首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gelatinous polysaccharides of a Batrachospermum species have been extracted from the alga. The major polysaccharide is acidic and has been separated from neutral polysaccharides by chromatography on DEAE-cellulose. The constituent sugars of the acidic polysaccharide include d- and l-galactose, d-mannose, d-xylose, l-rhamnose, d-glucuronic acid, and two O-methyl sugars, which have been characterized as 3-O-methyl-l-rhamnose (l-acofriose and 3-O-methyl-d-galactose. Partial acid hydrolysis of this polysaccharide has given a complex mixture of neutral and acidic oligosaccharides. The two preponderant acidic oligosaccharides contained galactose and glucuronic acid in 1:1 ratio, suggesting the presence of a repeating sequence of these two residues as a major structural feature of the polysaccharide.  相似文献   

2.
Graded hydrolysis of purified mahua polysaccharide, PS-AI, afforded four neutral and three acidic oligosaccharides, together with monosaccharides. These oligosaccharides were characterized through hydrolysis, methylation, and reduction with lithium aluminum hydride. On methylation, Smith-degraded PS-AI gave 2,3,4,6-tetra-O-methyl-d-galactose (5.5 mol), 2,3,4-tri-O-methyl-d-galactose (1 mol), 2,4,6-tri-O-methyl-d-galactose (2.2 mol), and 2,3,4-tri-O-methyl-l-arabinose (0.9 mol). Based on these results, and those obtained from methylation, periodate oxidation, and chromium trioxide oxidation studies on the polysaccharide PS-AI, a tentative structure has been assigned to the average repeating-unit in the polysaccharide.  相似文献   

3.
Plant α-1,4 glucanotransferases (disproportionating enzymes, or D-enzymes) transfer glucan chains among oligosaccharides with the concomitant release of glucose (Glc). Analysis of Chlamydomonas reinhardtii sta11-1 mutants revealed a correlation between a D-enzyme deficiency and specific alterations in amylopectin structure and starch biosynthesis, thereby suggesting previously unknown biosynthetic functions. This study characterized the biochemical activities of the α-1,4 glucanotransferase that is deficient in sta11-1 mutants. The enzyme exhibited the glucan transfer and Glc production activities that define D-enzymes. D-enzyme also transferred glucans among the outer chains of amylopectin (using the polysaccharide chains as both donor and acceptor) and from malto-oligosaccharides into the outer chains of either amylopectin or glycogen. In contrast to transfer among oligosaccharides, which occurs readily with maltotriose, transfer into polysaccharide required longer donor molecules. All three enzymatic activities, evolution of Glc from oligosaccharides, glucan transfer from oligosaccharides into polysaccharides, and transfer among polysaccharide outer chains, were evident in a single 62-kD band. Absence of all three activities co-segregated with the sta11-1 mutation, which is known to cause abnormal accumulation of oligosaccharides at the expense of starch. To explain these data we propose that D-enzymes function directly in building the amylopectin structure.  相似文献   

4.
The extracellular polysaccharide from Klebsiella K63 is unique in having acetic and formic ester groups attached to the d-galactopyranosyluronic residues in the trisaccharide repeating-sequence. These O-acyl substituents are shown to be some what resistant to mild hydrolysis by both acid and alkali. Bacteriophage-induced depolymerization of the polysaccharide generated a series of acylated oligosaccharides comprising one, or more, repeating unit(s). By mild hydrolysis with acid, the same series of oligomers was released from the polysaccharide, together with the corresponding non-acylated compounds and the expected acylated and non-acylated aldobiouronic acids. A study of these oligosaccharides, as well as of a number of their related compounds, is described, with particular emphasis on the methods used to locate the formic and acetic ester groups. The location of the O-acyl substituents on the galactosyluronic residues was further supported by the results obtained from the high-resolution, 400-MHz, p.m.r. spectra and 13C-n.m.r. spectra of a number of the oligosaccharides.  相似文献   

5.
The structure of the capsular polysaccharide from Klebsiella Type 47 has been investigated. Methylation analysis and characterization of oligosaccharides obtained on acid hydrolysis were the principal methods used. The polysaccharide is composed of tetrasaccharide repeating-units, and a structure for these units is proposed.  相似文献   

6.
《Carbohydrate research》1986,146(2):279-305
Rhamnogalacturonan II (RG-II) is a structurally complex pectic (d-galactosyl-uronic acid-rich) polysaccharide that is present in the primary (growing) cell-walls of higher plants. RG-II is composed of ∼60 glycosyl residues. The isolation and structural characterization of 23 oligosaccharide fragments of the residue of RG-II that remained after removal of hepta- and di-saccharides by partial hydrolysis with acid are reported. In order to obtain the oligosaccharide fragments characterized herein, the carboxyl groups of RG-II were dideuterio-reduced, and the carboxyl-reduced polysaccharide was per-O-methylated. The per-O-methylated polysaccharide was fragmented by partial hydrolysis with acid, producing partially O-methylated oligosaccharides. These derivatized oligosaccharides were reduced, to afford a mixture of partially O-methylated oligoglycosyl-alditols, which was then per-O-methylated. The structures of the resulting per-O-methylated oligoglycosylalditols were determined by chemical-ionization mass spectrometry, electron-impact mass spectrometry, fast-atom-bombardment mass spectrometry, 1H-n.m.r. spectroscopy, and analysis of corresponding, partially O-acetylated, partially O-methylated alditols. Seventeen of the oligosaccharides isolated from RG-II were parts of a single heptasaccharide, namely.  相似文献   

7.
Gel-permeation chromatography has been used to determine the molecular-weight distribution of the products at various stages of acid hydrolysis of some capsular polysaccharides from klebsiella bacteria. Structurally significant oligosaccharides, which are believed to correspond closely to the chemical repeating units in the polysaccharide molecules, were detected together with products having higher molecular weights, which are clearly aggregates of these oligosaccharides. This constitutes good supporting evidence for the view that relatively simple sequences of sugars are repeated throughout the entire molecular structure of these polysaccharides, and quantitative information for the polysaccharides from three different Klebsiella strains (serotyped as k54, K4, and K64, respectively) has been obtained by this procedure. The study of the polysaccharide from Klebsiella K-type 54 has afforded both independent corroboration and some extension of available data.  相似文献   

8.
The purified polysaccharide isolated from the cambium layer of a young bael (Aegle marmelos) tree contains galactose, arabinose, rhamnose, xylose, and glucose in the molar ratios of 10.0:9.8:1.4:1.9:1. Methylation analysis and Smith degradation studies established the linkages of the different monosaccharide residues. The anomeric configurations of the various sugar units were determined by oxidation of the acetylated polysaccharide with chromium(VI) trioxide. The oligosaccharides isolated from the polysaccharide by graded hydrolysis were characterized. The structural significance of these results is discussed.  相似文献   

9.
Radioactive glycolipids were extracted from cells of Aureobasidium pullulanspulsed with d-[14C]glucose. Labelled, alkali-stable lipids were resolved into one neutral and two acidic fractions. The neutral fraction was stable to mild hydrolysis with acid, whereas the acidic fractions could be hydrolysed, yielding d-glucose and a series of oligosaccharides having mobilities corresponding to those of isomaltose, panose, and isopanose. Amyloglucosidase (EC 3.2.1.3) catalysed the hydrolysis of 60% of the liberated radioactive oligosaccharides to d-glucose, indicating the presence of (1→4)-α- and (1 → 6)-α-d-glucosidic bonds. Since these lipid-linked saccharides are produced during pullulan biosynthesis in A. pullulans, it is proposed that they are intermediates in the biosynthetic pathway of that extracellular polysaccharide. A mechanism incorporating these glycolipids into a possible scheme of polysaccharide assembly is presented.  相似文献   

10.
On graded hydrolysis and Smith degradation, the O-somatic polysaccharide isolated from Shigella dysenteriae type 9 bacteria, strain NCTC 7919, yielded five oligosaccharides which were characterized. The positions of the O-acetyl and pyruvic acetal groups in the repeating unit were identified. Immunochemical studies indicated that d-galactose is the immunodominant sugar in the polysaccharide, and one of the oligomers, having the structure Gal-(1→3)-GlcNAc-(1→3)-Gal-(1→4)-Man, showed maximum inhibition of the homologous precipitation.  相似文献   

11.
A sulphated heteropolysaccharide (~15% of the acid-extractable material) isolated from the brown alga Dictyota dichotoma contains residues of D-glucuronic acid, D-galactose, D-mannose, D-xylose, and L-fucose1. Partial hydrolysis of the polysaccharide with acid gave one neutral and two acidic oligosaccharides. The behaviour towards periodate of the polysaccharide before and after partial hydrolysis, alkali-treatment, and methanolysis has been studied. Evidence is thereby provided that the polysaccharide is partially sulphated and composed of (1→4)-linked residues of D-glucuronic acid, D-galactose, D-mannose, and D-xylose, and (1→2)-linked L-fucose.  相似文献   

12.
The synthesis of a trisaccharide and a hexasaccharide, the monomer and dimer of the repeating unit of O-antigen polysaccharide from Mesorhizobium huakuii IFO15243, has been accomplished through suitable protecting group manipulations and stereoselective glycosylation reactions starting from commercially available l-rhamnose. The target oligosaccharides in the form of their p-methoxyphenyl glycosides are suitable for further glycoconjugate formation via selective cleavage of this group.  相似文献   

13.
The capsular polysaccharide from Klebsiella K32 has been studied by using methylation, periodate oxidation, and partial-hydrolysis techniques. The polysaccharide is shown to comprise the four-sugar repeating unit below. Features of interest in this structure include the presence of a β-linked l-rhamnosyl residue, and the extreme lability of the 1-carboxyethylidene acetal towards acid. N.m.r. spectroscopy was used extensively to establish the nature of the anomeric linkages and to identify oligosaccharides obtained by the various degradative techniques used.  相似文献   

14.
During screening for intestinal Peyer’s patch-immunomodulating polysaccharides from plant resources including medicinal herbs, a potent modulating activity was observed in a crude polysaccharide fraction (AS-1) from the rhizome of Anemarrhena asphodeloides Bunge. Oral administration of AS-1 (100 mg/kg/day) to aged BALB/c mice enhanced productions of IL-10, IFN-γ and IL-6 from Peyer’s patch immunocompetent cells, and its oral administration to ovalbumin (OVA)-fed B10.A mice led to significant suppression on induction of OVA-specific IgE in systemic immune system. Further fractionation of the polysaccharides in the crude polysaccharide fraction, AS-1, yielded 4 polysaccharide fractions that were potently active, and contained glucomannans. Treatment of these polysaccharide fractions with endo-β-d-(1  4)-mannanase significantly decreased their activities. Mannanase digestion of the active glucomannan gave both long and short hexosyl-oligosaccharides, whereas konjac glucomannan, which was inactive, released short oligosaccharides. Structural analysis indicates that the long oligosaccharides from the active glucomannan contain mannanase-resistant complex structure comprising β-d-Man and β-d-Glc.  相似文献   

15.
Depolymerization of bacterial, capsular polysaccharides by phage enzymes is a convenient method of preparing oligosaccharides that correspond to one, or several, repeating unit(s). Thus, the capsular polysaccharide from Klebsiella K21 yields a linear pentasaccharide, and that from Klebsiella K32, a linear tetrasaccharide. Both oligosaccharides contain acetal substituents, but, whereas the 4,6-O-(1-carboxyethylidene)-D-galactosyl residue in the K21 structure is relatively acid-stable, the corresponding 3,4-O-(1-carboxyethylidene)-l-rhamnosyl residue in K32 is extremely acid-labile. Phage degradation may, therefore, be the only way by which an oligosaccharide corresponding to an intact repeating-unit may be obtained in such circumstances.  相似文献   

16.
The water-soluble polysaccharide from Pterospermum suberifolium gum is composed of l-rhamnose (24.0%), d-glucose (5.6%), d-galacturonic acid (32.4%), and d-glucuronic acid (19.7%), and it precipitated 77% of the antibody nitrogen from anti-Pneumococcal Type XXIII serum. From the results of methylation, periodate oxidation, and partial hydrolysis studies on the gum and its carboxyl-reduced product, a structure was assigned to its repeating unit. Inhibition of the cross-precipitation using the monosaccharides and the oligosaccharides obtained from the polysaccharide indicated that l-rhamnose and d-glucose were immunospecific, the former to the greater extent.  相似文献   

17.
The capsular polysaccharide from Klebsiella type K54, containing both O-formyl and O-acetyl groups, has been investigated by using the techniques of methylation analysis (by gas-liquid chromatography), periodate oxidation-Smith degradation, and both 1H- and 13C-n.m.r. spectroscopy. Degradation of the native polysaccharide with a bacteriophage-induced glucosidase generated a formylated, as well as a formylated and acetylated, tetrasaccharide, whereas similar depolymerization of the deacetylated polysaccharide yielded a single tetrasaccharide; the corresponding, O-acylated octasaccharides were also isolated and characterized. These oligosaccharides, utilized in chemical and spectroscopic studies in order to determine the location of the O-acyl substituents in the repeating sequence, indicated formylation at O-4 of each lateral d-glucosyl group and acetylation at O-2 of alternate l-fucosyl residues. A new structure for the repeating unit in the polysaccharide is proposed.  相似文献   

18.
The reserve polysaccharide of the endosperm of Carum carvi consists of more than 90% mannose and was characterized as a β(1–4)-mannan. Total or partial acid hydrolysis, enzymatic breakdown or acetolysis of either palm or Carum carvi mannan yielded the same mono- and oligosaccharides, indicating a similar chemical structure of the two reserve polysaccharides. However, Carum carvi contains only traces of the alkali soluble mannan A dominant in the palm endosperm polysaccharide.  相似文献   

19.
《Carbohydrate research》1986,147(1):69-85
The insoluble material that remains after extraction of Zea shoots with cold buffer was treated successively with 3m LiCl and hot water. The polysaccharides solubilized by these treatments were mostly (1→3),(1→4)-β-d-glucans. The β-d-glucan from the hot-water-soluble fraction was hydrolyzed by Bacillus subtilis (1→3),(1→4)-β-d-glucan 4-glucanohydrolase. The oligosaccharides were characterized by methylation analysis of the enzymic fragments and by methylation analysis of secondary fragments generated by treatment of the isolated oligosaccharides with Streptomyces QM B814 cellulase. The results demonstrate that the native polysaccharide consists mainly of cellotriosyl and cellotetraosyl residues joined by single (1→3) linkages. Evidence is presented to show that certain other glucosyl sequences are also present in the native polysaccharide including (a) two, three, or four contiguous (1→3)-linkages; (b) blocks of more than four (1→4)-linked glucose residues; (c) regions having alternating (1→3)- and (1→4)-linkages.  相似文献   

20.
A wide variety of medically important biofilm forming bacteria produce similar polysaccharide intracellular adhesins (PIAs). The PIA structures consist of partially de-N-acetylated β-(1→6)-N-acetylglucosamine polymers. These exopolysaccharides are key components of the bacterial biofilm matrix. Here, we describe the efficient synthesis of PIA oligosaccharides using an acid reversion reaction of N-acetylglucosamine in HF·pyridine. The PIA oligosaccharides produced by this reaction can be purified to homogeneity by size exclusion chromatography. Chemistry was developed to conjugate the PIA oligosaccharides to bovine serum albumin using a new heterobifunctional linker containing a thiol and an N-methylhydroxylamine functional group. These glycoconjugates may serve as useful precursors for the development of defined conjugate vaccines against PIA producing bacterial strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号