首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cyanobacteria Synechococcus and Prochlorococcus are important primary producers in marine ecosystems. Because currently available approaches for estimating microbial growth rates can be difficult to apply in the field, we have been exploring the feasibility of using quantitative rRNA measurements as the basis for making such estimates. In this study we examined the relationship between rRNA and growth rate in several Synechococcus and Prochlorococcus strains over a range of light‐regulated growth rates. Whole‐cell hybridization with fluorescently labeled peptide nucleic acid (PNA) probes was used in conjunction with flow cytometry to quantify rRNA on a per cell basis. This PNA probing technique allowed rRNA analysis in a phycoerythrin‐containing Synechococcus strain (WH7803) and in a non–phycoerythrin‐containing strain and in Prochlorococcus. All the strains showed a qualitatively similar tri‐phasic relationship between rRNA·cell?1 and growth rate, involving relatively little change in rRNA·cell?1 at low growth rates, linear increase at intermediate growth rates, and a plateau and/or decrease at the highest growth rates. The onset of each phase was associated with the relative, rather than absolute, growth rate of each strain. In the Synechococcus strains, rRNA normalized to flow cytometrically measured forward angle light scatter (an indicator of size) was well‐correlated with growth rate across strains. These findings support the idea that cellular rRNA may be useful as an indicator of in situ growth rate in natural Synechococcus and Prochlorococcus populations.  相似文献   

2.
The relationships between growth rate, cell‐cycle parameters, and cell size were examined in two unicellular cyanobacteria representative of open‐ocean environments: Prochlorococcus (strain MIT9312) and Synechococcus (strain WH8103). Chromosome replication time, C, was constrained to a fairly narrow range of values (~4–6 h) in both species and did not appear to vary with growth rate. In contrast, the pre‐ and post‐DNA replication periods, B and D, respectively, decreased with increasing growth rate from maxima of ~30 and 10–20 h to minima of ~4–6 and 2–3 h, respectively. The combined duration of the chromosome replication and postreplication periods (C+D), a quantity often used in the estimation of Prochlorococcus in situ growth rates, varied ~2.4‐fold over the range of growth rates examined. This finding suggests that assumptions of invariant C+D may adversely influence Prochlorococcus growth rate estimates. In both strains, cell mass was the greatest in slowly growing cells and decreased 2‐ to 3‐fold over the range of growth rates examined here. Estimated cell mass at the start of replication appeared to decrease with increasing growth rate, indicating that the initiation of chromosome replication in Prochlorococcus and Synechococcus is not a simple function of cell biomass, as suggested previously. Taken together, our results reflect a notable degree of similarity between oceanic Synechococcus and Prochlorococcus strains with respect to their growth‐rate‐specific cell‐cycle characteristics.  相似文献   

3.
A novel high-light (HL)-adapted Prochlorococcus clade was discovered in high nutrient and low chlorophyll (HNLC) waters in the South Pacific Ocean by phylogenetic analyses of 16S ribosomal RNA (rRNA) and 16S–23S internal transcribed spacer (ITS) sequences. This clade, named HNLC fell within the HL-adapted Prochlorococcus clade with sequences above 99% similarity to one another, and was divided into two subclades, HNLC1 and HNLC2. The distribution of the whole HNLC clade in a northwest to southeast transect in the South Pacific (HNLC-to-gyre) and two 8°N to 8°S transects in the Equatorial Pacific was determined by quantitative PCR using specific primers targeting ITS regions. HNLC was the dominant HL Prochlorococcus clade (2–9% of bacterial 16S rRNA genes) at the three westernmost stations in the South Pacific but decreased to less than 0.1% at the other stations being replaced by the eMIT9312 ecotype in the hyperoligotrophic gyre. The highest contributions of HNLC Prochlorococcus in both Equatorial Pacific transects along the latitudinal lines of 170°W and 155°W were observed at the southernmost stations, reaching 16 and 6% of bacterial 16S rRNA genes, respectively, whereas eMIT9312 dominated near the Equator. Spearman Rank Order correlation analysis indicated that although both the HNLC clade and eMIT9312 were correlated with temperature, they showed different correlations with regard to nutrients. HNLC only showed significant correlations to ammonium uptake and regeneration rates, whereas eMIT9312 was negatively correlated with inorganic nutrients.  相似文献   

4.
Prochlorococcus marinus, one of the most abundant marine cyanobacteria in the global ocean, is classified into low‐light (LL) and high‐light (HL) adapted ecotypes. These two adapted ecotypes differ in their ecophysiological characteristics, especially whether adapted for growth at high‐light or low‐light intensities. However, some evolutionary relationships of Prochlorococcus phylogeny remain to be resolved, such as whether the strains SS120 and MIT9211 form a monophyletic group. We use the Natural Vector (NV) method to represent the sequence in order to identify the phylogeny of the Prochlorococcus. The natural vector method is alignment free without any model assumptions. This study added the covariances of amino acids in protein sequence to the natural vector method. Based on these new natural vectors, we can compute the Hausdorff distance between the two clades which represents the dissimilarity. This method enables us to systematically analyze both the dataset of ribosomal proteomes and the dataset of 16s‐23s rRNA sequences in order to reconstruct the phylogeny of Prochlorococcus. Furthermore, we apply classification to inspect the relationship of SS120 and MIT9211. From the reconstructed phylogenetic trees and classification results, we may conclude that the SS120 does not cluster with MIT9211. This study demonstrates a new method for performing phylogenetic analysis. The results confirm that these two strains do not form a monophyletic clade in the phylogeny of Prochlorococcus.  相似文献   

5.
Emiliania huxleyi (strain L) expressed an exceptional P assimilation capability. Under P limitation, the minimum cell P content was 2.6 fmol P·cell?1, and cell N remained constant at all growth rates at 100 fmol N·cell?1. Both, calcification of cells and the induction of the phosphate uptake system were inversely correlated with growth rate. The highest (cellular P based) maximum phosphate uptake rate (VmaxP) was 1400 times (i.e. 8.9 h?1) higher than the actual uptake rate. The affinity of the P‐uptake system (dV/dS) was 19.8 L·μmol?1·h?1 at μ = 0.14 d?1. This is the highest value ever reported for a phytoplankton species. Vmax and dV/dS for phosphate uptake were 48% and 15% lower in the dark than in the light at the lowest growth rates. The half‐saturation constant for growth was 1.1 nM. The coefficient for luxury phosphate uptake (Qmaxt/Qmin) was 31. Under P limitation, E. huxleyi expressed two different types of alkaline phosphatase (APase) enzyme kinetics. One type was synthesized constitutively and possessed a Vmax and half‐saturation constant of 43 fmol MFP·cell?1·h?1 and 1.9 μM, respectively. The other, inducible type of APase expressed its highest activity at the lowest growth rates, with a Vmax and half‐saturation constant of 190 fmol MFP·cell?1·h?1 and 12.2 μM, respectively. Both APase systems were located in a lipid membrane close to the cell wall. Under N‐limiting growth conditions, the minimum N quotum was 43 fmol N·cell?1. The highest value for the cell N‐specific maximum nitrate uptake rate (VmaxN) was 0.075 h?1; for the affinity of nitrate uptake, 0.37 L·μmol?1·h?1. The uptake rate of nitrate in the dark was 70% lower than in the light. N‐limited cells were smaller than P‐limited cells and contained 50% less organic and inorganic carbon. In comparison with other algae, E. huxleyi is a poor competitor for nitrate under N limitation. As a consequence of its high affinity for inorganic phosphate, and the presence of two different types of APase in terms of kinetics, E. huxleyi is expected to perform well in P‐controlled ecosystems.  相似文献   

6.
The relationship between growth rate and rRNA content in a marine Synechococcus strain was examined. A combination of flow cytometry and whole-cell hybridization with fluorescently labeled 16S rRNA-targeted oligonucleotide probes was used to measure the rRNA content of Synechococcus strain WH8101 cells grown at a range of light-limited growth rates. The sensitivity of this approach was sufficient for the analysis of rRNA even in very slowly growing Synechococcus cells (μ = 0.15 day−1). The relationship between growth rate and cellular rRNA content comprised three phases: (i) at low growth rates (<~0.7 day−1), rRNA cell−1 remained approximately constant; (ii) at intermediate rates (~0.7 − 1.6 day−1), rRNA cell−1 increased proportionally with growth rate; and (iii) at the highest, light-saturated rates (>~1.6 day−1), rRNA cell−1 dropped abruptly. Total cellular RNA (as measured with the nucleic acid stain SYBR Green II) was well correlated with the probe-based measure of rRNA and varied in a similar manner with growth rate. Mean cell volume and rRNA concentration (amount of rRNA per cubic micrometer) were related to growth rate in a manner similar to rRNA cell−1, although the overall magnitude of change in both cases was reduced. These patterns are hypothesized to reflect an approximately linear increase in ribosome efficiency with increasing growth rate, which is consistent with the prevailing prokaryotic model at low growth rates. Taken together, these results support the notion that measurements of cellular rRNA content might be useful for estimating in situ growth rates in natural Synechococcus populations.  相似文献   

7.
Clones of Skeletonema costatum (Grev.) Cl. isolated from Narragansett Bay, R.I., during different seasons were grouped according to their electrophoretic banding patterns. The growth rates, pg chlorophyll · cell?1, carbon uptake · cell?1· h?1, and carbon uptake · pg chl?1· h?1 were measured at 20°C, in a 14:10 h L:D cycle at 180 μE · m?2· s?1. Statistically significant sources of variation were found among groups of clones in growth rate, pg chl · cell?1, and carbon uptake · pg chl?1· h?1. It was concluded that there is a significant relationship between the physiological characteristics of clones isolated from populations in different seasons and patterns of genetic variation inferred from the electrophoretic studies. However, genetic diversity detected by banding patterns tends to underestimate the total genetic diversity in natural populations. The groups of clones most common in summer bloom populations had significantly higher growth rates, lower values of pg chl · cell?1, and higher rates of carbon uptake · pg chl?1· h?1 at 20°C than did the group of clones most common in winter bloom populations. However, differences among groups in these parameters at 20°C alone cannot account for the seasonal cycling of genetically variable populations of Skeletonema in Narragansett Bay. The range of growth rates among clones of this species is 0.1–5.0 divisions · d?1 under a single set of temperature and light conditions. Chlorophyll concentrations range from 0.2–1.7 pg chl · cell?1 and carbon uptake · pg chl?1· h?1 varies by a factor of 7 among clones. The range of physiological variation in this species means that it is difficult to use laboratory studies of single clones to analyze the responses of natural populations of Skeletonema.  相似文献   

8.
In the present study, we experimentally investigated the phosphate uptake kinetics of benthic microalga Nitzschia sp. isolated from Hiroshima Bay, Japan. The maximum uptake rate (ρmax) obtained by short‐term experiments was 6.84 pmol cell?1 h?1 for phosphate. The half‐saturation constant for uptake (KS) was 61.2 µmol cell?1 h?1. Both the ρmax and Ks of this species were extremely high, suggesting that Nitzschia sp. is adapted to benthic environments, where nutrient concentrations are much higher than in the water column. The specific maximum growth rate (µ'max) and minimum cell quota (Q0) for the P‐limited condition, obtained by a semi‐continuous growth experiment, were 0.48 day?1 and 0.045 pmol cell?1, respectively. It is concluded that Nitzschia sp. could be a ‘storage strategist’ species, meaning it adapts so as to minimize the influence of fluctuations in phosphate conditions resulting from the change in redox conditions of sediment due to bioturbation.  相似文献   

9.
The link between nitritation success in a membrane‐aerated biofilm reactor (MABR) and the composition of the initial ammonia‐ and nitrite‐oxidizing bacterial (AOB and NOB) population was investigated. Four identically operated flat‐sheet type MABRs were initiated with two different inocula: from an autotrophic nitrifying bioreactor (Inoculum A) or from a municipal wastewater treatment plant (Inoculum B). Higher nitritation efficiencies (NO2‐N/NH4+‐N) were obtained in the Inoculum B‐ (55.2–56.4%) versus the Inoculum A‐ (20.2–22.1%) initiated reactors. The biofilms had similar oxygen penetration depths (100–150 µm), but the AOB profiles [based on 16S rRNA gene targeted real‐time quantitative PCR (qPCR)] revealed different peak densities at or distant from the membrane surface in the Inoculum B‐ versus A‐initiated reactors, respectively. Quantitative fluorescence in situ hybridization (FISH) revealed that the predominant AOB in the Inoculum A‐ and B‐initiated reactors were Nitrosospira spp. (48.9–61.2%) versus halophilic and halotolerant Nitrosomonas spp. (54.8–63.7%), respectively. The latter biofilm displayed a higher specific AOB activity than the former biofilm (1.65 fmol cell?1 h?1 versus 0.79 fmol cell?1 h?1). These observations suggest that the AOB and NOB population compositions of the inoculum may determine dominant AOB in the MABR biofilm, which in turn affects the degree of attainable nitritation in an MABR.  相似文献   

10.
High bulk extracellular phosphatase activity (PA) suggested severe phosphorus (P) deficiency in plankton of three acidified mountain lakes in the Bohemian Forest. Bioavailability of P substantially differed among the lakes due to differences in their P loading, as well as in concentrations of aluminum (Al) and its species, and was accompanied by species‐specific responses of phytoplankton. We combined the fluorescently labeled enzyme activity (FLEA) assay with image cytometry to measure cell‐specific PA in natural populations of three dinophyte species, occurring in all the lakes throughout May–September 2007. The mean cell‐specific PA varied among the lakes within one order of magnitude: 188–1,831 fmol · cell?1 · h?1 for Gymnodinium uberrimum (G. F. Allman) Kof. et Swezy, 21–150 fmol · cell?1 · h?1 for Gymnodinium sp., and 22–365 fmol · cell?1 · h?1 for Peridinium umbonatum F. Stein. To better compare cell‐specific PA among the species of different size, the values were normalized per unit of cell biovolume (amol · μm?3 · h?1) for further statistical analysis. A step‐forward selection identified concentrations of total and ionic Al together with pH as significant factors (P < 0.05, Monte Carlo permutation test), explaining cumulatively 57% of the total variability in cell‐specific PA. However, this cell‐specific PA showed an unexpected reverse trend compared to an overall gradient in P deficiency of the lake plankton. The autecological insight into dinophyte cell‐specific PA therefore suggested other factors, such as light availability, mixotrophy, and/or zooplankton grazing, causing further PA variations among the acidified lakes.  相似文献   

11.
The growth and photosynthesis of Alexandrium tamarense (Lebour) Balech in different nutrient conditions were investigated. Low nitrate level (0.0882 mmol/L) resulted in the highest average growth rate from day 0 to day 10 (4.58 × 102 cells mL?1 d?1), but the lowest cell yield (5420 cells mL?1) in three nitrate level cultures. High nitrate‐grown cells showed lower levels of chlorophyll a‐specific and cell‐specific light‐saturated photosynthetic rate (Pmchl a and Pmcell), dark respiration rate (Rdchla and Rdcell) and chlorophyll a‐specific apparent photosynthetic efficiency (αchla) than was seen for low nitrate‐grown cells; whereas the cells became light saturated at higher irradiance at low nitrate condition. When cultures at low nitrate were supplemented with nitrate at 0.7938 mmol/L in late exponential growth phase, or with nitrate at 0.7938 mmol/L and phosphate at 0.072 mmol/L in stationary growth phase, the cell yield was drastically enhanced, a 7–9 times increase compared with non‐supplemented control culture, achieving 43 540 cells mL?1 and 52 300 cells mL?1, respectively; however, supplementation with nitrate in the stationary growth phase or with nitrate and phosphate in the late exponential growth phase increased the cell yield by no more than 2 times. The results suggested that continuous low level of nitrate with sufficient supply of phosphate may facilitate the growth of A. tamarense.  相似文献   

12.
There is widespread interest in developing methods to investigate in situ microbial activity in subsurface environments. Novel experiments based on single borehole push–pull methods were conducted to measure in situ microbial activity at the Äspö Hard Rock Laboratory (HRL). Microbial nitrate reduction and lactate consumption were measured at in situ conditions at a depth of 450 m in the HRL tunnel. A circulation system was used to circulate ground water from the aquifer through pressure‐maintaining flow cells containing coupons for biofilm growth. The system allows microbial investigations at in situ pressure, temperature and chemistry. Four experiments were conducted in which a combination of a conservative tracer, nitrate and lactate was injected into the circulation system. Rate of nitrate utilization was 5 µm  h?1 without lactate and 13 µm  h?1 with lactate. Lactate consumption increased from 30  to 50 µm  h?1 with the addition of an exogenous electron acceptor (nitrate). Attached and unattached cells were enumerated using epifluorescence microscopy to calculate cell‐specific rates of activity. The biofilm had an average cell density of 1 × 106 cells cm?2 and there was an average of 6 × 105 unattached cells mL?1 in circulation. Cell‐specific rates of lactate consumption were higher than previously reported using radiotracer methods in similar environments. The differences highlight the importance of conducting microbial investigations at in situ conditions. The results demonstrate that an indigenous community of microbes survives at a depth of 450 m in the Fennoscandian shield aquifer with the potential to oxidize simple organic molecules such as lactate.  相似文献   

13.
The photoprotective response in the dinoflagellate Glenodinium foliaceum F. Stein exposed to ultraviolet‐A (UVA) radiation (320–400 nm; 1.7 W · m2) and the effect of nitrate and phosphate availability on that response have been studied. Parameters measured over a 14 d growth period in control (PAR) and experimental (PAR + UVA) cultures included cellular mycosporine‐like amino acids (MAAs), chls, carotenoids, and culture growth rates. Although there were no significant effects of UVA on growth rate, there was significant induction of MAA compounds (28 ± 2 pg · cell?1) and a reduction in chl a (9.6 ± 0.1 pg · cell?1) and fucoxanthin (4.4 ± 0.1 pg · cell?1) compared to the control cultures (3 ± 1 pg · cell?1, 13.3 ± 3.2 pg · cell?1, and 7.4 ± 0.3 pg · cell?1, respectively). In a second investigation, MAA concentrations in UVA‐exposed cultures were lower when nitrate was limited (P < 0.05) but were higher when phosphate was limiting. Nitrate limitation led to significant decreases (P < 0.05) in cellular concentration of chls (chl c1, chl c2, and chl a), but other pigments were not affected. Phosphate availability had no effect on final pigment concentrations. Results suggest that nutrient availability significantly affects cellular accumulation of photoprotective compounds in G. foliaceum exposed to UVA.  相似文献   

14.
Within the vast oceanic gyres, a significant fraction of the total chlorophyll belongs to the light-harvesting antenna systems of a single genus, Prochlorococcus. This organism, discovered only about 10 years ago, is an extremely small, Chl b-containing cyanobacterium that sometimes constitutes up to 50% of the photosynthetic biomass in the oceans. Various Prochlorococcus strains are known to have significantly different conditions for optimal growth and survival. Strains which dominate the surface waters, for example, have an irradiance optimum for photosynthesis of 200 μmol photons m−2 s−1, whereas those that dominate the deeper waters photosynthesize optimally at 30–50 μmol photons m−2 s−1. These high and low light adapted ‘ecotypes’ are very closely related — less than 3% divergent in their 16S rRNA sequences — inviting speculation as to what features of their photosynthetic mechanisms might account for the differences in photosynthetic performance. Here, we compare information obtained from the complete genome sequences of two Prochlorococcus strains, with special emphasis on genes for the photosynthetic apparatus. These two strains, Prochlorococcus MED4 and MIT 9313, are representatives of high- and low-light adapted ecotypes, characterized by their low or high Chl b/a ratio, respectively. Both genomes appear to be significantly smaller (1700 and 2400 kbp) than those of other cyanobacteria, and the low-light-adapted strain has significantly more genes than its high light counterpart. In keeping with their comparative light-dependent physiologies, MED4 has many more genes encoding putative high-light-inducible proteins (HLIP) and photolyases to repair UV-induced DNA damage, whereas MIT 9313 possesses more genes associated with the photosynthetic apparatus. These include two pcb genes encoding Chl-binding proteins and a second copy of the gene psbA, encoding the Photosystem II reaction center protein D1. In addition, MIT 9313 contains a gene cluster to produce chromophorylated phycoerythrin. The latter represents an intermediate form between the phycobiliproteins of non-Chl b containing cyanobacteria and an extremely modified β phycoerythrin as the sole derivative of phycobiliproteins still present in MED4. Intriguing features found in both Prochlorococcus strains include a gene cluster for Rubisco and carboxysomal proteins that is likely of non-cyanobacterial origin and two genes for a putative and β lycopene cyclase, respectively, explaining how Prochlorococcus may synthesize the α branch of carotenoids that are common in green organisms but not in other cyanobacteria. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The extent of fractionation of sulfur isotopes by sulfate‐reducing microbes is dictated by genomic and environmental factors. A greater understanding of species‐specific fractionations may better inform interpretation of sulfur isotopes preserved in the rock record. To examine whether gene diversity influences net isotopic fractionation in situ, we assessed environmental chemistry, sulfate reduction rates, diversity of putative sulfur‐metabolizing organisms by 16S rRNA and dissimilatory sulfite reductase (dsrB) gene amplicon sequencing, and net fractionation of sulfur isotopes along a sediment transect of a hypersaline Arctic spring. In situ sulfate reduction rates yielded minimum cell‐specific sulfate reduction rates < 0.3 × 10?15 moles cell?1 day?1. Neither 16S rRNA nor dsrB diversity indices correlated with relatively constant (38‰–45‰) net isotope fractionation (ε34Ssulfide‐sulfate). Measured ε34S values could be reproduced in a mechanistic fractionation model if 1%–2% of the microbial community (10%–60% of Deltaproteobacteria) were engaged in sulfate respiration, indicating heterogeneous respiratory activity within sulfate‐reducing populations. This model indicated enzymatic kinetic diversity of Apr was more likely to correlate with sulfur fractionation than DsrB. We propose that, above a threshold Shannon diversity value of 0.8 for dsrB, the influence of the specific composition of the microbial community responsible for generating an isotope signal is overprinted by the control exerted by environmental variables on microbial physiology.  相似文献   

16.
Summary: Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus numerically dominate the picophytoplankton of the world ocean, making a key contribution to global primary production. Prochlorococcus was isolated around 20 years ago and is probably the most abundant photosynthetic organism on Earth. The genus comprises specific ecotypes which are phylogenetically distinct and differ markedly in their photophysiology, allowing growth over a broad range of light and nutrient conditions within the 45°N to 40°S latitudinal belt that they occupy. Synechococcus and Prochlorococcus are closely related, together forming a discrete picophytoplankton clade, but are distinguishable by their possession of dissimilar light-harvesting apparatuses and differences in cell size and elemental composition. Synechococcus strains have a ubiquitous oceanic distribution compared to that of Prochlorococcus strains and are characterized by phylogenetically discrete lineages with a wide range of pigmentation. In this review, we put our current knowledge of marine picocyanobacterial genomics into an environmental context and present previously unpublished genomic information arising from extensive genomic comparisons in order to provide insights into the adaptations of these marine microbes to their environment and how they are reflected at the genomic level.  相似文献   

17.
Phytoplankton size structure is key for the ecology and biogeochemistry of pelagic ecosystems, but the relationship between cell size and maximum growth rate (μmax) is not yet well understood. We used cultures of 22 species of marine phytoplankton from five phyla, ranging from 0.1 to 106 μm3 in cell volume (Vcell), to determine experimentally the size dependence of growth, metabolic rate, elemental stoichiometry and nutrient uptake. We show that both μmax and carbon‐specific photosynthesis peak at intermediate cell sizes. Maximum nitrogen uptake rate (VmaxN) scales isometrically with Vcell, whereas nitrogen minimum quota scales as Vcell0.84. Large cells thus possess high ability to take up nitrogen, relative to their requirements, and large storage capacity, but their growth is limited by the conversion of nutrients into biomass. Small species show similar volume‐specific VmaxN compared to their larger counterparts, but have higher nitrogen requirements. We suggest that the unimodal size scaling of phytoplankton growth arises from taxon‐independent, size‐related constraints in nutrient uptake, requirement and assimilation.  相似文献   

18.
1. Previous studies of mixotrophy in the flagellate Poterioochromonas malhamensis (Chrysophyceae) were performed on strains that had been in culture for > 30 years. This study aims to compare mixotrophy in a cultured strain with one recently isolated from a mesotrophic lake (Lacawac) in Pennsylvania, U.S.A. 2. P. malhamensis from the lake exhibited a nutritional flexibility similar to that of the culture strain, growing phototrophically but inefficiently in comparison to other nutritional modes (growth rate (μ) = 0.015 h?1). Supplementing an inorganic salts medium with 1 mM glucose resulted in a doubling of μ to 0.035 h?1 and 0.033 h?1 in the light and the dark, respectively. Addition of an algal prey, Nannochloris, to the inorganic salts medium increased growth to rates similar to those observed with glucose. Maximum growth of the lake strain, 0.095 h?1, was achieved when bacteria was supplied as food. During growth on bacteria, cellular chlorophyll a (Chl a) decreased from 140 fg cell?1 to 10 fg cell?1 over 22 h when cultured either in the light or dark. In illuminated cultures, cell-specific Chl a concentration recovered to 185 fg cell?1 after bacteria became limiting. 3. In contrast to the cultured strain, however, the lake isolate exhibited an inverse relationship between light intensity and ingestion rate. Calculated grazing rates, based upon the ingestion of fluorescently labeled bacteria, were 3.2, 5.2 and 9.4 bacteria flagellate?1 h?1, for P. malhamensis incubated in high light, low light and darkness, respectively. Phagotrophy is thus influenced by a light regime in this predominately heterotrophic mixotroph.  相似文献   

19.
Prochlorococcus play a crucial role in the ocean's biogeochemical cycling, but it remains controversial how they will respond to global warming. Here we assessed the response to temperature (22–30°C) of the growth dynamics and gene expression profiles of a Red Sea Prochlorococcus strain (RSP50) in a non-axenic culture. Both the specific growth rate (0.55–0.80 day−1) and cell size (0.04–0.07 μm3) of Prochlorococcus increased significantly with temperature. The primary production released extracellularly ranged from 20% to 34%, with humic-like fluorescent compounds increasing up to fivefold as Prochlorococcus reached its maximum abundance. At 30°C, genes involved in carbon fixation such as CsoS2 and CsoS3 and photosynthetic electron transport including PTOX were downregulated, suggesting a cellular homeostasis and energy saving mechanism response. In contrast, PTOX was found upregulated at 22°C and 24°C. Similar results were found for transaldolase, related to carbon metabolism, and citrate synthase, an important enzyme in the TCA cycle. Our data suggest that in spite of the currently warm temperatures of the Red Sea, Prochlorococcus can modulate its gene expression profiles to permit growth at temperatures lower than its optimum temperature (28°C) but is unable to cope with temperatures exceeding 30°C.  相似文献   

20.
Much of our current knowledge of microbial growth is obtained from studies at a population level. Driven by the realization that processes that operate within a population might influence a population's behavior, we sought to better understand Tetradesmus obliquus (formerly Scenedesmus obliquus ) physiology at the cellular level. In this work, an accurate pretreatment method to quantitatively obtain single cells of T. obliquus , a coenobia‐forming alga, is described. These single cells were examined by flow cytometry for triacylglycerol (TAG ), chlorophyll, and protein content, and their cell sizes were recorded by coulter counter. We quantified heterogeneity of size and TAG content at single‐cell level for a population of T. obliquus during a controlled standard batch cultivation. Unexpectedly, variability of TAG content per cell within the population increased throughout the batch run, up to 400 times in the final stage of the batch run, with values ranging from 0.25 to 99 pg · cell?1. Two subpopulations, classified as having low or high TAG content per cell, were identified. Cell size also increased during batch growth with average values from 36 to 70 μm3 · cell?1; yet cell size variability increased only up to 16 times. Cell size and cellular TAG content were not correlated at the single‐cell level. Our data show clearly that TAG production is affected by cell‐to‐cell variation, which suggests that its control and better understanding of the underlying processes may improve the productivity of T. obliquus for industrial processes such as biodiesel production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号