首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human cytidine deaminase family of APOBEC3s (A3s) plays critical roles in both innate immunity and the development of cancers. A3s comprise seven functionally overlapping but distinct members that can be exploited as nucleotide base editors for treating genetic diseases. Although overall structurally similar, A3s have vastly varying deamination activity and substrate preferences. Recent crystal structures of ssDNA-bound A3s together with experimental studies have provided some insights into distinct substrate specificities among the family members. However, the molecular interactions responsible for their distinct biological functions and how structure regulates substrate specificity are not clear. In this study, we identified the structural basis of substrate specificities in three catalytically active A3 domains whose crystal structures have been previously characterized: A3A, A3B- CTD, and A3G-CTD. Through molecular modeling and dynamic simulations, we found an interdependency between ssDNA substrate binding conformation and nucleotide sequence specificity. In addition to the U-shaped conformation seen in the crystal structure with the CTC0 motif, A3A can accommodate the CCC0 motif when ssDNA is in a more linear (L) conformation. A3B can also bind both U- and L-shaped ssDNA, unlike A3G, which can stably recognize only linear ssDNA. These varied conformations are stabilized by sequence-specific interactions with active site loops 1 and 7, which are highly variable among A3s. Our results explain the molecular basis of previously observed substrate specificities in A3s and have implications for designing A3-specific inhibitors for cancer therapy as well as engineering base-editing systems for gene therapy.  相似文献   

2.
Human cytidine deaminase APOBEC3H restricts HIV-1 replication   总被引:2,自引:0,他引:2  
The human genome encodes seven APOBEC3 (A3) cytidine deaminases with potential antiretroviral activity: A3A, A3B, A3C, A3DE, A3F, A3G, and A3H. A3G was the first identified to block replication of human immunodeficiency virus type 1 (HIV-1) and many other retroviruses. A3F, A3B, and A3DE were shown later to have similar activities. HIV-1 produces a protein called Vif that is able to neutralize the antiretroviral activities of A3DE, A3F, and A3G, but not A3B. Only the antiretroviral activity of A3H remains to be defined due to its poor expression in cell culture. Here, we studied the mechanism impairing A3H expression. When primate A3H sequences were compared, a premature termination codon was identified on the fifth exon of the human and chimpanzee A3H genes, which significantly decreased their protein expression. It causes a 29-residue deletion from the C terminus, and this truncation did not reduce human A3H protein stability. However, the mRNA levels of the truncated gene were significantly decreased. Human A3H protein expression could be restored to a normal level either by repairing this truncation or through expression from a vector containing an intron from human cytomegalovirus. Once expression was optimized, human A3H could reduce HIV-1 infectivity up to 150-fold. Importantly, HIV-1 Vif failed to neutralize A3H activity. Nevertheless, extensive sequence analysis could not detect any significant levels of G-to-A mutation in the HIV-1 genome by human A3H. Thus, A3H inhibits HIV-1 replication potently by a cytidine deamination-independent mechanism, and optimizing A3H expression in vivo should represent a novel therapeutic strategy for HIV-1 treatment.  相似文献   

3.
4.
David D. Derse, Ph.D., Head of the Retrovirus Gene Expression Section in the HIV Drug Resistance Program at the National Cancer Institute-Frederick (NCI-Frederick), passed away on October 9, 2009, a scant six weeks after being diagnosed with liver cancer. It was with great sadness that family, friends, and colleagues gathered together for his memorial service on Saturday, October 17, 2009, at the Middletown United Methodist Church in Maryland. As a NCI scientist since 1986, Dave studied the molecular mechanisms of infection and replication of a number of different types of retroviruses. Dave became an internationally known expert on human T cell lymphotrophic viruses type 1 and 2 (HTLV-1 and HTLV-2) and served on the editorial boards of Virology and Retrovirology. His most recent studies focused on the mechanisms of HTLV-1 virion morphogenesis, transmission, and replication.  相似文献   

5.
6.
The beneficial effects of DNA cytidine deamination by activation-induced deaminase (AID; antibody gene diversification) and APOBEC3G (retrovirus restriction) are tempered by probable contributions to carcinogenesis. Multiple regulatory mechanisms serve to minimize this detrimental outcome. Here, we show that phosphorylation of a conserved threonine attenuates the intrinsic activity of activation-induced deaminase (Thr-27) and APOBEC3G (Thr-218). Phospho-null alanine mutants maintain intrinsic DNA deaminase activity, whereas phospho-mimetic glutamate mutants are inactive. The phospho-mimetic variants fail to mediate isotype switching in activated mouse splenic B lymphocytes or suppress HIV-1 replication in human T cells. Our data combine to suggest a model in which this critical threonine acts as a phospho-switch that fine-tunes the adaptive and innate immune responses and helps protect mammalian genomic DNA from procarcinogenic lesions.  相似文献   

7.
The APOBEC3 genes encode cytidine deaminases that act as components of an intrinsic immune defense that have potent activity against a variety of retroelements. This family of genes has undergone a rapid expansion from one or two genes in nonprimate mammals to at least seven members in primates. Here we describe the evolution and function of an uncharacterized antiviral effector, APOBEC3H, which represents the most evolutionarily divergent APOBEC3 gene found in primates. We found that APOBEC3H has undergone significant adaptive evolution in primates. Consistent with our previous findings implicating adaptively evolving APOBEC3 genes as antiviral effectors, APOBEC3H from Old World monkeys (OWMs) has efficient antiviral activity against primate lentiviruses, is sensitive to inactivation by the simian immunodeficiency virus Vif protein, and is capable of hypermutating retroviral genomes. In contrast, human APOBEC3H is inherently poorly expressed in primate cells and is ineffective at inhibiting retroviral replication. Both OWM and human APOBEC3H proteins can be expressed in bacteria, where they display significant DNA mutator activity. Thus, humans have retained an APOBEC3H gene that encodes a functional, but poorly expressed, cytidine deaminase with no apparent antiviral activity. The consequences of the lack of antiviral activity of human APOBEC3H are likely to be relevant to the current-day abilities of humans to combat retroviral challenges.  相似文献   

8.
9.
The APOBEC3 cytidine deaminases are implicated as the cause of a prevalent somatic mutation pattern found in cancer genomes. The APOBEC3 enzymes act as viral restriction factors by mutating viral genomes. Mutation of the cellular genome is presumed to be an off‐target activity of the enzymes, although the regulatory measures for APOBEC3 expression and activity remain undefined. It is therefore difficult to predict circumstances that enable APOBEC3 interaction with cellular DNA that leads to mutagenesis. The APOBEC3A (A3A) enzyme is the most potent deaminase of the family. Using proteomics, we evaluate protein interactors of A3A to identify potential regulators. We find that A3A interacts with the chaperonin‐containing TCP‐1 (CCT) complex, a cellular machine that assists in protein folding and function. Importantly, depletion of CCT results in A3A‐induced DNA damage and cytotoxicity. Evaluation of cancer genomes demonstrates an enrichment of A3A mutational signatures in cancers with silencing mutations in CCT subunit genes. Together, these data suggest that the CCT complex interacts with A3A, and that disruption of CCT function results in increased A3A mutational activity.  相似文献   

10.
The cytidine deaminase APOBEC3B (A3B) is an endogenous inducer of somatic mutations and causes chromosomal instability by converting cytosine to uracil in single-stranded DNA. Therefore, identification of factors and mechanisms that mediate A3B expression will be helpful for developing therapeutic approaches to decrease DNA mutagenesis. Arsenic (As) is one well-known mutagen and carcinogen, but the mechanisms by which it induces mutations have not been fully elucidated. Herein, we show that A3B is upregulated and required for As-induced DNA damage and mutagenesis. We found that As treatment causes a decrease of N6-methyladenosine (m6A) modification near the stop codon of A3B, consequently increasing the stability of A3B mRNA. We further reveal that the demethylase FTO is responsible for As-reduced m6A modification of A3B, leading to increased A3B expression and DNA mutation rates in a manner dependent on the m6A reader YTHDF2. Our in vivo data also confirm that A3B is a downstream target of FTO in As-exposed lung tissues. In addition, FTO protein is highly expressed and positively correlates with the protein levels of A3B in tumor samples from human non–small cell lung cancer patients. These findings indicate a previously unrecognized role of A3B in As-triggered somatic mutation and might open new avenues to reduce DNA mutagenesis by targeting the FTO/m6A axis.  相似文献   

11.
12.
Wang T  Tian C  Zhang W  Luo K  Sarkis PT  Yu L  Liu B  Yu Y  Yu XF 《Journal of virology》2007,81(23):13112-13124
Cytidine deaminase APOBEC3G (A3G) has broad antiviral activity against diverse retroviruses and/or retrotransposons, and its antiviral functions are believed to rely on its encapsidation into virions in an RNA-dependent fashion. However, the cofactors of A3G virion packaging have not yet been identified. We demonstrate here that A3G selectively interacts with certain polymerase III (Pol III)-derived RNAs, including Y3 and 7SL RNAs. Among A3G-binding Pol III-derived RNAs, 7SL RNA was preferentially packaged into human immunodeficiency virus type 1 (HIV-1) particles. Efficient packaging of 7SL RNA, as well as A3G, was mediated by the RNA-binding nucleocapsid domain of HIV-1 Gag. A3G mutants that had reduced 7SL RNA binding but maintained wild-type levels of mRNA and tRNA binding were packaged poorly and had impaired antiviral activity. Reducing 7SL RNA packaging by overexpression of SRP19 proteins inhibited 7SL RNA and A3G virion packaging and impaired its antiviral function. Thus, 7SL RNA that is encapsidated into diverse retroviruses is a key cofactor of the antiviral A3G. This selective interaction of A3G with certain Pol III-derived RNAs raises the question of whether A3G and its cofactors may have as-yet-unidentified cellular functions.  相似文献   

13.
During studies of APOBEC3 (A3) anti-human immunodeficiency virus type 1 (anti-HIV-1) mechanisms, we identified a single cysteine at position 320 (C320) that disrupts A3DE activity. This residue is located in the recently identified DNA binding domain in A3G. Replacing C320 with a corresponding tyrosine from A3F (Y307) increased A3DE antiviral activity more than 20-fold. Conversely, replacing A3F Y307 with a cysteine or inserting a similar cysteine into A3B or A3G disrupted the anti-HIV activity of A3. Further investigation uncovered that C320 significantly reduces A3DE catalytic activity.  相似文献   

14.
APOBEC3G (Apo3G) is a single-stranded (ss)DNA cytosine deaminase that eliminates HIV-1 infectivity by converting C → U in numerous small target motifs on the minus viral cDNA. Apo3G deaminates linear ssDNA in vitro with pronounced spatial asymmetry favoring the 3′ → 5′ direction. A similar polarity observed in vivo is believed responsible for initiating localized C → T mutational gradients that inactivate the virus. When compared with double-stranded (ds)DNA scanning enzymes, e.g. DNA glycosylases that excise rare aberrant bases, there is a paucity of mechanistic studies on ssDNA scanning enzymes. Here, we investigate ssDNA scanning and motif-targeting mechanisms for Apo3G using single molecule Förster resonance energy transfer. We address the specific issue of deamination asymmetry within the general context of ssDNA scanning mechanisms and show that Apo3G scanning trajectories, ssDNA contraction, and deamination efficiencies depend on motif sequence, location, and ionic strength. Notably, we observe the presence of bidirectional quasi-localized scanning of Apo3G occurring proximal to a 5′ hot motif, a motif-dependent DNA contraction greatest for 5′ hot > 3′ hot > 5′ cold motifs, and diminished mobility at low salt. We discuss the single molecule Förster resonance energy transfer data in terms of a model in which deamination polarity occurs as a consequence of Apo3G binding to ssDNA in two orientations, one that is catalytically favorable, with the other disfavorable.  相似文献   

15.
随着对APOBEC3抗病毒功能的深入研究以及其在癌症中的表现,APOBEC3已成为当前的热点.小鼠只有一个APOBEC3基因,而人类有七个APOBEC3基因,人类APOBEC3G是其中研究最明确的抗病毒蛋白.利用生物信息学方法对两个蛋白进行序列比对、亲疏水性分析、亚细胞定位预测、二级结构及高级结构分析以及相互作用分析....  相似文献   

16.
The APOBEC3 gene cluster encodes six cytidine deaminases (A3A-C, A3DE, A3F-H) with single stranded DNA (ssDNA) substrate specificity. For the moment A3A is the only enzyme that can initiate catabolism of both mitochondrial and nuclear DNA. Human A3A expression is initiated from two different methionine codons M1 or M13, both of which are in adequate but sub-optimal Kozak environments. In the present study, we have analyzed the genetic diversity among A3A genes across a wide range of 12 primates including New World monkeys, Old World monkeys and Hominids. Sequence variation was observed in exons 1-4 in all primates with up to 31% overall amino acid variation. Importantly for 3 hominids codon M1 was mutated to a threonine codon or valine codon, while for 5/12 primates strong Kozak M1 or M13 codons were found. Positive selection was apparent along a few branches which differed compared to positive selection in the carboxy-terminal of A3G that clusters with A3A among human cytidine deaminases. In the course of analyses, two novel non-functional A3A-related fragments were identified on chromosome 4 and 8 kb upstream of the A3 locus. This qualitative and quantitative variation among primate A3A genes suggest that subtle differences in function might ensue as more light is shed on this increasingly important enzyme.  相似文献   

17.
18.
Nucleic acid editing enzymes are essential components of the human immune system that lethally mutate viral pathogens and somatically mutate immunoglobulins. Among these enzymes are cytidine deaminases of the apolipoprotein B mRNA editing enzyme, catalytic polypeptide‐like (APOBEC) super family, each with unique target sequence specificity and subcellular localization. We focus on the DNA‐editing APOBEC3 enzymes that have recently attracted attention because of their involvement in cancer and potential in gene‐editing applications. We review and compare the crystal structures of APOBEC3 (A3) domains, binding interactions with DNA, substrate specificity, and activity. Recent crystal structures of A3A and A3G bound to ssDNA have provided insights into substrate binding and specificity determinants of these enzymes. Still many unknowns remain regarding potential cooperativity, nucleic acid interactions, and systematic quantification of substrate preference of many APOBEC3s, which are needed to better characterize the biological functions and consequences of misregulation of these gene editors.  相似文献   

19.
In order to design new efficient cytidine based drugs, an intersubunit interactions study related to the active site has been performed on the wild-type cytidine deaminase (CDA) and on the mutant enzyme F137W/W113F. F137 is the homologous to the Bacillus subtilis CDA F125 involved in the subunit interactions. In presence of the dissociating agent SDS, wild-type human CDA dissociate into enzymatically inactive monomers without intermediate forms via a non-cooperative transition. Extensive dialysis or dilution of the inactivated monomers restores completely the activity. The presence of the strong human CDA competitive inhibitor 5-fluorozebularine disfavour dissociation of the tetramer into subunits in the wild-type CDA but not in mutant enzyme F137W/W113F.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号