首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of the anti-beta-adrenergic action of acetylcholine (ACh) on Ca current, ICa, was examined using the tight-seal, whole-cell voltage clamp technique in single atrial myocytes from the bullfrog. Both isoproterenol (ISO) and forskolin increased ICa dose dependently. After ICa had been enhanced maximally by ISO (10(-6) M), subsequent application of forskolin (50 microM) did not further increase ICa, suggesting that ISO and forskolin increase ICa via a common biochemical pathway, possibly by stimulation of adenylate cyclase. ACh (10(-5) M) completely inhibited the effect of low doses of forskolin (2 x 10(-6) M), as well as ISO, but it failed to block the effects of high doses of forskolin (greater than 5 x 10(-5) M). Intracellular application of cyclic AMP (cAMP) also increased ICa. ACh (10(-5) M) failed to inhibit this cAMP effect, indicating that the inhibitory action of ACh occurs at a site proximal to the production of cAMP. ACh (10(-5) M) also activated an inwardly rectifying K+ current IK(ACh). Intracellular application of a nonhydrolyzable GTP analogue, GTP gamma S (5 X 10(-4) M), activated IK(ACh) within several minutes; subsequent application of ACh (10(-5) M) did not increase IK(ACh) further. These results demonstrate that a GTP-binding protein coupled to these K+ channels can be activated maximally by GTP gamma S even in the absence of ACh. Intracellular application of GTP gamma S also strongly inhibited the effect of ISO on ICa in the absence of ACh. Pertussis toxin (IAP) completely prevented both the inhibitory effect of ACh on ICa and the ACh-induced activation of IK(ACh). GTP gamma S (50 microM-1 mM) alone did not increase ICa significantly; however, when ISO was applied first, GTP gamma S (5 x 10(-4) M) gradually inhibited the ISO effect on ICa. These results indicate that ACh antagonizes the effect of ISO on ICa via a GTP-binding protein (Gi and/or Go). This effect may be mediated through a direct inhibition by the alpha-subunit of Gi which is coupled to the adenylate cyclase.  相似文献   

2.
3.
Using the patch clamp technique, we examined the agonist-free, basal interaction between the muscarinic acetylcholine (m-ACh) receptor and the G protein (GK)-gated muscarinic K+ channel (IK.ACh), and the modification of this interaction by ACh binding to the receptor in single atrial myocytes of guinea pig heart. In the whole cell clamp mode, guanosine-5'-O-(3-thiotriphosphate) (GTP-gamma S) gradually increased the IK.ACh current in the absence of agonists (e.g., acetylcholine). This increase was inhibited in cells that were pretreated with islet-activating protein (IAP, pertussis toxin) or N-ethylmaleimide (NEM). In inside-out patches, even in the absence of agonists, intracellular GTP caused openings of IK.ACh in a concentration-dependent manner in approximately 80% of the patches. Channel activation by GTP in the absence of agonist was much less than that caused by GTP-gamma S. The agonist-independent, GTP-induced activation of IK.ACh was inhibited by the A promoter of IAP (with nicotinamide adenine dinucleotide) or NEM. As the ACh concentration was increased, the GTP-induced maximal open probability of IK.ACh was increased and the GTP concentration for the half-maximal activation of IK.ACh was decreased. Intracellular GDP inhibited the GTP-induced openings of IK.ACh in a concentration-dependent fashion. The half-inhibition of IK.ACh openings occurred at a much lower concentration of GDP in the absence of agonists than in the presence of ACh. From these results, we concluded (a) that the interaction between the m-ACh receptor and GK is essential for basal stimulation of IK.ACh, and (b) that ACh binding to the receptor accelerates the turnover of GK and increases GK's affinity to GTP analogues over GDP.  相似文献   

4.
The effects of leukotriene C4 (LTC4) on activation of muscarinic acetylcholine receptor (mAChR)-stimulated, inwardly rectifying K+ current (IK[ACh]) were examined in single bullfrog atrial myocytes using the whole-cell patch clamp technique. LTC4 produced a reversible, concentration-dependent increase in steady-state, guanosine-gamma- thiotriphosphate (GTP gamma S)-activated IK[ACh], with a K0.5 of 3.1 microM. LTC4 also increased the rate of GTP gamma S-mediated IK[ACh] activation, both in the absence and presence of 1 nM ACh, with comparable K0.5 values of 4.7 microM under basal conditions and 4.9 microM in the presence of 1 nM ACh. LTC4 did not alter the relative affinities of the G protein, Gk, for GTP gamma S and GTP. We hypothesize that all of the effects of LTC4 on the kinetics of Gk- mediated IK[ACh] activation are produced at a common site with a K0.5 of 3-5 microM. The effects of LTC4 on IK[ACh] activation are fully reversible in the presence of GTP gamma S. Under physiological conditions (i.e., intracellular GTP), 10 microM LTC4 increased the ACh- activated peak IK[ACh]. Inhibitors of cellular LTC4 production, including 5,8,11,14-eicosatetraynoic acid, baicalein, cinnamyl-3,4- dihydroxy-alpha-cyanocinnamate, and alpha-pentyl-4-(2- quinolinylmethoxy)-benzene methanol, greatly attenuated ACh-dependent IK[ACh] activation, preventing activation of peak, and producing a lower steady-state IK[ACh] (when compared with the control response in the same cell). Addition of exogenous LTC4 was able to overcome the effects of LTC4 synthesis inhibitors, restoring both the peak and steady-state IK[ACh] responses. Although the mechanism of LTC4-mediated modulation of IK[ACh] activation is not known, our results suggest that endogenously produced lipoxygenase metabolites of arachidonic acid, specifically LTC4, are involved in the physiological process of IK[ACh] activation.  相似文献   

5.
The biochemical signaling pathways involved in nitric oxide (NO)- mediated cholinergic inhibition of L-type Ca2+ current (ICa[L]) were investigated in isolated primary pacemaker cells from the rabbit sinoatrial node (SAN) using the nystatin-perforated whole-cell voltage clamp technique. Carbamylcholine (CCh; 1 microM), a stable analogue of acetylcholine, significantly inhibited ICa(L) after it had been augmented by isoproterenol (ISO; 1 microM). CCh also activated an outward K+ current, IK(ACh). Both of these effects of CCh were blocked completely by atropine. Preincubation of the SAN cells with L-nitro- arginine methyl ester (L-NAME; 0.2-1 mM), which inhibits NO synthase (NOS), abolished the CCh-induced attenuation of ICa(L) but had no effect on IK(ACh). Coincubation of cells with both L-NAME and the endogenous substrate of NOS, L-arginine (1 nM), restored the CCh- induced attenuation of ICa(L), indicating that L-NAME did not directly interfere with the muscarinic action of CCh on ICa(L). In the presence of ISO the CCh-induced inhibition of ICa(L) could be mimicked by the NO donor 3-morpholino-sydnonimine (SIN-1; 0.1 mM). SIN-1 had no effect on its own or after a maximal effect of CCh had developed, indicating that it does not inhibit ICa(L) directly. SIN-1 failed to activate IK(ACh), demonstrating that it did not activate muscarinic receptors. Both CCh and NO are known to activate guanylyl cyclase and elevate intracellular cGMP. External application of methylene blue (10 microM), which interferes with the ability of NO to activate guanylyl cyclase, blocked the CCh-induced attenuation of ICa(L). However, it also blocked the activation of IK(ACh), suggesting an additional effect on muscarinic receptors or G proteins. To address this, a separate series of experiments was performed using conventional whole-cell recordings with methylene blue in the pipette. Under these conditions, the CCh-induced attenuation of ICa(L) was blocked, but the activation of IK(ACh) was still observed. Methylene blue also blocked the SIN-1-induced decrease in ICa(L). 6-anilino-5,8-quinolinedione (LY83583; 30 microM), an agent known to decrease both basal and CCh-stimulated cGMP levels, prevented the inhibitory effects of both CCh and SIN-1 on ICa(L), but had no effect on the activation of IK(ACh) by CCh. In combination, these results show that CCh- and NO-induced inhibition of ICa(L) is mediated by cGMP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The muscarinic acetylcholine receptor (mAChR)-stimulated, inwardly rectifying K+ current (IK [ACh]) was examined in single bullfrog atrial cells using the whole-cell patch clamp technique. IK[ACh] was activated either by bath addition of 1 microM ACh or via activation of the G protein, Gk, with guanosine-gamma-thiotriphosphate (GTP gamma S). Arachidonic acid (AA) modulated IK[ACh] under both conditions. AA decreased mAChR-stimulated IK[ACh] and increased the rate of decay from the peak current (desensitization). In addition, AA affected GTP gamma S-activated IK[ACh] by modulation of Gk. The effects of AA and its metabolites on Gk were assessed by examining their effects on both the basal rate of Gk activation by GTP gamma S, and the mAChR-mediated increase in activation rate produced by nanomolar ACh. AA increased the basal rate of GTP gamma S-mediated IK[ACh] activation, but reduced the ACh-induced augmentation of this rate. All of the effects of AA on GTP gamma S-mediated IK[ACh] activation were produced by metabolites. A lipoxygenase inhibitor, nordihydroguaiaretic acid (NDGA), decreased the basal and ACh-enhanced rate of IK[ACh] activation in both the presence and absence of exogenous AA. In contrast, indomethacin (INDO), a cyclooxygenase inhibitor, increased the basal rate of IK[ACh] activation by GTP gamma S in both the presence and absence of exogenous AA, and reversed the effects of AA on the ACh-augmented basal rate. AA metabolites produced via lipoxygenase and cyclooxygenase pathways thus have opposing effects on the signal transduction pathway from mAChR to IK[ACh]. We directly tested a lipoxygenase pathway metabolite, LTC4, on GTP gamma S-mediated IK[ACh] activation and found that it not only overcame the inhibitory effects of NDGA, but also increased both the basal and ACh-augmented rate of IK[ACh] activation. From these data, we propose that AA metabolites modulate the function of Gk by altering its kinetic properties.  相似文献   

7.
The molecular mechanisms of anticholinergic actions of doxorubicin were examined by electrophysiological methods in atria and myocytes isolated from guinea-pig heart. A direct anticholinergic action of doxorubicin was confirmed with antagonistic action on carbachol-induced negative inotropic effect in atria. Both carbachol and adenosine produced shortening of action potential duration in atria measured by a microelectrode method. Doxorubicin (10-100 microM) inhibited the carbachol-induced action potential shortening in a concentration-dependent manner. However, doxorubicin did not antagonize the shortening elicited by adenosine. The whole-cell voltage clamp technique was performed to induce the muscarinic acetylcholine-receptor-operated K+ current (IK.ACh) in atrial myocytes loaded with GTP or GTPgammaS, a nonhydrolysable analogue of GTP. Doxorubicin (1-100 microM) suppressed carbachol-induced IK.ACh in a concentration-dependent manner (IC50 = 5.6 microM). In contrast, doxorubicin (10 and 100 microM) suppressed neither adenosine-induced IK.ACh nor GTPgammaS-induced IK.ACh. These results indicate that doxorubicin produces a direct anticholinergic effect through the muscarinic receptors in atrial myocytes.  相似文献   

8.
Calcium currents (ICa) were measured in frog ventricular myocytes using the whole-cell patch clamp technique and a perfused pipette. To gain insight into the role of G proteins in the regulation of ICa in intact cells, the effect of internal perfusion with hydrolysis-resistant GTP analogues, guanylyl 5''-imidodiphosphate (GppNHp) or guanosine 5''- thiotriphosphate (GTP gamma S), on ICa stimulated by isoproterenol (Iso) or forskolin (Forsk) was examined. Significant differences were observed between the effects of the two GTP analogues. Internal perfusion of GppNHp resulted in a near-complete (approximately 80%) and irreversible inhibition of Iso-stimulated ICa. In contrast, internal perfusion with GTP gamma S resulted in only a partial (approximately 40%) inhibition of Iso- or Forsk-stimulated ICa. The fraction of the current not inhibited by GTP gamma S remained persistently elevated after the washout of Iso but declined to basal levels upon washout of Forsk. Excess internal GTP or GppNHp did not reduce the persistent ICa. Internal adenosine 5''-thiotriphosphate (ATP gamma S) mimicked the GTP gamma S-induced, persistent ICa. GppNHp sometimes induced a persistent ICa, but only if GppNHp was present at high concentration before Iso exposure. Inhibitors of protein kinase A inhibited both the GTP gamma S- and ATP gamma S-induced, persistent ICa. We conclude that: (a) GTP gamma S is less effective than GppNHp in inhibiting adenylyl cyclase (AC) via the inhibitory G protein, Gi; and (b) the persistent ICa results from a long-lived Gs-GTP gamma S complex that can activate AC in the absence of Iso. These results suggest that different hydrolysis- resistant nucleotide analogues may behave differently in activating G proteins and imply that the efficacy of G protein-effector molecule interactions can depend on the GTP analogue with which the G protein is activated.  相似文献   

9.
Beta gamma dimers of G proteins inhibit atrial muscarinic K+ channels   总被引:4,自引:0,他引:4  
It has been proposed that beta gamma dimers of signal-transducing G proteins mediate muscarinic activation of atrial K+ channels. We examined this hypothesis by testing the effects of beta gamma dimers from four sources (human erythrocytes, human placenta, bovine brain, and bovine retina) on single channel muscarinic K+ (K+[acetylcholine (ACh)]) currents in inside-out membrane patches of adult guinea pig atria. None of the four beta gamma dimer preparations stimulated K+[ACh] currents; on the contrary, each inhibited the currents whether the currents were activated with GTP alone (agonist-independent activity) or with GTP plus a muscarinic agonist (agonist-dependent activity). Detergents at concentrations used to suspend erythrocyte, brain, and placental beta gamma dimers had no effect by themselves, and detergents were not used with the retinal beta gamma dimers. We conclude that beta gamma dimers do not mediate stimulatory effects of the endogenous G protein that regulates the K+ channels. In fact beta gamma dimers appear to inhibit activation by the endogenous G alpha subunits. Further insight into the role of beta gamma dimers came from the observation that agonist-independent GTP-activated K+[ACh] currents were inhibited by beta gamma dimers at about one-tenth the concentration required to inhibit agonist-dependent activation. One possibility is that dimeric beta gamma may have a higher affinity for free alpha subunits than for alpha subunits associated with agonist-occupied receptors. Thus, in addition to the known requirement of beta gamma dimers for the interaction of alpha subunits with receptors, beta gamma dimers may also improve the signal-to-noise ratio for agonists by reducing agonist-independent background activities.  相似文献   

10.
A single suction microelectrode voltage-clamp technique was used to study the actions of lanthanum ions (La3+) on ionic currents in single cells isolated from bullfrog right atrium. La3+, added as LaCl3, blocked the "slow" inward Ca2+ current (ICa) in a dose-dependent fashion; 10(-5) M produced complete inhibition. This effect was best fitted by a dose-response curve that was calculated assuming 1:1 binding of La3+ to a site having a dissociation constant of 7.5 x 10(-7) M. La3+ block was reversed (to 90% of control ICa) following washout and, in the presence of 10(-5) M La3+, was antagonized by raising the Ca2+ concentration from 2.5 to 7.5 mM (ICa recovered to 56% of the control). However, the latter effect took approximately 1 h to develop. Concentrations of La3+ that reduced ICa by 12-67%, 0.1-1.5 x 10(-6) M, had no measurable effect upon the voltage dependence of steady state ICa inactivation, which suggest that at these concentrations there are no significant surface-charge effects of La3+ on this gating mechanism. Three additional findings indicate that doses of La3+ that blocked ICa failed to produce nonspecific effects: (a) 10(-5) M La3+ had no measurable effect on the time-independent inwardly rectifying current, IK1; (b) the same concentration had no effect on the kinetics, amplitude, or voltage dependence of a time- and voltage-dependent K+ current, IK; and (c) 10(-4) M La3+ did not alter the size of the tetrodotoxin-sensitive inward Na+ current, INa, or the voltage dependence of its steady state inactivation. Higher concentrations (0.5-1.0 mM) reduced both IK1 and IK, and shifted the steady state activation curve for IK toward more positive potentials, presumably by reducing the external surface potential. Our results suggest that at a concentration of less than or equal to 10(-5) M, La3+ inhibits ICa selectively by direct blockade of Ca channels rather than by altering the external surface potential. At higher concentrations, La3+ exhibits nonspecific effects, including neutralization of negative external surface charge and inhibition of other time- and voltage-dependent ionic currents.  相似文献   

11.
The effects of acetylcholine (ACh) and histamine (His) on the membrane potential and current were examined in JR-1 cells, a mucin-producing epithelial cell line derived from human gastric signet ring cell carcinoma. The tight-seal, whole cell clamp technique was used. The resting membrane potential, the input resistance, and the capacitance of the cells were approximately -12 mV, 1.4 G ohms, and 50 pF, respectively. Under the voltage-clamp condition, no voltage-dependent currents were evoked. ACh or His added to the bathing solution hyperpolarized the membrane by activating a time- and voltage- independent K+ current. The ACh-induced hyperpolarization and K+ current persisted, while the His response desensitized quickly (< 1 min). These effects of ACh and His were mediated predominantly by m3- muscarinic and H1-His receptors, respectively. The K+ current induced by ACh and His was inhibited by charybdotoxin, suggesting that it is a Ca(2+)-activated K+ channel current (IK.Ca). The measurement of intracellular Ca2+ ([Ca2+]i) using Indo-1 revealed that both agents increased [Ca2+]i with similar time courses as they increased IK.Ca. When EGTA in the pipette solution was increased from 0.15 to 10 mM, the induction of IK.Ca by ACh and His was abolished. Thus, both ACh and His activate IK.Ca by increasing [Ca2+]i in JR-1 cells. In the Ca(2+)-free bathing solution (0.15 mM EGTA in the pipette), ACh evoked IK.Ca transiently. Addition of Ca2+ (1.8 mM) to the bath immediately restored the sustained IK.Ca. These results suggest that the ACh response is due to at least two different mechanisms; i.e., the Ca2+ release-related initial transient activation and the Ca2+ influx-related sustained activation of IK.Ca. Probably because of desensitization, the Ca2+ influx-related component of the His response could not be identified. Intracellularly applied inositol 1,4,5-trisphosphate (IP3), with and without inositol 1,3,4,5-tetrakisphosphate (IP4), mimicked the ACh response. IP4 alone did not affect the membrane current. Under the steady effect of IP3 or IP3 plus IP4, neither ACh nor His further evoked IK.Ca. Intracellular application of heparin or of the monoclonal antibody against the IP3 receptor, mAb18A10, inhibited the ACh and His responses in a concentration-dependent fashion. Neomycin, a phospholipase C (PLC) inhibitor, also inhibited the agonist-induced response in a concentration-dependent fashion. Although neither pertussis toxin (PTX) nor N-ethylmaleimide affected the ACh or His activation of IK,Ca, GDP beta S attenuated and GTP gamma S enhanced the agonist response.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
beta1 integrins play a crucial role as cytoskeletal anchorage proteins. In this study, the coupling of the cytoskeleton and intracellular signaling pathways was investigated in beta1 integrin deficient (-/-) embryonic stem cells. Muscarinic inhibition of the L-type Ca2+ current (ICa) and activation of the acetylcholine-activated K+ current (IK,ACh) was found to be absent in beta1 integrin-/- cardiomyocytes. Conversely, beta adrenoceptor-mediated modulation of ICa was unaffected by the absence of beta1 integrins. This defect in muscarinic signaling was due to defective G protein coupling. This was supported by deconvolution microscopy, which demonstrated that Gi exhibited an atypical subcellular distribution in the beta1 integrin-/- cardiomyocytes. A critical role of the cytoskeleton was further demonstrated using cytochalasin D, which displaced Gi and impaired muscarinic signaling. We conclude that cytoskeletal integrity is required for correct localization and function of Gi-associated signaling microdomains.  相似文献   

13.
The negative inotropic effect of acetylcholine (ACh) in atrial muscle can be accounted for by a decrease of a voltage- and time-dependent slow inward current (Isi) carried by Ca2+/Na+ and an increase of outward time-dependent current carried by K+ (IK1) through inwardly rectifying channels. The negative inotropic effect of ACh in ventricular muscle is associated with a reduction of Isi; there is no important effect of ACh on IK1 in ventricular muscle. Because atrial and ventricular muscles display IK1 that is sensitive to Ba2+ and have similar numbers of muscarinic receptor sites, it is concluded that ventricular muscle lacks a metabolic link between the muscarinic receptor and inwardly rectifying K+ channels. Although there is much evidence for cyclic nucleotides as the mediator between muscarinic receptors and Isi channels, cyclic nucleotides do not seem to connect these receptors with inwardly rectifying K+ channels. According to this hypothesis, identification of a metabolic link between muscarinic receptors and IK1 channels should be demonstrable in atrial but not ventricular muscle.  相似文献   

14.
The predominant histamine receptor subtype in the supraventricular and ventricular tissue of various mammalian species is the H2 receptor (H2-R) subtype, which is known to couple to stimulatory G proteins (Gs), i.e. the major effects of this autacoid are an increase in sinus rate and in force of contraction. To investigate histamine effects in H2-R-transfected rat atrial myocytes, endogenous GIRK currents and L-type Ca2+ currents were used as functional assays. In H2-R-transfected myocytes, exposure to His resulted in a reversible augmentation of L-type Ca2+ currents, consistent with the established coupling of this receptor to the Gs-cAMP-PKA signalling pathway. Mammalian K+ channels composed of GIRK (Kir3.x) subunits are directly controlled by interaction with betagamma subunits released from G proteins, which couple to seven-helix receptors. In mock-transfected atrial cardiomyocytes, activation of muscarinic K+ channels (IK(ACh)) was limited to Gi-coupled receptors (M2R, A1R). In H2-R-overexpressing cells, histamine activated IK(ACh) via Gs-derived betagamma subunits since the histamine-induced current was insensitive to pertussis toxin. These data indicate that overexpression of Gs-coupled H2-R results in a loss of target specificity due to an increased agonist-induced release of Gs-derived betagamma subunits. When IK(ACh) was maximally activated by GTP-gamma-S, histamine induced an irreversible inhibition of the inward current in a fraction of H2-R-transfected cells. This inhibition is supposed to be mediated via a G(q/11)-PLC-mediated depletion of PIP2, suggesting a partial coupling of overexpressed H2-R to G(q/11). Dual coupling of H2-Rs to Gs and Gq is demonstrated for the first time in cardiac myocytes. It represents a novel mechanism to augment positive inotropic effects by activating two different signalling pathways via one type of histamine receptor. Activation of the Gs-cAMP-PKA pathway promotes Ca2+ influx through phosphorylation of L-type Ca2+ channels. Simultaneous activation of Gq-signalling pathways might result in phosphoinositide turnover and Ca2+ release from intracellular stores, thereby augmenting H2-induced increases in [Ca2+]i.  相似文献   

15.
A model is formulated for characterizing the behavior of the acetylcholine (ACh)-sensitive K+ membrane channel (muscarinic channel) in bullfrog atrial myocytes. Parameters of the muscarinic current model are chosen in fit available data from the literature on bullfrog atrial myocytes (3, 4, 45). This model is subsequently incorporated into a large mathematical model of the bullfrog myocyte that is based on quantitative whole-cell voltage clamp data (40). Simulations are conducted on the active atrial cell model in bathing media containing ACh at different concentrations to explore the effect of this muscarinic channel on the electrical behavior of the myocyte. The model predicts a progressive shortening of the action potential with increasing [ACh], as well as an indirect influence of the muscarinic K+ current on the other membrane currents of the atrial cell. Interpretation of the simulation results provides suggestions for the probable mechanisms underlying the shortening of the action potential due to activity of the muscarinic channel. Specifically, the model predicts that with an increase in ACh concentration: (a) the outward muscarinic current, IK,ACh(t), increases in magnitude but shortens in duration; (b) the calcium current, ICa(t), may increase in magnitude, but when it does so it decreases in duration compared with the control conditions; (c) the intracellular Ca2+ concentration [Ca2+]i waveform during the action potential decreases in both magnitude and duration. Because the contractile activity of the cell is controlled by the [Ca2+]i waveform, the model predicts a decrease in contractile strength with an increase in ACh concentration in the bathing medium; i.e., a negative inotropic effect.  相似文献   

16.
Acetylcholine (ACh) can inhibit calcium currents (ICa) in nerve cells by activating muscarinic ACh receptors (mAChR). There are several different genetic subtypes of mAChR. It is not known which subtype(s) are responsible for ICa inhibition. To resolve this issue, we measured ICa inhibition by ACh with patch-clamp recording, by using Ba2+ as charge carrier, in clones of NG108-15 neuroblastoma x glioma hybrid cells transfected with DNA for mAChRI, II, III and IV. Control (non-transfected) cells showed a mean maximum inhibition of peak ICa of 12.8 +/- 1.8% (n = 36) at 1 mM ACh. No consistent increase in inhibition was detected in vector-transfected cells, or in cells transformed to express mAChRI or mAChRIII. In contrast, inhibition was significantly increased in clones transformed to express mAChRII or mAChRIV. Inhibition was not correlated with the number of muscarinic receptors as determined by 3H-quinuclidinyl benzilate binding. Inhibition in both control and transfected cells was prevented by pretreatment with pertussis toxin (PTx). Inhibition persisted in the presence of extracellular or intracellular dibutyryl cyclic AMP, and hence is not because of inhibition of adenylate cyclase. We conclude that the inhibition of neuronal ICa is mediated preferentially by mAChRII and mAChRIV, via a PTx-sensitive GTP-binding protein.  相似文献   

17.
Two GTP-binding trimeric proteins (referred to as alpha 41 beta gamma and alpha 39 beta gamma based on the kilodalton molecular weights of their alpha-subunits) were purified from rat brain as the specific substrates of the ADP-ribosylation reaction catalyzed by islet-activating protein, pertussis toxin, and resolved irreversibly into alpha- and beta gamma-subunits by incubation with guanosine 5'-O-(thiotriphosphate) (GTP gamma S). Some of these resolved subunits interacted directly with the adenylate cyclase catalyst partially purified from rat brain in a detergent-containing solution, resulting in inhibition of the cyclase activity as follows. 1) GTP gamma S-bound alpha 41 inhibited the catalyst, but GTP gamma S-bound alpha 39 did not; the inhibition was competitive with GTP gamma S-bound alpha-subunit of Ns, the GTP-binding protein involved in activation of adenylate cyclase. 2) beta gamma from either alpha 41 beta gamma or alpha 39 beta gamma inhibited the catalyst in a manner not competitive with the activator such as forskolin or the alpha-subunit of Ns. 3) The ADP-ribosylation of alpha 41 beta gamma by islet-activating protein did not exert any influence on the subsequent GTP gamma S-induced resolution and the ability of the resolved GTP gamma S-bound alpha 41 to inhibit the catalyst. 4) The beta gamma-induced inhibition of the catalyst was additive to the inhibition caused by GTP gamma S-bound alpha 41. Thus, the direct inhibition of the catalyst by beta gamma or GTP gamma S-bound alpha 41 is a likely mechanism involved in receptor-mediated inhibition of adenylate cyclase, in addition to the previously proposed indirect inhibition due to the reduction of the concentration of the active alpha-subunit of Ns by reassociation with beta gamma.  相似文献   

18.
When guanosine 5'-(3-O-[35S]thio)triphosphate (GTP gamma S)-binding activity was assayed in the particulate and cytosol fractions of human platelets, most activity was found in the particulate fraction. GTP-binding proteins (G proteins) were extracted from the particulate fraction by sodium cholate and purified by several column chromatographies. At least three G proteins with Mr values of about 21,000, 22,000, and 24,000 (21K G, 22K G, and 24K G, respectively) were separated in addition to the stimulatory (Gs) and inhibitory (Gi) regulatory GTP-binding proteins of adenylate cyclase. Among them, the amount of 22K G was more than 10-fold of those of other G proteins. 22K G was purified to near homogeneity and characterized. 22K G specifically bound GTP gamma S, GTP, and GDP, with a Kd value for GTP gamma S of about 50 nM. [35S]GTP gamma S binding to 22K G was inhibited by pretreatment with N-ethylmaleimide. 22K G hydrolyzed GTP to liberate Pi, with a turnover number of 0.01 min-1. 22K G was not copurified with the beta gamma subunits of Gs and Gi and was not recognized by the antibodies against the ADP-ribosylation factor for Gs and the ras protein. The peptide map of 22K G was different from those of the smg-25A and rho proteins, which we have purified from bovine brain membranes. 21K G was identified to be the c-ras protein, but 24K G was unidentified. These results indicate that there are multiple G proteins in platelet membranes and that a novel G protein (22K G) is a major G protein in platelets.  相似文献   

19.
顾琛  施玉梁 《生理学报》1996,48(6):529-535
由研究乙酰胆碱受体激动剂和阻断剂的作用提出,在脊椎动物运动神经末梢存在着对乙酰胆碱(ACh)释放的反馈调节。神经末梢的离了通道在递质释放中有重要作用。本文是利用周膜下记录技术。研究ACh对蛇运动神经末梢离子通道调节作用的报告。(1)2mmol/LACh明显抑制依钙K流(IK,Ca)此效应与3mmol/LTEA的相似。由于nAChR激动剂尼古丁(2mmol/L) 不影响Ik,f和IK,Cdisplay stat  相似文献   

20.
The effects of bethanidine sulphate, a pharmacological analog of the cardiac antibrillatory drug, bretylium tosylate, were studied on action potentials (APs) and K+, Na+, and Ca2+ currents of single cultured embryonic chick heart cells using the whole-cell current clamp and voltage clamp technique. Extracellular application of bethanidine (3 X 10(-4) M) increased the overshoot and the duration of the APs and greatly decreased the outward K+ current (IK) and potentiated the inward fast Na+ currents (INa) and the inward slow calcium current (ICa). However, intracellular introduction of bethanidine (10(-4) M) blocked INa. In isolated atria of rat, bethanidine increased the force of contraction in a dose-dependent manner. These findings suggest that when applied extracellularly, bethanidine exerts a potentiating effect on the myocardial fast Na+ current and slow Ca2+ current and an inhibitory effect of IK. The positive inotropic effect of bethanidine could be due, at least in part, to an increase of Ca2+ influx via the slow Ca2+ channel and the Na-Ca exchange. It is suggested that the decrease of IK by bethanidine may account for its antifibrillatory action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号