首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a computer program, GeneHackerTL, which predictsthe most probable translation initiation site for a given nucleotidesequence. The program requires that information be extractedfrom the nucleotide sequence data surrounding the translationinitiation sites according to the framework of the Hidden MarkovModel. Since the translation initiation sites of 72 highly abundantproteins have already been assigned on the genome of Synechocystissp. strain PCC6803 by amino-terminal analysis, we extractednecessary information for GeneHackerTL from the nucleotide sequencedata. The prediction rate of the GeneHackerTL for these proteinswas estimated to be 86.1%. We then used GeneHackerTL for predictionof the translation initiation sites of 24 other proteins, ofwhich the initiation sites were not assigned experimentally,because of the lack of a potential initiation codon at the amino-terminalposition. For 20 out of the 24 proteins, the initiation siteswere predicted in the upstream of their amino-terminal positions.According to this assignment, the processed regions representa typical feature of signal peptides. We could also predictmultiple translation initiation sites for a particular genefor which at least two initiation sites were experimentallydetected. This program would be e.ective for the predictionof translation initiationsites of other proteins, not only inthis species but also in other prokaryotes as well.  相似文献   

2.
A protein-gene linkage map of the cyanobacterium Anabaena sp. strain PCC7120 was successfully constructed for 123 relatively abundant proteins. The total proteins extracted from the cell were resolved by two-dimensional electrophoresis, and the amino-terminal sequences of the protein spots were determined. By comparing the determined amino-terminal sequences with the entire genome sequence, the putative translation initiation sites of 87 genes were successfully assigned on the genome. The elucidated sequence features surrounding the translation initiation sites were as follows: (1) GTG and TTG in addition to the ATG were used as rare initiation codons; (2) the core sequences (GAGG, GGAG and AGGA) of the Shine-Dalgarno sequence were identified in the appropriate position preceding the 51 initiation sites (58.6%); (3) the nucleotides at the two regions, from -35 to -33, and from -19 to -17 (relative to the first nucleotide in the initiation codon) were preferentially adenines or thymines; (4) the nucleotides at the region from -14 to -8 were preferentially purines; (5) the nucleotide at position -1 was biased towards non-guanine (96.6%); (6) the nucleotide at the position +5 was preferentially cytosine (63.2%). It was evident that removal of the translation initiator methionine was dependent on the side-chain bulkiness of the penultimate amino acid residue. The predicted putative signal peptide sequences were also indicated. Besides confirming the existence of many predicted proteins, the data will serve as a starting point for the study of signals important in post-translational processing and nucleotide sequences important in the initiation of translation.  相似文献   

3.
The genome DNA of the cyanobacterium Synechocystis sp. PCC 6803 carries a number of insertion sequences (Kaneko, T. et al. 1996, DNA Res., 3, 109-136). We analyzed one of the abundant ISs (ISY203 group of IS4 family) in the common three substrains of Synechocystis and found that the four ISs with identical nucleotide sequences were present only in the "Kazusa" strain, whose complete genome sequence had been determined, while absent in ancestral strains (the original strain from Pasteur Culture Collection and its glucose-tolerant derivative). Three of these ISs were found in the genomic sequence as transposase genes of sll1474, sll1780 and slr1635. The fourth was on the plasmid, pSYSM. On the other hand, all three strains had a novel IS (denoted ISY203x), of which the nucleotide sequence was totally identical to the four ISs found only in the Kazusa strain. Since the flanking regions of ISY203x did not match any part of the genome or of the known plasmids of Synechocystis, it is presumably located on a yet uncharacterized plasmid. These suggest that the four ISs in Kazusa strain were recently transposed from ISY203x. Apparently, the transposition inactivated four preexisting genes, of which modified forms are presented as putative genes (sll1473, sll1475, slr1862, slr1863, slr1635 and ssl2982) in the list of the complete genome (CyanoBase: http://www.kazusa.or.jp/cyano/cyano.html). The possible effects of transposition of ISs in Synechocystis are discussed in relation to phenotypic mutations and microevolution.  相似文献   

4.
Synechocystis sp. PCC 6803 is the most popular cyanobacterial strain, serving as a standard in the research fields of photosynthesis, stress response, metabolism and so on. A glucose-tolerant (GT) derivative of this strain was used for genome sequencing at Kazusa DNA Research Institute in 1996, which established a hallmark in the study of cyanobacteria. However, apparent differences in sequences deviating from the database have been noticed among different strain stocks. For this reason, we analysed the genomic sequence of another GT strain (GT-S) by 454 and partial Sanger sequencing. We found 22 putative single nucleotide polymorphisms (SNPs) in comparison to the published sequence of the Kazusa strain. However, Sanger sequencing of 36 direct PCR products of the Kazusa strains stored in small aliquots resulted in their identity with the GT-S sequence at 21 of the 22 sites, excluding the possibility of their being SNPs. In addition, we were able to combine five split open reading frames present in the database sequence, and to remove the C-terminus of an ORF. Aside from these, two of the Insertion Sequence elements were not present in the GT-S strain. We have thus become able to provide an accurate genomic sequence of Synechocystis sp. PCC 6803 for future studies on this important cyanobacterial strain.  相似文献   

5.
The genome of the unicellular cyanobacterium Synechocystis sp. PCC 6803 consists of a single chromosome and several plasmids of different sizes, and the nucleotide sequences of the chromosome and three small plasmids (5.2 kb, 2.4 kb, and 2.3 kb) have already been sequenced. We newly determined the nucleotide sequences of four large plasmids, which have been identified in our laboratory (pSYSM:120 kb, pSYSX:106 kb, pSYSA:103 kb, and pSYSG:44 kb). Computer-aided analysis was performed to explore the genetic information carried by these plasmids. A total of 397 potential protein-encoding genes were predicted, but little information was obtained about the functional relationship of plasmids to host cell, as a large portion of the predicted genes (77%) were of unknown function. The occurrence of the potential genes on plasmids was divergent, and parA was the only gene common to all four large plasmids. The distribution data of a Cyanobacterium-specific sequence (HIP1: 5'-GCGATCGC-3') suggested that respective plasmids could have originated from different cyanobacterial strains.  相似文献   

6.
Regions flanking the translation initiation site (TIS) are thought to play a crucial role in translation efficiency of mRNAs, but their exact sequence and evolution in eukaryotes are still a matter of debate. We investigated the context sequences in 20 nucleotides around the TIS in multi-cellular eukaryotes, with a focus on two model plants and a comparison to human. We identified consensus sequences aaaaaaa(A/G)(A/C)aAUGGcgaataata and ggcggc(g/c)(A/G)(A/C)(G/C)AUGGCggcggcgg for Arabidopsis thaliana and Oryza sativa, respectively. We observe strongly conserved G at position +4 and A or C at position -2; however, the exact nucleotide frequencies vary between the three organisms even at these conserved positions. The frequency of pyrimidines, which are considered sub optimum at position -3, is higher in both plants than in human. Arabidopsis is GC-depleted (AU-enriched) compared to both rice and human, and the enrichment is slightly stronger upstream than downstream of AUG. While both plants are similar though not identical in their variation of nucleotide frequencies, rice and human are more similar to each other than Arabidopsis and human. All three organisms display clear periodicity in A + G and C + U content when analyzing normalized frequencies. These findings suggest that, besides few highly conserved positions, overall structure of the context sequence plays a larger role in TIS recognition than the actual nucleotide frequencies.  相似文献   

7.
8.
An accurate physical map of the genome of a cyanobacterium,Synechocystis sp. strain PCC6803, was constructed on the basisof restriction and linking clone analysis. The genome contained6 recognition sites for AscI, 25 sites for MluI, and 31 sitesfor SplI, and the entire genome size was estimated to be 3.6Mb. Sixteen genes or gene clusters, including those involvedin the photosynthetic systems, were localized on the physicalmapof the genome by hybridization. In the course of the above analysis,two extra chromosomal units with approximate sizes of 110 kband 125 kb were identified.  相似文献   

9.
Synechocystis sp. PCC 6803 is capable of facultative photoheterotrophy with glucose as the sole carbon source. Eight mutants that were unable to take up glucose were transformed with plasmids from pooled gene banks of wild-type Synechocystis DNA prepared in an Escherichia coli vector that does not replicate in Synechocystis. One mutant (EG216) could be complemented with all gene banks to restore ability for photoheterotrophic growth. One of the gene banks was fractionated into single clones and plasmid DNA from each clone used to complement EG216. This yielded a 1.5 kb DNA fragment that was sequenced. It contained one complete open reading frame (gtr) whose putative gene product displayed high sequence conservation with the xylose transporter of E. coli and the mammalian glucose transporters. Further, the isolated gtr gene interrupted in vitro by a kanamycin resistance cassette could be used to construct mutants from wild-type Synechocystis sp. PCC 6803 that lacked a functional glucose transporter, thus confirming the identity of the gtr gene with the glucose transporter gene. This is the first prokaryotic glucose transporter known to share a sequence relationship with mammalian glucose transporters and the first sugar transporter from a cyanobacterium characterized at the sequence level.  相似文献   

10.
Ivleva  N. B.  Sidoruk  K. V.  Pakrasi  H. B.  Shestakov  S. V. 《Microbiology》2002,71(4):433-437
To understand the functional role of CtpB and CtpC proteins, which are similar to the C-terminal processing CtpA peptidase, the effect of the insertional inactivation of the ctpB and ctpCgenes on the phenotypic characteristics of Synechocystis sp. PCC 6803 was studied. The inactivation of the ctpC gene was found to be lethal to the cyanobacterium, which indicates a vital role of the CtpC protein. The mutant with the inactivated ctpB gene had the same photosynthetic characteristics as the wild-type strain. The double mutant ctpActpB with the two deleted genes was identical, in the phenotypic characteristics, to the mutant with a knock-out mutation in the ctpAgene, which was unable to grow photoautotrophically. The data obtained suggest that, in spite of the high similarity of the Ctp proteins, they serve different functions in Synechocystis sp. PCC 6803 cells and cannot compensate for each other.  相似文献   

11.
Purified thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803 were used for the first time in proteomic studies. The membranes were prepared by a combination of sucrose density centrifugation and aqueous polymer two-phase partitioning. In total, 76 different proteins were identified from 2- and 1-D gels by MALDI-TOF MS analysis. Twelve of the identified proteins have a predicted Sec/Tat signal peptide. Fourteen of the proteins were known, or predicted to be, integral membrane proteins. Among the proteins identified were subunits of the well-characterized thylakoid membrane constituents Photosystem I and II, ATP synthase, cytochrome b6f-complex, NADH dehydrogenase, and phycobilisome complex. In addition, novel thylakoid membrane proteins, both integral and peripheral were found, including enzymes involved in protein folding and pigment biosynthesis. The latter were the chlorophyll biosynthesis enzymes, light-dependent protochlorophyllide reductase and geranylgeranyl reductase as well as phytoene desaturase involved in carotenoid biosynthesis and a water-soluble carotenoid-binding protein. Interestingly, in view of the protein sorting mechanism in cyanobacteria, one of the two signal peptidases type I of Synechocystis was found in the thylakoid membrane, whereas the second one has been identified previously in the plasma membrane. Sixteen proteins are hypothetical proteins with unknown function.  相似文献   

12.
Sll1951 is the surface layer (S-layer) protein of the cyanobacterium Synechocystis sp. strain PCC 6803. This large, hemolysin-like protein was found in the supernatant of a strain that was deficient in S-layer attachment. An sll1951 deletion mutation was introduced into Synechocystis and was easily segregated to homozygosity under laboratory conditions. By thin-section and negative-stain transmission electron microscopy, a ∼30-nm-wide S-layer lattice covering the cell surface was readily visible in wild-type cells but was absent in the Δsll1951 strain. Instead, the Δsll1951 strain displayed a smooth lipopolysaccharide surface as its most peripheral layer. In the presence of chaotropic agents, the wild type released a large (>150-kDa) protein into the medium that was identified as Sll1951 by mass spectrometry of trypsin fragments; this protein was missing in the Δsll1951 strain. In addition, Sll1951 was prominent in crude extracts of the wild type, indicating that it is an abundant protein. The carotenoid composition of the cell wall fraction of the Δsll1951 strain was similar to that of the wild type, suggesting that the S-layer does not contribute to carotenoid binding. Although the photoautotrophic growth rate of the Δsll1951 strain was similar to that of the wild-type strain, the viability of the Δsll1951 strain was reduced upon exposure to lysozyme treatment and hypo-osmotic stress, indicating a contribution of the S-layer to the integrity of the Synechocystis cell wall. This work identifies the S-layer protein in Synechocystis and shows that, at least under laboratory conditions, this very abundant, large protein has a supportive but not a critical role in the function of the cyanobacterium.  相似文献   

13.
We investigated the spectrum of secreted proteins in the cyanobacterium Synechocystis, and identified these proteins by amino-terminal sequencing. In total, seven sequences have been determined that corresponded to the proteins Sll0044, Sll1694, Sll1891, Slr0924, Slr0841, Slr0168, and Slr1855. The protein Sll1694 of 18 kDa that formed one of two major bands on SDS-PAGE was identified as cyanobacterial pilin, PilA. The amino-terminal sequence of another protein that formed a second major band was blocked. The analysis of the data revealed that five of seven proteins had distinct putative leader sequences for secretion.  相似文献   

14.
Translational elongation is susceptible to inactivation by reactive oxygen species (ROS) in the cyanobacterium Synechocystis sp. PCC 6803, and elongation factor G has been identified as a target of oxidation by ROS. In the present study we examined the sensitivity to oxidation by ROS of another elongation factor, EF-Tu. The structure of EF-Tu changes dramatically depending on the bound nucleotide. Therefore, we investigated the sensitivity to oxidation in vitro of GTP- and GDP-bound EF-Tu as well as that of nucleotide-free EF-Tu. Assays of translational activity with a reconstituted translation system from Escherichia coli revealed that GTP-bound and nucleotide-free EF-Tu were sensitive to oxidation by H2O2, whereas GDP-bound EF-Tu was resistant to H2O2. The inactivation of EF-Tu was the result of oxidation of Cys-82, a single cysteine residue, and subsequent formation of both an intermolecular disulfide bond and sulfenic acid. Replacement of Cys-82 with serine rendered EF-Tu resistant to inactivation by H2O2, confirming that Cys-82 was a target of oxidation. Furthermore, oxidized EF-Tu was reduced and reactivated by thioredoxin. Gel-filtration chromatography revealed that some of the oxidized nucleotide-free EF-Tu formed large complexes of >30 molecules. Atomic force microscopy revealed that such large complexes dissociated into several smaller aggregates upon the addition of dithiothreitol. Immunological analysis of the redox state of EF-Tu in vivo showed that levels of oxidized EF-Tu increased under strong light. Thus, resembling elongation factor G, EF-Tu appears to be sensitive to ROS via oxidation of a cysteine residue, and its inactivation might be reversed in a redox-dependent manner.  相似文献   

15.
Genome synthesis of existing or designed genomes is made feasible by the first successful cloning of a cyanobacterium, Synechocystis PCC6803, in Gram-positive, endospore-forming Bacillus subtilis. Whole-genome sequence analysis of the isolate and parental B. subtilis strains provides clues for identifying single nucleotide polymorphisms (SNPs) in the 2 complete bacterial genomes in one cell.  相似文献   

16.
We have previously constructed the physical map of a cyanobacterium,Synechoystis sp. strain PCC6803 on the basis of restrictionand linking clone analysis. Since a total of 82 genes and geneclusters have been isolated from this strain, most of whichare involved in oxygenic photosynthesis, portions of their sequenceswere amplified by the PCR method and assigned on the physicalmap of the genome by hybridization with restriction fragments,ordered clones, which were obtained from cosmid and libraries,and long PCR-products. An exception was the gene psbG2 whichwas mapped on an extra-chromosomal unit of 45 kb. Since geneticmaps of some of genes assigned above, especially those for photosynthesis,have been reported for two other cyanobacterial strains, Anabaenasp. PCC7120 and Synechococcus sp. PCC7002, gene organizationswere compared among the three strains. However, no significantcorrelation was observed, suggesting that rearrangement of genesoccurred in the respective strains during or after establishmentof the species.  相似文献   

17.
18.
Up to 1 mM nitrite was excreted by Synechocystis strain 6803 cells growing under mixotrophic or photoheterotrophic conditions. This excretion is not due to a lower ratio of nitrite and nitrate reductase activities in the presence of glucose but seems to be related to a shortage of reduced ferredoxin, their electron donor, as a result of a decrease in noncyclic photosynthetic flow observed under these circumstances. Because about 60% of the reduced nitrate is excreted, the potential utilization of cyanobacteria for removal of nitrate from contaminated waters containing high concentrations of organic compounds is questioned.  相似文献   

19.
集胞藻6803NdhO蛋白多克隆抗体制备及其初步应用   总被引:1,自引:0,他引:1  
蓝藻NADPH脱氢酶(NDH-1)是一种重要的光合膜蛋白复合体,参与CO2吸收、围绕光系统I的循环电子传递和细胞呼吸.迄今为止,人们在蓝藻细胞中已鉴定出17种NDH-1复合体亚基(NdhA-NdhQ).最近,人们还获得了NdhO亚基的缺失突变株.然而,人们对NdhO亚基的研究还不充份,至今仍不清楚它的功能角色.通过PC...  相似文献   

20.
The cyanobacterium, Synechocystis sp. PCC 6803, was the first photosynthetic organism whose genome sequence was determined in 1996 (Kazusa strain). It thus plays an important role in basic research on the mechanism, evolution, and molecular genetics of the photosynthetic machinery. There are many substrains or laboratory strains derived from the original Berkeley strain including glucose-tolerant (GT) strains. To establish reliable genomic sequence data of this cyanobacterium, we performed resequencing of the genomes of three substrains (GT-I, PCC-P, and PCC-N) and compared the data obtained with those of the original Kazusa strain stored in the public database. We found that each substrain has sequence differences some of which are likely to reflect specific mutations that may contribute to its altered phenotype. Our resequence data of the PCC substrains along with the proposed corrections/refinements of the sequence data for the Kazusa strain and its derivatives are expected to contribute to investigations of the evolutionary events in the photosynthetic and related systems that have occurred in Synechocystis as well as in other cyanobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号