共查询到20条相似文献,搜索用时 15 毫秒
1.
Human cytidine deaminase APOBEC3H restricts HIV-1 replication 总被引:2,自引:0,他引:2
Dang Y Siew LM Wang X Han Y Lampen R Zheng YH 《The Journal of biological chemistry》2008,283(17):11606-11614
The human genome encodes seven APOBEC3 (A3) cytidine deaminases with potential antiretroviral activity: A3A, A3B, A3C, A3DE, A3F, A3G, and A3H. A3G was the first identified to block replication of human immunodeficiency virus type 1 (HIV-1) and many other retroviruses. A3F, A3B, and A3DE were shown later to have similar activities. HIV-1 produces a protein called Vif that is able to neutralize the antiretroviral activities of A3DE, A3F, and A3G, but not A3B. Only the antiretroviral activity of A3H remains to be defined due to its poor expression in cell culture. Here, we studied the mechanism impairing A3H expression. When primate A3H sequences were compared, a premature termination codon was identified on the fifth exon of the human and chimpanzee A3H genes, which significantly decreased their protein expression. It causes a 29-residue deletion from the C terminus, and this truncation did not reduce human A3H protein stability. However, the mRNA levels of the truncated gene were significantly decreased. Human A3H protein expression could be restored to a normal level either by repairing this truncation or through expression from a vector containing an intron from human cytomegalovirus. Once expression was optimized, human A3H could reduce HIV-1 infectivity up to 150-fold. Importantly, HIV-1 Vif failed to neutralize A3H activity. Nevertheless, extensive sequence analysis could not detect any significant levels of G-to-A mutation in the HIV-1 genome by human A3H. Thus, A3H inhibits HIV-1 replication potently by a cytidine deamination-independent mechanism, and optimizing A3H expression in vivo should represent a novel therapeutic strategy for HIV-1 treatment. 相似文献
2.
3.
Cervantes Minerva Gonzalez Rodolphe Suspène Michel Henry Denise Guétard Simon Wain-Hobson Jean-Pierre Vartanian 《Retrovirology》2009,6(1):1-5
David D. Derse, Ph.D., Head of the Retrovirus Gene Expression Section in the HIV Drug Resistance Program at the National Cancer Institute-Frederick (NCI-Frederick), passed away on October 9, 2009, a scant six weeks after being diagnosed with liver cancer. It was with great sadness that family, friends, and colleagues gathered together for his memorial service on Saturday, October 17, 2009, at the Middletown United Methodist Church in Maryland. As a NCI scientist since 1986, Dave studied the molecular mechanisms of infection and replication of a number of different types of retroviruses. Dave became an internationally known expert on human T cell lymphotrophic viruses type 1 and 2 (HTLV-1 and HTLV-2) and served on the editorial boards of Virology and Retrovirology. His most recent studies focused on the mechanisms of HTLV-1 virion morphogenesis, transmission, and replication. 相似文献
4.
5.
The beneficial effects of DNA cytidine deamination by activation-induced deaminase (AID; antibody gene diversification) and APOBEC3G (retrovirus restriction) are tempered by probable contributions to carcinogenesis. Multiple regulatory mechanisms serve to minimize this detrimental outcome. Here, we show that phosphorylation of a conserved threonine attenuates the intrinsic activity of activation-induced deaminase (Thr-27) and APOBEC3G (Thr-218). Phospho-null alanine mutants maintain intrinsic DNA deaminase activity, whereas phospho-mimetic glutamate mutants are inactive. The phospho-mimetic variants fail to mediate isotype switching in activated mouse splenic B lymphocytes or suppress HIV-1 replication in human T cells. Our data combine to suggest a model in which this critical threonine acts as a phospho-switch that fine-tunes the adaptive and innate immune responses and helps protect mammalian genomic DNA from procarcinogenic lesions. 相似文献
6.
Adaptive evolution and antiviral activity of the conserved mammalian cytidine deaminase APOBEC3H
下载免费PDF全文

The APOBEC3 genes encode cytidine deaminases that act as components of an intrinsic immune defense that have potent activity against a variety of retroelements. This family of genes has undergone a rapid expansion from one or two genes in nonprimate mammals to at least seven members in primates. Here we describe the evolution and function of an uncharacterized antiviral effector, APOBEC3H, which represents the most evolutionarily divergent APOBEC3 gene found in primates. We found that APOBEC3H has undergone significant adaptive evolution in primates. Consistent with our previous findings implicating adaptively evolving APOBEC3 genes as antiviral effectors, APOBEC3H from Old World monkeys (OWMs) has efficient antiviral activity against primate lentiviruses, is sensitive to inactivation by the simian immunodeficiency virus Vif protein, and is capable of hypermutating retroviral genomes. In contrast, human APOBEC3H is inherently poorly expressed in primate cells and is ineffective at inhibiting retroviral replication. Both OWM and human APOBEC3H proteins can be expressed in bacteria, where they display significant DNA mutator activity. Thus, humans have retained an APOBEC3H gene that encodes a functional, but poorly expressed, cytidine deaminase with no apparent antiviral activity. The consequences of the lack of antiviral activity of human APOBEC3H are likely to be relevant to the current-day abilities of humans to combat retroviral challenges. 相似文献
7.
Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity 总被引:22,自引:0,他引:22
Newman EN Holmes RK Craig HM Klein KC Lingappa JR Malim MH Sheehy AM 《Current biology : CB》2005,15(2):166-170
8.
Dang Y Abudu A Son S Harjes E Spearman P Matsuo H Zheng YH 《Journal of virology》2011,85(11):5691-5695
During studies of APOBEC3 (A3) anti-human immunodeficiency virus type 1 (anti-HIV-1) mechanisms, we identified a single cysteine at position 320 (C320) that disrupts A3DE activity. This residue is located in the recently identified DNA binding domain in A3G. Replacing C320 with a corresponding tyrosine from A3F (Y307) increased A3DE antiviral activity more than 20-fold. Conversely, replacing A3F Y307 with a cysteine or inserting a similar cysteine into A3B or A3G disrupted the anti-HIV activity of A3. Further investigation uncovered that C320 significantly reduces A3DE catalytic activity. 相似文献
9.
7SL RNA mediates virion packaging of the antiviral cytidine deaminase APOBEC3G 总被引:2,自引:2,他引:2
下载免费PDF全文

Wang T Tian C Zhang W Luo K Sarkis PT Yu L Liu B Yu Y Yu XF 《Journal of virology》2007,81(23):13112-13124
Cytidine deaminase APOBEC3G (A3G) has broad antiviral activity against diverse retroviruses and/or retrotransposons, and its antiviral functions are believed to rely on its encapsidation into virions in an RNA-dependent fashion. However, the cofactors of A3G virion packaging have not yet been identified. We demonstrate here that A3G selectively interacts with certain polymerase III (Pol III)-derived RNAs, including Y3 and 7SL RNAs. Among A3G-binding Pol III-derived RNAs, 7SL RNA was preferentially packaged into human immunodeficiency virus type 1 (HIV-1) particles. Efficient packaging of 7SL RNA, as well as A3G, was mediated by the RNA-binding nucleocapsid domain of HIV-1 Gag. A3G mutants that had reduced 7SL RNA binding but maintained wild-type levels of mRNA and tRNA binding were packaged poorly and had impaired antiviral activity. Reducing 7SL RNA packaging by overexpression of SRP19 proteins inhibited 7SL RNA and A3G virion packaging and impaired its antiviral function. Thus, 7SL RNA that is encapsidated into diverse retroviruses is a key cofactor of the antiviral A3G. This selective interaction of A3G with certain Pol III-derived RNAs raises the question of whether A3G and its cofactors may have as-yet-unidentified cellular functions. 相似文献
10.
Senavirathne G Jaszczur M Auerbach PA Upton TG Chelico L Goodman MF Rueda D 《The Journal of biological chemistry》2012,287(19):15826-15835
APOBEC3G (Apo3G) is a single-stranded (ss)DNA cytosine deaminase that eliminates HIV-1 infectivity by converting C → U in numerous small target motifs on the minus viral cDNA. Apo3G deaminates linear ssDNA in vitro with pronounced spatial asymmetry favoring the 3′ → 5′ direction. A similar polarity observed in vivo is believed responsible for initiating localized C → T mutational gradients that inactivate the virus. When compared with double-stranded (ds)DNA scanning enzymes, e.g. DNA glycosylases that excise rare aberrant bases, there is a paucity of mechanistic studies on ssDNA scanning enzymes. Here, we investigate ssDNA scanning and motif-targeting mechanisms for Apo3G using single molecule Förster resonance energy transfer. We address the specific issue of deamination asymmetry within the general context of ssDNA scanning mechanisms and show that Apo3G scanning trajectories, ssDNA contraction, and deamination efficiencies depend on motif sequence, location, and ionic strength. Notably, we observe the presence of bidirectional quasi-localized scanning of Apo3G occurring proximal to a 5′ hot motif, a motif-dependent DNA contraction greatest for 5′ hot > 3′ hot > 5′ cold motifs, and diminished mobility at low salt. We discuss the single molecule Förster resonance energy transfer data in terms of a model in which deamination polarity occurs as a consequence of Apo3G binding to ssDNA in two orientations, one that is catalytically favorable, with the other disfavorable. 相似文献
11.
The APOBEC3 gene cluster encodes six cytidine deaminases (A3A-C, A3DE, A3F-H) with single stranded DNA (ssDNA) substrate specificity. For the moment A3A is the only enzyme that can initiate catabolism of both mitochondrial and nuclear DNA. Human A3A expression is initiated from two different methionine codons M1 or M13, both of which are in adequate but sub-optimal Kozak environments. In the present study, we have analyzed the genetic diversity among A3A genes across a wide range of 12 primates including New World monkeys, Old World monkeys and Hominids. Sequence variation was observed in exons 1-4 in all primates with up to 31% overall amino acid variation. Importantly for 3 hominids codon M1 was mutated to a threonine codon or valine codon, while for 5/12 primates strong Kozak M1 or M13 codons were found. Positive selection was apparent along a few branches which differed compared to positive selection in the carboxy-terminal of A3G that clusters with A3A among human cytidine deaminases. In the course of analyses, two novel non-functional A3A-related fragments were identified on chromosome 4 and 8 kb upstream of the A3 locus. This qualitative and quantitative variation among primate A3A genes suggest that subtle differences in function might ensue as more light is shed on this increasingly important enzyme. 相似文献
12.
13.
14.
Vincenzetti S Costanzi S Cristalli G Mariani P Quadrini B Cammertoni N Vita A 《Nucleosides, nucleotides & nucleic acids》2003,22(5-8):1535-1538
In order to design new efficient cytidine based drugs, an intersubunit interactions study related to the active site has been performed on the wild-type cytidine deaminase (CDA) and on the mutant enzyme F137W/W113F. F137 is the homologous to the Bacillus subtilis CDA F125 involved in the subunit interactions. In presence of the dissociating agent SDS, wild-type human CDA dissociate into enzymatically inactive monomers without intermediate forms via a non-cooperative transition. Extensive dialysis or dilution of the inactivated monomers restores completely the activity. The presence of the strong human CDA competitive inhibitor 5-fluorozebularine disfavour dissociation of the tetramer into subunits in the wild-type CDA but not in mutant enzyme F137W/W113F. 相似文献
15.
Vincenzetti S Pucciarelli S Mariani P De Sanctis G Polzonetti V Natalini P Vita A 《Nucleosides, nucleotides & nucleic acids》2007,26(8-9):1037-1042
The thermal stability of human cytidine deaminase (CDA), an enzyme involved in pyrimidine metabolism was investigated. With this in view, the residues R68 and Y60, supposed to be involved in the intersubunit interactions and in the catalytic site of CDA, were mutated to glutamine and glycine, respectively. Thermal stability experiments were performed on the purified mutants by means of circular dichroism and enzymatic assays. The results obtained should be useful for designing more efficient cytidine based drugs for chemotherapy. 相似文献
16.
A Somasekaram A Jarmuz A How J Scott N Navaratnam 《The Journal of biological chemistry》1999,274(40):28405-28412
The cytidine deaminases belong to the family of multisubunit enzymes that catalyze the hydrolytic deamination of their substrate to a corresponding uracil product. They play a major role in pyrimidine nucleoside and nucleotide salvage. The intracellular distribution of cytidine deaminase and related enzymes has previously been considered to be cytosolic. Here we show that human cytidine deaminase (HCDA) is present in the nucleus. A highly specific, affinity purified polyclonal antibody against HCDA was used to analyze the intracellular localization of native HCDA in a variety of mammalian cells by in situ immunochemistry. Native HCDA was found to be present in the nucleus as well as the cytoplasm in several cell types. Indirect immunofluorescence microscopy indicated a predominantly nuclear localization of FLAG-tagged HCDA overexpressed in these cells. We have identified an amino-terminal bipartite nuclear localization signal that is both necessary and sufficient to direct HCDA and a non-nuclear reporter protein to the nucleus. We also show HCDA binding to the nuclear import receptor, importin alpha. Similar putative bipartite nuclear localization sequences are found in other cytidine/deoxycytidylate deaminases. The results presented here suggest that the pyrimidine nucleotide salvage pathway may operate in the nucleus. This localization may have implications in the regulation of nucleoside and nucleotide metabolism and nucleic acid biosynthesis. 相似文献
17.
Vincenzetti S De Sanctis G Costanzi S Cristalli G Mariani P Mei G Neuhard J Natalini P Polzonetti V Vita A 《Protein engineering》2003,16(12):1055-1061
An intersubunit interactions study related to the active site has been performed on the wild-type cytidine deaminase (CDA) and on the mutant enzyme F137W/W113F. F137 is the homologous to the Bacillus subtilis CDA F125 involved in the subunit interactions. In the presence of SDS, wild-type human CDA dissociates into enzymatically inactive monomers without intermediate forms via a non-cooperative transition. Extensive dialysis or dilution of the inactivated monomers restores completely the activity. Circular dichroism measurements show that the secondary/tertiary structure organization of each subunit is unaffected by the SDS concentration, while the mutation Phe/Trp causes weakening in quaternary structure. The presence of the strong human CDA competitive inhibitor 5-fluorozebularine disfavours dissociation of the tetramer into subunits in the wild-type CDA, but not in mutant enzyme F137W/W113F. The absence of tyrosine fluorescence and the much higher quantum yield of the double mutant protein spectrum suggest the occurrence of an energy transfer effect between the protein subunits. This assumption is confirmed by the crystallographic studies on B.subtilis in which it is shown that three different subunits concur with the formation of each of the four active sites and that F125, homologous to the human CDA F137, is located at the interface between two different subunits contributing to the formation of active site. 相似文献
18.
19.
Dörrschuck E Fischer N Bravo IG Hanschmann KM Kuiper H Spötter A Möller R Cichutek K Münk C Tönjes RR 《Journal of virology》2011,85(8):3842-3857
Xenotransplantation of porcine cells, tissues, and organs shows promise to surmount the shortage of human donor materials. Among the barriers to pig-to-human xenotransplantation are porcine endogenous retroviruses (PERV) since functional representatives of the two polytropic classes, PERV-A and PERV-B, are able to infect human embryonic kidney cells in vitro, suggesting that a xenozoonosis in vivo could occur. To assess the capacity of human and porcine cells to counteract PERV infections, we analyzed human and porcine APOBEC3 (A3) proteins. This multigene family of cytidine deaminases contributes to the cellular intrinsic immunity and act as potent inhibitors of retroviruses and retrotransposons. Our data show that the porcine A3 gene locus on chromosome 5 consists of the two single-domain genes A3Z2 and A3Z3. The evolutionary relationships of the A3Z3 genes reflect the evolutionary history of mammals. The two A3 genes encode at least four different mRNAs: A3Z2, A3Z3, A3Z2-Z3, and A3Z2-Z3 splice variant A (SVA). Porcine and human A3s have been tested toward their antiretroviral activity against PERV and murine leukemia virus (MuLV) using novel single-round reporter viruses. The porcine A3Z2, A3Z3 and A3Z2-Z3 were packaged into PERV particles and inhibited PERV replication in a dose-dependent manner. The antiretroviral effect correlated with editing by the porcine A3s with a trinucleotide preference for 5' TGC for A3Z2 and A3Z2-Z3 and 5' CAC for A3Z3. These results strongly imply that human and porcine A3s could inhibit PERV replication in vivo, thereby reducing the risk of infection of human cells by PERV in the context of pig-to-human xenotransplantation. 相似文献
20.