首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electronic structure of the circular aggregate of 18 bacteriochlorophyll a (BChl a) molecules responsible for the B850 absorption band of the light-harvesting 2 (LH2) complex of the photosynthetic purple bacterium Rhodopseudomonas acidophila has been studied by measuring fluorescence-excitation spectra of individual complexes at 1.2 K. The spectra reveal several well-resolved bands that are obscured in the single, broad B850 band observed in conventional absorption measurements on bulk samples. They are interpreted consistently in terms of the exciton model for the circular aggregate of BChl a molecules. From the energy separation between the different exciton transitions a reliable value of the intermolecular interaction is obtained. The spectra of the individual complexes allow for a distinction between the intra- and the intercomplex disorder. In addition to the random disorder, a regular modulation of the interaction has to be assumed to account for all the features of the observed spectra. This modulation has a C(2) symmetry, which strongly suggests a structural deformation of the ring into an ellipse.  相似文献   

2.
In this paper the fluorescence-excitation spectra of individual LH1-RC complexes (Rhodopseudomonas acidophila) at 1.2 K are presented. All spectra show a limited number of broad bands with a characteristic polarization behavior, indicating that the excitations are delocalized over a large number of pigments. A significant variation in the number of bands, their bandwidths, and polarization behavior is observed. Only 30% of the spectra carry a clear signature of delocalized excited states of a circular structure of the pigments. The large spectral variety suggests that besides site heterogeneity also structural heterogeneity determines the optical spectrum of the individual LH1-RC complexes. Further research should reveal if such heterogeneity is a native property of the complex or induced during the experimental procedures.  相似文献   

3.
This paper reports a detailed spectroscopic study of the B800 absorption band of individual light-harvesting 2 (LH2) complexes of the photosynthetic purple bacterium Rhodopseudomonas acidophila at 1. 2 K. By applying single-molecule detection techniques to this system, details and properties can be revealed that remain obscured in conventional ensemble experiments. For instance, from fluorescence-excitation spectra of the individual complexes a more direct measure of the diagonal disorder could be obtained. Further spectral diffusion phenomena and homogeneous linewidths of individual bacteriochlorophyll a (BChl a) molecules are observed, revealing valuable information on excited-state dynamics. This work demonstrates that it is possible to obtain detailed spectral information on individual pigment-protein complexes, providing direct insight into their electronic structure and into the mechanisms underlying the highly efficient energy transfer processes in these systems.  相似文献   

4.
We have recorded fluorescence-excitation and emission spectra from single LH2 complexes from Rhodopseudomonas (Rps.) acidophila. Both types of spectra show strong temporal spectral fluctuations that can be visualized as spectral diffusion plots. Comparison of the excitation and emission spectra reveals that for most of the complexes the lowest exciton transition is not observable in the excitation spectra due to the cutoff of the detection filter characteristics. However, from the spectral diffusion plots we have the full spectral and temporal information at hand and can select those complexes for which the excitation spectra are complete. Correlating the red most spectral feature of the excitation spectrum with the blue most spectral feature of the emission spectrum allows an unambiguous assignment of the lowest exciton state. Hence, application of fluorescence-excitation and emission spectroscopy on the same individual LH2 complex allows us to decipher spectral subtleties that are usually hidden in traditional ensemble spectroscopy.  相似文献   

5.
Two different crystal forms of the B800-850-antenna complex from Rhodopseudomonas acidophila strain 10050 have been grown. This complex is an integral membrane protein and is isolated as an oligomeric assembly with a molecular weight of approximately 84 kDa. This assembly contains six alpha/beta apoprotein pairs, 18 molecules of bacteriochlorophyll a and nine molecules of carotenoid. The first crystal form has dimensions unit cell a = b = 75.8 A, c = 97.5 A with the space group P4 and diffracts to a resolution of 12.0 A. The second crystal form is rhombohedral with dimensions unit cell a = 121.1 A, alpha = 60 degrees, space group R32 and diffracts to a resolution of 3.5 A. Native data have been processes in both cases, to an Rmerge value of 9.0 to 11.0%. The X-ray data suggest that the asymmetric unit, in both crystal forms, contains one 84 kDa antenna complex.  相似文献   

6.
The B800-820 light-harvesting complex, an integral membrane protein, from Rhodopseudomonas acidophila strain 7750 has been crystallized. The tabular plates have a hexagonal unit cell of a = b = 121.8 A and c = 283.1 A and belong to the space group R32. X-ray diffraction data have been collected to 6 A resolution, using an area detector on a rotating anode source. The B800-820 light-harvesting complex is comprised of four low molecular weight apoproteins (B800-820 alpha 1, B800-820 alpha 2, B800-820 beta 1 and B800-820 beta 2). Polyacrylamide gel electrophoresis shows that the complex exists as an oligomeric assembly, with an apparent molecular weight of 92,000.  相似文献   

7.
The detailed effect on the light-harvesting apparatus of three different wild-type strains of Rhodopseudomonas acidophila in response to changes in both light-intensity and temperature have been investigated. In all three strains at high light-intensities (160 mol s m2 and above) the only LH2 antenna complex synthesised is the B800–850 complex. In strains 7050 and 7750 as the light-intensity is lowered the B800–850 complex is gradually replaced by another type of LH2 the B800–820 complex. However, at no light-intensities studied is this changeover complete when the cells are grown at 30°C. If however, the light-intensity is lowered at temperatures below 25°C with strain 7750 there is a complete replacement of the B800–850 complex by the B800–820 complex. At all light-intensities and temperatures tested, strain 10050 only synthesised the B800–850 complex. Strain 7050 also responded to changes in light-intensity by altering its carotenoid composition. At high light-intensity the major carotenoids were rhodopin and rhodopin-glucoside, while at low light-intensities the major ones were rhodopinal and rhodopinal-glucoside. This change in carotenoid content started to occur at rather higher light-intensities than the switchover from B800–850 to B800–820.  相似文献   

8.
The spatial relationship of the three polypeptides contained in the B800-850 light-harvesting complex of Rhodopseudomonas capsulata has been studied with chemical cross-linking of crude membrane preparations of the phototrophic negative mutant strain Y5. Samples were cross-linked with the cleavable reagent dithiobis (succinimidyl propionate) (1.1 nm chain length) and analyzed by two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis. Membranes labelled with 14C-amino acids were used to determine the compositional stoichiometry of cross-linked products. It was found that the two polypeptides with an apparent Mr of 8000 and 10 000, respectively, that are associated with the pigments bacteriochlorophyll a and carotenoid form homooligomers as well as heterooligomers. The data support the idea that these polypeptides are closely arranged in clusters probably containing at least four of each species. The third subunit with an Mr of 14 000, which is not associated with pigments, was found to be most susceptible to cross-linking and formed homooligomers but no heterooligomers with the other two subunits, and is thus likely to be loosely attached to these clusters. Comparative studies with the phototrophic positive wild type strain indicated that the results found with the phototrophic negative mutant strain Y5 reflect the organization of the B800-850 complex in the membrane of Rhodopseudomonas capsulata. Studies with the isolated B800-850 complex revealed that the sterical arrangement of the three constituent polypeptides in dodecyl dimethylamine-N-oxide containing solutions must be very similar to that in the membrane.  相似文献   

9.
Integral membrane proteins are solubilized by their incorporation into a detergent micelle. The detergent micelle has a critical influence on the formation of a three-dimensional crystal lattice. The bulk detergent phase is not seen in X-ray crystal structures of integral membrane proteins, due to its disordered character. Here, we describe the detergent structure present in crystals of the peripheral light-harvesting complex of the purple bacteria Rhodopseudomonas acidophila strain 10050 at a maximal resolution of 12A as determined by neutron crystallography. The LH2 molecule has a toroidal shape and spans the membrane completely in vivo. A volume of 16% of the unit cell could be ascribed to detergent tails, localized on both the inner and outer hydrophobic surfaces of the molecule. The detergent tail volumes were found to be associated with individual LH2 molecules and had no direct role in the formation of the crystalline lattice.  相似文献   

10.
The large bacteriochlorophyll-a-binding polypeptide of the light-harvesting complex II (B800-850), having an apparent Mr with sodium dodecyl sulfate/polyacrylamide electrophoresis of 10000, has been isolated and purified from intracytoplasmic membranes of the phototrophically negative mutant strain Y5 of Rhodopseudomonas capsulata. The primary structure of this polypeptide has been determined. The polypeptide consists of 60 amino acid residues yielding an Mr of 7322. The hydrophobic stretch in positions 16-35 with a histidine in position 31 might be of importance for interaction with bacteriochlorophyll. The C-terminal part is also hydrophobic while the N-terminal part consists of hydrophilic amino acids. The polarity of the total amino acids was determined to be 28.3%.  相似文献   

11.
We have recorded fluorescence-excitation and emission spectra from single LH2 complexes from Rhodopseudomonas (Rps.) acidophila. Both types of spectra show strong temporal spectral fluctuations that can be visualized as spectral diffusion plots. Comparison of the excitation and emission spectra reveals that for most of the complexes the lowest exciton transition is not observable in the excitation spectra due to the cutoff of the detection filter characteristics. However, from the spectral diffusion plots we have the full spectral and temporal information at hand and can select those complexes for which the excitation spectra are complete. Correlating the red most spectral feature of the excitation spectrum with the blue most spectral feature of the emission spectrum allows an unambiguous assignment of the lowest exciton state. Hence, application of fluorescence-excitation and emission spectroscopy on the same individual LH2 complex allows us to decipher spectral subtleties that are usually hidden in traditional ensemble spectroscopy.  相似文献   

12.
Intracytoplasmic membranes of the mutant strain NK3 of Rhodopseudomonas capsulata lacking the lightharvesting complex B800-850 were fused with proteoliposomes containing the B800-850 complex. Fluorescence emission spectroscopy at 77K showed that after fusion the fluorescence of the B850 bacteriochlorophyll disappeared nearly completely and the B870 fluorescence became prominent. This result and control experiments with proteoliposome-chromatophore mixture and with chromatophore and solubilized B800-850 complexes, respectively, indicate that in fused membranes a reorientation of membrane particles took place and excitons migrated from B850 to B870 bacteriochlorophyll.In fused proteoliposome-chromatophore vesicles a light-induced carotenoid band shift was observed, reflecting the building of an electrical membrane potential due to chargeseparation. Carotenoid band shift was not observed in separated proteoliposomes and NK3 chromatophores.It is concluded that by membrane fusion and lateral diffusion of membrane particles reaction center-light-harvesting B870 complexes came in functional contact with B800-850 antenna complexes.Abbreviations Bchl bacteriochlorophyll - LDAO lauryl dimethylamine oxide - RC reaction center Dedicated to Professor R. Clinton Fuller, Amherst, MA, USA, on the occasion of his 60th birthday in recognition of his work on photosynthetic bacteria and the cooperation between our laboratories  相似文献   

13.
The B800-820, or LH3, complex is a spectroscopic variant of the B800-850 LH2 peripheral light-harvesting complex. LH3 is synthesized by some species and strains of purple bacteria when growing under what are generally classed as "stressed" conditions, such as low intensity illumination and/or low temperature (<30 degrees C). The apoproteins in these complexes modify the absorption properties of the chromophores to ensure that the photosynthetic process is highly efficient. The crystal structure of the B800-820 light-harvesting complex, an integral membrane pigment-protein complex, from the purple bacteria Rhodopseudomonas (Rps.) acidophila strain 7050 has been determined to a resolution of 3.0 A by molecular replacement. The overall structure of the LH3 complex is analogous to that of the LH2 complex from Rps. acidophila strain 10050. LH3 has a nonameric quaternary structure where two concentric cylinders of alpha-helices enclose the pigment molecules bacteriochlorophyll a and carotenoid. The observed spectroscopic differences between LH2 and LH3 can be attributed to differences in the primary structure of the apoproteins. There are changes in hydrogen bonding patterns between the coupled Bchla molecules and the protein that have an effect on the conformation of the C3-acetyl groups of the B820 molecules. The structure of LH3 shows the important role that the protein plays in modulating the characteristics of the light-harvesting system and indicates the mechanisms by which the absorption properties of the complex are altered to produce a more efficient light-harvesting component.  相似文献   

14.
A reverse-phase HPLC System for isolation of the water insoluble alpha- and beta-polypeptides of the light-harvesting complex II (LH II) of Rhodopseudomonas (Rps.) palustris without employment of any detergent was developed. The material obtained was of high purity and suitable for direct microsequence analysis. Chromatographic analysis could resolve at least two major beta-polypeptides, beta a and beta b, two major alpha-polypeptides, alpha a and alpha b, and two additional minor polypeptides. N-terminal amino acid sequencing shows that the resolved peaks correspond to different polypeptide species and that the minor species have an N-terminal sequence identical to that of the alpha b polypeptide. An oligonucleotide derived from the amino terminal sequence of the alpha a polypeptide was utilized to screen a genomic library from Rps.palustris. Several independent clones have been characterized by Southern blot and nucleotide sequence analysis. We show that Rps.palustris contains at least four different clusters of beta and alpha genes. Two clones contain sequences potentially coding for beta a-alpha a and beta b-alpha b polypeptides; and two additional clones potentially coding for beta and alpha peptides which we named beta c-alpha c and beta d-alpha d, which did not correspond to the major purified polypeptides. In addition to the protein chemistry data, the conservation at the amino acid level and the presence of canonical ribosomal binding sites upstream of each of the identified genes strongly suggest that all four coding regions are expressed.  相似文献   

15.
Proteinase K and trypsin were used to determine the orientation of the light-harvesting B800-850 alpha and beta polypeptides within the chromatophores (inside-out membrane vesicles) of the mutant strain Y5 of Rhodopseudomonas capsulata. With proteinase K 7 amino acid residues of the B800-850 alpha polypeptide were cleaved off up to position Trp-7--Thr-8 of the N terminus, and 11 residues were cleaved off up to position Leu-11-Ser-12 of the beta chain N terminus. The C termini of the B800-850 alpha and beta polypeptides, including the hydrophobic transmembrane portions, remained intact. It is proposed that the N termini of the alpha and beta subunits, each containing one transmembrane alpha-helical span, are exposed on the cytoplasmic membrane surface and the C termini are exposed to or directed toward the periplasm.  相似文献   

16.
Electron micrographs of photosynthetic membranes of the BChla-containing bacterium Rp. marina showed a quasi-crystalline structure. The photoreceptor units are arranged in a hexagonal lattice with a reaction center to reaction center distance of 102 +/- 3 A. Purified B880-complex was concentrated up to an OD880 of 60 which induced the formation of large protein vesicles. The protein complexes within these vesicles were highly ordered and showed a hexagonal lattice with the same center to center distance of 102 +/- 3 A as was observed in the native membranes. Image processing of the micrographs revealed a ring-like structure of the B880-complex at 26 A resolution and suggests that the B880-complex consists of 5 or 6 subunits. For the first time it can be shown that an isolated core-complex is in a stable, ring-like structure even without the reaction center which is supposed to be located in the middle of the B880-ring. The data indicate that the isolated B880-complex exhibits the same structure as in the native membrane.  相似文献   

17.
A method is described which allows the selective release and removal of the Bchla-B800 molecules from the LH2 complex of Rhodopseudomonas acidophila 10050. This procedure also allows reconstitution of approximately 80% of the empty binding sites with native Bchla. As shown by circular dichroism spectroscopy, the overall structures of the B850-only and reconstituted complexes are not affected by the pigment-exchange procedure. The pigments reconstituted into the B800 sites can also efficiently transfer excitation energy to the Bchla-B850 molecules.  相似文献   

18.
Depending on growth conditions, some species of purple photosynthetic bacteria contain peripheral light-harvesting (LH2) complexes that are heterogeneous owing to the presence of different protomers (containing different αβ-apoproteins). Recent spectroscopic studies of Rhodopseudomonas palustris grown under low-light conditions suggest the presence of a C 3-symmetric LH2 nonamer comprised of two distinct protomers. The software program Cyclaplex, which enables generation and data-mining of virtual libraries of molecular rings formed upon combinatorial reactions, has been used to delineate the possible number and type of distinct nonamers as a function of numbers of distinct protomers. The yield of the C 3-symmetric nonamer from two protomers (A and B in varying ratios) has been studied under the following conditions: (1) statistical, (2) enriched (preclusion of the B-B sequence), and (3) seeded (pre-formation of an A-B-A block). The yield of C 3-symmetric nonamer is at most 0.98 % under statistical conditions versus 5.6 % under enriched conditions, and can be dominant under conditions of pre-seeding with an A-B-A block. In summary, the formation of any one specific nonamer even from only two protomers is unlikely on statistical grounds but must stem from enhanced free energy of formation or a directed assembly process by as-yet unknown factors.  相似文献   

19.
20.
Attenuated total reflection infrared spectroscopy were used to study the conformation of the purified light-harvesting polypeptides from Rhodopseudomonas sphaeroides R-26.1. B 870-alpha and B 850-beta are characterised by a high content of alpha-helix; B 850-alpha and B 870-beta, in contrast, contain extensive antiparallel chain-pleated sheet structure. The beta-structure is likely to be an artifact of the isolation because B 850-alpha assumes a predominantly alpha-helical conformation in the intact antenna complex. It is concluded that lipid-protein interactions play a crucial role in the stabilisation of the "native" alpha-helical fold of B 850-alpha and thus in the stabilisation of the entire antenna-pigment-protein complex. The results obtained concerning the "in situ" conformation of B 850-alpha and B 850-beta were used, together with the known primary structures and data available from the literature, to construct a rough molecular model of the hydrophobic domain of the elementary unit of the B 850 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号