首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Down-modulation of the CD4 receptor is one of the hallmarks of HIV-1 infection and it is believed to confer a selective replicative advantage to the virus in vivo. This process is mainly mediated by three viral proteins: Env, Vpu and Nef. To date, the mechanisms that lead to CD4 depletion from the surface of infected cells during HIV-1 infection are still only partially characterized. In this study, we sought to identify and characterize cellular host factors in HIV-1-induced CD4 down-modulation.

Results

To identify host factors involved in CD4 down-regulation, we used a whole genome-targeting shRNA lentiviral library in HeLa CD4+ cells expressing Nef as an inducer of CD4 down-modulation. We identified 55 genes, mainly encoding for proteins involved in various steps of clathrin-mediated endocytosis. For confirmation and further selection of the hits we performed several rounds of validation, using individual shRNA lentiviral vectors with a different target sequence for gene knock-down in HIV-1-infected T cells. By this stringent validation set-up, we could demonstrate that the knock-down of DNM3 (dynamin 3), SNX22 (sorting nexin 22), ATP6AP1 (ATPase, H+ Transporting, Lysosomal Accessory Protein 1), HRBL (HIV-Rev binding protein Like), IDH3G (Isocitrate dehydrogenase), HSP90B1 (Heat shock protein 90 kDa beta member 1) and EPS15 (Epidermal Growth Factor Receptor Pathway Substrate 15) significantly increases CD4 levels in HIV-infected SupT1 T cells compared to the non-targeting shRNA control. Moreover, EPS15, DNM3, IDH3G and ATP6AP1 knock-down significantly decreases HIV-1 replication in T cells.

Conclusions

We identified seven genes as cellular co-factors for HIV-1-mediated CD4 down-regulation in T cells. The knock-down of four out of seven of these genes also significantly reduces HIV-1 replication in T cells. Next to a role in HIV-mediated CD4 down-regulation, these genes might however affect HIV-1 replication in another way. Our findings give insights in the HIV-1-mediated CD4 down-regulation at the level of the plasma membrane and early endosomes and identify four possible new HIV-1 replication co-factors.
  相似文献   

2.

Background

Latent reservoirs of HIV-1 provide a major challenge to its cure. There are increasing reports of interplay between HIV-1 replication and host miRNAs. Several host miRNAs, which potentially target the nef-3′LTR region of HIV-1 RNA, including miR-29a, are proposed to promote latency.

Findings

We used two established cellular models of HIV-1 latency – the U1 monocytic and J1.1 CD4+ T cell lines to show an inverse relationship between HIV-1 replication and miR-29a levels, which was mediated by the HIV-1 Nef protein. Using a miR-29a responsive luciferase reporter plasmid, an expression plasmid and an anti-miR29a LNA, we further demonstrate increased miR-29a levels during latency and reduced levels following active HIV replication. Finally, we show that miR-29a levels in the PBMCs and plasma of HIV infected persons also correlate inversely with latency and active viral replication.

Conclusions

The levels of miR-29a correlate inversely with active HIV-1 replication in cell culture models and in HIV infected persons. This links miR-29a to viral latency and suggests another approach to activate and destroy latent HIV-1 reservoirs.
  相似文献   

3.

Background

Antibody-dependent cellular cytotoxicity (ADCC), which mainly mediated by natural killer (NK) cells, may play a critical role in slowing human immunodeficiency virus type-1 (HIV-1) disease progression and protecting from HIV-1 infection. Besides classic NK cells, CD56+ T cells also have some NK cell-like properties, such as the large granular lymphocyte morphology and the capacity to destroy NK-sensitive target cells. However, little is known about the potentials of antibody-dependent CD56+ T cell responses and the association between antibody-dependent CD56+ T cell responses and HIV-1 disease progression.

Results

In the present study, we showed evidences that, in addition to NK cells, CD56+ T cells could generate degranulation upon CD16 cross-linking. Ex vivo study showed that FcγRIII (CD16)-mediated CD56+ T cell responses were distinctly induced by IgG antibody-bound P815 cells. Comparatively, CD56? T cells and invariant NKT (CD3+ 6B11+) failed to induce antibody-dependent activation. Antibody-dependent CD56+ T cell responses were mainly ascribed to CD4/CD8 double negative subset and were functionally impaired in long-term HIV-1-infected former plasma donors, regardless of hepatitis C virus (HCV) coinfection status. Also, CD56+ T cell-mediated HIV-1-specific antibody-dependent responses were declined in men who have sex with men with HIV-1 infection over 3 years. Finally, we showed that matrix metalloprotease (MMP) inhibitor GM6001 could partially restored antibody-dependent CD56+ T cell responses of chronic HIV-1-infected subjects.

Conclusions

Our results suggested that CD56+ T cells could mediate ADCC responses and the responses were impaired in chronic HIV-1 infection.
  相似文献   

4.

Introduction

Data sharing is being increasingly required by journals and has been heralded as a solution to the ‘replication crisis’.

Objectives

(i) Review data sharing policies of journals publishing the most metabolomics papers associated with open data and (ii) compare these journals’ policies to those that publish the most metabolomics papers.

Methods

A PubMed search was used to identify metabolomics papers. Metabolomics data repositories were manually searched for linked publications.

Results

Journals that support data sharing are not necessarily those with the most papers associated to open metabolomics data.

Conclusion

Further efforts are required to improve data sharing in metabolomics.
  相似文献   

5.

Background

Changes in iron metabolism frequently accompany HIV-1 infection. However, while many clinical and in vitro studies report iron overload exacerbates the development of infection, many others have found no correlation. Therefore, the multi-faceted role of iron in HIV-1 infection remains enigmatic.

Methods

RT-qPCR targeting the LTR region, gag, Tat and Rev were performed to measure the levels of viral RNAs in response to iron overload. Spike-in SILAC proteomics comparing i) iron-treated, ii) HIV-1-infected and iii) HIV-1-infected/iron treated T lymphocytes was performed to define modifications in the host cell proteome. Data from quantitative proteomics were integrated with the HIV-1 Human Interaction Database for assessing any viral cofactors modulated by iron overload in infected T lymphocytes.

Results

Here, we demonstrate that the iron overload down-regulates HIV-1 gene expression by decreasing the levels of viral RNAs. In addition, we found that iron overload modulates the expression of many viral cofactors. Among them, the downregulation of the REV cofactor eIF5A may correlate with the iron-induced inhibition of HIV-1 gene expression. Therefore, we demonstrated that eiF5A downregulation by shRNA resulted in a significant decrease of Nef levels, thus hampering HIV-1 replication.

Conclusions

Our study indicates that HIV-1 cofactors influenced by iron metabolism represent potential targets for antiretroviral therapy and suggests eIF5A as a selective target for drug development.
  相似文献   

6.
7.

Background

Setting of graded levels of a protein for in vivo studies by controlled gene expression has inconveniences, and we here explore the use of the t-degron technique instead.

Results

In a yeast t-degron (ubiquitin-argDHFRts)- phosphoglycerate mutase (GPM1) fusion strain, increasing periods of exposure to the non-permissive temperature 37°C, even in the presence of cycloheximide, gave decreasing function, as assessed at 23°C in vivo by glucose metabolism and confirmed by immunoblot.

Conclusion

An ideal system would set a range of lower levels of a protein, do so without compensating protein synthesis, and give stable activity for in vitro comparisons. Although the first two aims appear obtainable, the third was not in this example of the application, limiting its uses for some but not all purposes.
  相似文献   

8.

Background

Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, is the most common phenotype of mitochondrial disease. It often develops in childhood or adolescence, usually before the age of 40, in a maternally-inherited manner. Mutations in mitochondrial DNA (mtDNA) are frequently responsible for MELAS.

Case presentation

A 55-year-old man, who had no family or past history of mitochondrial disorders, suddenly developed bilateral visual field constriction and repeated stroke-like episodes. He ultimately presented with cortical blindness, recurrent epilepsy and severe cognitive impairment approximately 6 months after the first episode. Genetic analysis of biopsied biceps brachii muscle, but not of peripheral white blood cells, revealed a T10158C mutation in the mtDNA-encoded gene of NADH dehydrogenase subunit 3 (ND3), which has previously been thought to be associated with severe or fatal mitochondrial disorders that develop during the neonatal period or in infancy.

Conclusion

A T10158C mutation in the ND3 gene can cause atypical adult-onset stroke-like episodes in a sporadic manner.
  相似文献   

9.
10.

Background

Regulated expression of suicide genes is a powerful tool to eliminate specific subsets of cells and will find widespread usage in both basic and applied science. A promising example is the specific elimination of human immunodeficiency virus type 1 (HIV-1) infected cells by LTR-driven suicide genes. The success of this approach, however, depends on a fast and effective suicide gene, which is expressed exclusively in HIV-1 infected cells. These preconditions have not yet been completely fulfilled and, thus, success of suicide approaches has been limited so far. We tested truncated Bid (tBid), a human pro-apoptotic protein that induces apoptosis very rapidly and efficiently, as suicide gene for gene therapy against HIV-1 infection.

Results

When tBid was introduced into the HIV-1 LTR-based, Tat- and Rev-dependent transgene expression vector pLRed(INS)2R, very efficient induction of apoptosis was observed within 24 hours, but only in the presence of both HIV-1 regulatory proteins Tat and Rev. Induction of apoptosis was not observed in their absence. Cells containing this vector rapidly died when transfected with plasmids containing full-length viral genomic DNA, completely eliminating the chance for HIV-1 replication. Viral replication was also strongly reduced when cells were infected with HIV-1 particles.

Conclusions

This suicide vector has the potential to establish a safe and effective gene therapy approach to exclusively eliminate HIV-1 infected cells before infectious virus particles are released.
  相似文献   

11.

Background

Beta-thalassemia is common in the Mediterranean area as well as the Middle East and India. Official report in Iran revealed the average prevalence rate of carriers about 4%. More than 20 restriction fragment length polymorphisms (RFLPs) are known in the beta-globin gene cluster and used in the prenatal diagnosis (PND) services. Some of these locations may have low allele frequency and are not informative in the prenatal diagnosis. The current study aims to find new haplotypes and polymorphisms with high allele frequency in the local population.

Methods

Two thousand three hundred fifty samples (1,321 male and 1,029 female) from the northern Iran, whom suspected to be the carriers either for alpha or beta thalassemia and referred to the local diagnostic laboratory as a routine services were investigated during five years, (2010–2015). The beta-globin gene was sequenced for all samples.

Results

Heterozygosity for five SNPs in the beta-globin gene was calculated separately. 383 individuals (16.29%) showed no sign of nucleotide change in the beta-globin gene sequence. In total, codon2 (C/T) 31.72%, IVSII-16 (C/G) 31.72%, IVSII-74 (G/T) 54.71%, IVSII-81 (C/T) 19.47%, and IVSII-666 (T/C) 31.72% were seen respectively. Although all five polymorphisms showed reasonably high heterozygosity, IVSII-74 (G/T) [GG wild type (36.5%), G/T (54.71%) and TT (8.8%)] revealed the highest heterozygosity rate. Four combinations of these five SNPs were defined as new haplotypes named M1 to M4. ARMS-PCR also were designed and applied to detect IVSII-74 (G/T) nucleotide position.

Conclusions

This study represents an intragenic polymorphism, IVSII-74, a reliable position with high heterozygosity rates in Iranian population for PND analysis.

Trial registration

Retrospectively registered.
  相似文献   

12.

Background

Our previous study found that single-pass membrane protein with coiled-coil domains 1 (C3orf43; XM_006248472.3) was significantly upregulated in the proliferative phase during liver regeneration. This indicates that C3orf43 plays a vital role in liver cell proliferation. However, its physiological functions remains unclear.

Methods

The expressions of C3orf43 in BRL-3A cells transfected with C3orf43-siRNA (C3-siRNA) or overexpressing the vector plasmid pCDH-C3orf43 (pCDH-C3) were measured via RT-qPCR and western blot. Cell growth and proliferation were determined using MTT and flow cytometry. Cell proliferation-related gene expression was measured using RT-qPCR and western blot.

Results

It was found that upregulation of C3orf43 by pCDH-C3 promoted hepatocyte proliferation, and inhibition of C3orf43 by C3-siRNA led to the reduction of cell proliferation. The results of qRT-PCR and western blot assay showed that the C3-siRNA group downregulated the expression of cell proliferation-related genes like JUN, MYC, CCND1 and CCNA2, and the pCDH-C3 group upregulated the expression of those genes.

Conclusion

These findings reveal that C3orf43 may contribute to hepatocyte proliferation and may have the potential to promote liver repair and regeneration.
  相似文献   

13.

Background

Despite the durable viral suppression afforded by antiretroviral therapy, HIV-1 eradication will require strategies to target latently infected cells that persist in infected individuals. Protein kinase C (PKC) activation is a promising strategy to reactivate latent proviruses and allow for subsequent recognition and clearance of infected cells by the immune system. Ingenol derivatives are PKC agonists that induce latency reversal but also lead to T cell activation and the release of pro-inflammatory cytokines, which would be undesirable in vivo. In this work, we sought to identify compounds that would suppress pro-inflammatory cytokine production in the context of PKC activation.

Design and methods

We performed an in vitro screen to identify compounds that could dampen pro-inflammatory cytokine release associated with T cell activation, using IL-6 as a model cytokine. We then tested the ability of the most promising screening hit, the FDA-approved Janus Kinase (JAK) inhibitor ruxolitinib, to diminish release of multiple cytokines and its effect on latency reversal using cells from HIV-1-positive, aviremic participants.

Results

We demonstrate that co-administration of ruxolitinib with ingenol-3,20-dibenzoate significantly reduces pro-inflammatory cytokine release without impairing latency reversal ex vivo.

Conclusion

The combination of ingenol compounds and JAK inhibition represents a novel strategy for HIV-1 eradication.
  相似文献   

14.

Background and aims

Bacterial Non-Specific Acid Phosphatase (NSAP) enzymes are capable of dephosphorylating diverse organic phosphoesters but are rarely studied: their distribution in natural and managed environments is poorly understood. The aim of this study was to generate new insight into the environmental distribution of NSAPs and establish their potential global relevance to cycling of organic phosphorus.

Methods

We employed bioinformatic tools to determine NSAP diversity and subcellular localization in microbial genomes; used the corresponding NSAP gene sequences to census metagenomes from diverse ecosystems; studied the effect of long-term land management upon NSAP diversity and abundance.

Results

Periplasmic class B NSAPs are poorly represented in marine and terrestrial environments, reflecting their association with enteric and pathogenic bacteria. Periplasmic class A and outer membrane-associated class C NSAPs are cosmopolitan. NSAPs are more abundant in marine than terrestrial ecosystems and class C more abundant than class A genes, except in an acidic peat where class A genes dominate. A clear effect of land management upon gene abundance was identified.

Conclusions

NSAP genes are cosmopolitan. Class C genes are more widely distributed: their association with the outer-membrane of cells gives them a clear role in the cycling of organic phosphorus, particularly in soils.
  相似文献   

15.

Background

There is legitimate concern that minority drug-resistant mutants may be selected during the initial HIV-1 RNA decay phase following antiretroviral therapy initiation, thus undermining efficacy of treatment. The goal of this study was to characterize viral resistance emergence and address viral population evolution during the first phase of viral decay after treatment containing initiation.

Findings

454 sequencing was used to characterize viral genetic diversity and polymorphism composition of the HIV-1 integrase gene during the first two weeks following initiation of raltegravir-containing HAART in four ART-experienced subjects. No low-prevalence Raltegravir (RAL) drug resistance mutations (DRM) were found at baseline. All patients undergoing treatment received a fully active ART according to GSS values (GSS?≥?3.5). No emergence of DRM after treatment initiation was detected. Longitudinal analysis showed no evidence of any other polymorphic mutation emergence or variation in viral diversity indexes.

Conclusions

This suggests that fully active salvage antiretroviral therapy including raltegravir achieves a complete blockade of HIV-1 replication in plasma. It is unlikely that raltegravir-resistant HIV-1 may be selected in plasma during the early HIV-1 RNA decay after treatment initiation if the administered therapy is active enough.
  相似文献   

16.

Background

Dendritic cells (DCs) are considered as key mediators of the early events in human immunodeficiency virus type 1 (HIV-1) infection at mucosal sites. Previous studies have shown that surface-bound virions and/or internalized viruses found in endocytic vacuoles of DCs are efficiently transferred to CD4+ T cells. Extracellular adenosine triphosphate (ATP) either secreted or released from necrotic cells induces a distorted maturation of DCs, transiently increases their endocytic capacity and affects their migratory capacity. Knowing that high extracellular ATP concentrations are present in situations of tissue injury and inflammation, we investigated the effect of ATP on HIV-1 transmission from DCs to CD4+ T lymphocytes.

Results

In this study, we show that extracellular ATP reduces HIV-1 transfer from immature monocyte-derived DCs (iDCs) to autologous CD4+ T cells. This observed decrease in viral replication was related to a lower proportion of infected CD4+ T cells following transfer, and was seen with both X4- and R5-tropic isolates of HIV-1. Extracellular ATP had no effect on direct CD4+ T cell infection as well as on productive HIV-1 infection of iDCs. These observations indicate that extracellular ATP affects HIV-1 infection of CD4+ T cells in trans with no effect on de novo virus production by iDCs. Additional experiments suggest that extracellular ATP might modulate the trafficking pathway of internalized virions within iDCs leading to an increased lysosomal degradation, which could be partly responsible for the decreased HIV-1 transmission.

Conclusion

These results suggest that extracellular ATP can act as a factor controlling HIV-1 propagation.
  相似文献   

17.

Background

Host-species specificity of the human immunodeficiency virus (HIV) limits pathobiologic, diagnostic and therapeutic research investigations to humans and non-human primates. The emergence of humanized mice as a model for viral infection of the nervous system has overcome such restrictions enabling research for HIV-associated end organ disease including behavioral, cognitive and neuropathologic deficits reflective of neuroAIDS. Chronic HIV-1 infection of NOD/scid-IL-2Rgc null mice transplanted with human CD34+ hematopoietic stem cells (CD34-NSG) leads to persistent viremia, profound CD4+ T lymphocyte loss and infection of human monocyte-macrophages in the meninges and perivascular spaces. Murine cells are not infected with virus.

Methods

Changes in mouse behavior were measured, starting at 8 weeks after viral infection. These were recorded coordinate with magnetic resonance spectroscopy metabolites including N-acetylaspartate (NAA), creatine and choline. Diffusion tensor magnetic resonance imaging (DTI) was recorded against multispectral immunohistochemical staining for neuronal markers that included microtubule associated protein-2 (MAP2), neurofilament (NF) and synaptophysin (SYN); for astrocyte glial fibrillary acidic protein (GFAP); and for microglial ionized calcium binding adaptor molecule 1 (Iba-1). Oligodendrocyte numbers and integrity were measured for myelin associated glycoprotein (MAG) and myelin oligodendrocyte glycoprotein (MOG) antigens.

Results

Behavioral abnormalities were readily observed in HIV-1 infected mice. Longitudinal open field activity tests demonstrated lack of habituation indicating potential for memory loss and persistent anxiety in HIV-1 infected mice compared to uninfected controls. End-point NAA and creatine in the cerebral cortex increased with decreased MAG. NAA and glutamate decreased with decreased SYN and MAG. Robust inflammation reflected GFAP and Iba-1 staining intensities. DTI metrics were coordinate with deregulation of NF, Iba-1, MOG and MAG levels in the whisker barrel and MAP2, NF, MAG, MOG and SYN in the corpus callosum.

Conclusions

The findings are consistent with some of the clinical, biochemical and pathobiologic features of human HIV-1 nervous system infections. This model will prove useful towards investigating the mechanisms of HIV-1 induced neuropathology and in developing novel biomarkers and therapeutic strategies for disease.
  相似文献   

18.

Introduction

Everolimus selectively inhibits mammalian target of rapamycin complex 1 (mTORC1) and exerts an antineoplastic effect. Metabolic disturbance has emerged as a common and unique side effect of everolimus.

Objectives

We used targeted metabolomic analysis to investigate the effects of everolimus on the intracellular glycometabolic pathway.

Methods

Mouse skeletal muscle cells (C2C12) were exposed to everolimus for 48 h, and changes in intracellular metabolites were determined by capillary electrophoresis time-of-flight mass spectrometry. mRNA abundance, protein expression and activity were measured for enzymes involved in glycometabolism and related pathways.

Results

Both extracellular and intracellular glucose levels increased with exposure to everolimus. Most intracellular glycometabolites were decreased by everolimus, including those involved in glycolysis and the pentose phosphate pathway, whereas no changes were observed in the tricarboxylic acid cycle. Everolimus suppressed mRNA expression of enzymes related to glycolysis, downstream of mTOR signaling enzymes and adenosine 5′-monophosphate protein kinases. The activity of key enzymes involved in glycolysis and the pentose phosphate pathway were decreased by everolimus. These results show that everolimus impairs glucose utilization in intracellular metabolism.

Conclusions

The present metabolomic analysis indicates that everolimus impairs glucose metabolism in muscle cells by lowering the activities of glycolysis and the pentose phosphate pathway.
  相似文献   

19.

Introduction

Aqueous–methanol mixtures have successfully been applied to extract a broad range of metabolites from plant tissue. However, a certain amount of material remains insoluble.

Objectives

To enlarge the metabolic compendium, two ionic liquids were selected to extract the methanol insoluble part of trunk from Betula pendula.

Methods

The extracted compounds were analyzed by LC/MS and GC/MS.

Results

The results show that 1-butyl-3-methylimidazolium acetate (IL-Ac) predominantly resulted in fatty acids, whereas 1-ethyl-3-methylimidazolium tosylate (IL-Tos) mostly yielded phenolic structures. Interestingly, bark yielded more ionic liquid soluble metabolites compared to interior wood.

Conclusion

From this one can conclude that the application of ionic liquids may expand the metabolic snapshot.
  相似文献   

20.

Background

The Nef protein can be detected in plasma of HIV-1-infected patients and plays a role in the pathogenesis of HIV-1. Nef produced during the early stages of infection is fundamental in creating the ideal environment for viral replication, e.g. by reducing the ability of infected cells to induce an immune response.

Aim

Based on previous experience showing that both Tat and gp41 of HIV-1 are potent chemotactic factors for basophils and mast cells, and gp120 is a powerful stimulus for the release of histamine and cytokines (IL-4 and IL-13) from basophils, in this study we aimed to verify if the HIV Nef protein can exert some effects on basophils and mast cells purified from healthy volunteers through the interaction with the CXCL12 receptor, CXCR4.

Methods

Basophils purified from peripheral blood cells of 30 healthy volunteers and mast cells obtained from lung tissue of ten healthy volunteers were tested by flow cytometric analysis, chemotaxis and chemokine production by ELISA assays.

Results

Nef is a potent chemoattractant for basophils and lung mast cells obtained from healthy, HIV-1 and HIV-2 seronegative individuals. Incubation of basophils and mast cells with Nef induces the release of chemokines (CXCL8/IL-8 and CCL3/MIP-1α). The chemotactic activity of Nef on basophils and mast cells is mediated by the interaction with CXCR4 receptors, being blocked by preincubation of FcεRI+ cells with an anti-CXCR4 Ab. Stimulation with Nef or CXCL12/SDF-1α, a CXCR4 ligand, desensitizes basophils to a subsequent challenge with an autologous or heterologous stimulus.

Conclusions

These results indicate that Nef, a HIV-1-encoded α-chemokine homolog protein, plays a direct role in basophils and mast cell recruitment and activation at sites of HIV-1 replication, by promoting directional migration of human FcεRI+ cells and the release of chemokines from these cells. Together with our previous results, these data suggest that FcεRI+ cells contribute to the dysregulation of the immune system in HIV-1 infection.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号