid populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号