首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reduction of inorganic sulfate to sulfite in prototrophic bacteria occurs with 3'-phosphoadenylylsulfate (PAPS) as substrate for PAPS reductase and is the first step leading to reduced sulfur for cellular biosynthetic reactions. The relative efficiency as reductants of homogeneous highly active PAPS reductase of the newly identified second thioredoxin (Trx2) and glutaredoxins (Grx1, Grx2, Grx3, and a mutant Grx1C14S) was compared with the well known thioredoxin (Trx1) from Escherichia coli. Trx1, Trx2, and Grx1 supported virtually identical rates of sulfite formation with a Vmax ranging from 6.6 units mg-1 (Trx1) to 5.1 units mg-1 (Grx1), whereas Grx1C14S was only marginally active, and Grx2 and Grx3 had no activity. The structural difference between active reductants had no effect upon Km PAPS (22.5 microM). Grx1 effectively replaced Trx1 with essentially identical Km-values: Km trx1 (13.7 microM), Km grx1 (14.9 microM), whereas the Km trx2 was considerably higher (34.2 microM). The results agree with previous in vivo data suggesting that Trx1 or Grx1 is essential for sulfate reduction but not for ribonucleotide reduction in E. coli.  相似文献   

2.
We have demonstrated that calf liver protein disulfide-isomerase (Mr 57,000) is a substrate for calf thymus thioredoxin reductase and catalyzes NADPH-dependent insulin disulfide reduction. This reaction can be used as a simple assay for protein disulfide-isomerase during purification in place of the classical method of reactivation of incorrectly oxidized ribonuclease A. Protein disulfide-isomerase contains two redox-active disulfides/molecule which were reduced by NADPH and calf thioredoxin reductase (Km approximately 35 microM). The isomerase was a poor substrate for NADPH and Escherichia coli thioredoxin reductase, but the addition of E. coli thioredoxin resulted in rapid reduction of two disulfides/molecule. Tryptophan fluorescence spectra were shown to monitor the redox state of protein disulfide-isomerase. Fluorescence measurements demonstrated that thioredoxin--(SH)2 reduced the disulfides of the isomerase and allowed the kinetics of the reaction to be followed; the reaction was also catalyzed by calf thioredoxin reductase. Equilibrium measurements showed that the apparent redox potential of the active site disulfide/dithiols of the thioredoxin domains of protein disulfide-isomerase was about 30 mV higher than the disulfide/dithiol of E. coli thioredoxin. Consistent with this, experiments using dithiothreitol or NADPH and thioredoxin reductase-dependent reduction and precipitation of insulin demonstrated differences between protein disulfide-isomerase and thioredoxin, thioredoxin being a better disulfide reductase but less efficient isomerase. Protein disulfide-isomerase is thus a high molecular weight member of the thioredoxin system, able to interact with both mammalian NADPH-thioredoxin reductase and reduced thioredoxin. This may be important for nascent protein disulfide formation and other thiol-dependent redox reactions in cells.  相似文献   

3.
The components of the redox metabolism in Entamoeba histolytica have been recently revisited by Arias et al. (Free Radic. Biol. Med. 42:1496-1505; 2007), after the identification and characterization of a thioredoxin-linked system. The present work deals with studies performed for a better understanding of the localization and identification of different components of the redox machinery present in the parasite. The gene encoding for amoebic thioredoxin 8 was cloned and the recombinant protein typified as having properties similar to those of thioredoxin 41. The ability of these thioredoxins and the specific reductase to assemble a system utilizing NADPH to metabolize hydroperoxides in association with a peroxiredoxin has been kinetically characterized. The peroxiredoxin behaved as a typical 2 cysteine enzyme, exhibiting a ping-pong mechanism with hyperbolic saturation kinetics for thioredoxin 8 (K(m)=3.8 microM), thioredoxin 41 (K(m)=3.1 microM), and tert-butyl hydroperoxide (K(m) about 35 microM). Moreover, the tandem system involving thioredoxin reductase and either thioredoxin proved to be operative for reducing low molecular weight disulfides, including putative physiological substrates as cystine and oxidized trypanothione. Thioredoxin reductase and thioredoxin 41 (by association also the functional redox system) have been immunolocalized underlying the plasma membrane in Entamoeba histolytica cells. These findings suggest an important role for the metabolic pathway involving thioredoxin as a redox interchanger, which could be critical for the maintenance and virulence of the parasite when exposed to highly toxic reactive oxygen species.  相似文献   

4.
Selenium compounds like selenite (SeO3(2-) may form a covalent adduct with glutathione (GSH) in the form of selenodiglutathione (GS-Se-SG), which is assumed to be important in the metabolism of selenium. We have isolated GS-Se-SG and studied its reactions with NADPH and thioredoxin reductase from calf thymus or with thioredoxin reductase and thioredoxin from Escherichia coli. Incubation of 0.1 microM calf thymus thioredoxin reductase or 0.1 microM thioredoxin reductase and 1 microM thioredoxin from E. coli with 5, 10, or 20 microM GS-Se-SG resulted in a fast initial reaction, followed by a large and continued oxidation of NADPH. However, anaerobic incubation of 0.1 microM calf thymus thioredoxin reductase and 20 microM GS-Se-SG resulted only in oxidation of a stoichiometric amount of NADPH; admission of oxygen started continuous NADPH oxidation. Contrary to the mammalian enzyme, GS-Se-SG was not a substrate for thioredoxin reductase from E. coli. The rate of the oxygen-dependent reaction between calf thymus thioredoxin reductase and GS-Se-SG was increased 2-fold in the presence of 4 mM GSH, indicating that HSe- was the reactive intermediate. Glutathione reductase from rat liver reduced GS-Se-SG with a very slow continued oxidation of NADPH, and the presence of the enzyme did not affect the oxygen-dependent nonstoichiometric oxidation of NADPH by GS-Se-SG and thioredoxin reductase. Fluorescence spectroscopy showed GS-Se-SG to be a very efficient oxidant of reduced thioredoxin from E. coli and kinetically superior to insulin disulfides. Thioredoxin-dependent reduction of CDP to dCDP by ribonucleotide reductase was effectively inhibited by GS-Se-SG.  相似文献   

5.
6.
We have identified and characterized a thermostable thioredoxin system in the aerobic hyperthermophilic archaeon Aeropyrum pernix K1. The gene (Accession no. APE0641) of A. pernix encoding a 37 kDa protein contains a redox active site motif (CPHC) but its N-terminal extension region (about 200 residues) shows no homology within the genome database. A second gene (Accession no. APE1061) has high homology to thioredoxin reductase and encodes a 37 kDa protein with the active site motif (CSVC), and binding sites for FAD and NADPH. We cloned the two genes and expressed both proteins in E. coli. It was observed that the recombinant proteins could act as an NADPH-dependent protein disulfide reductase system in the insulin reduction. In addition, the APE0641 protein and thioredoxin reductase from E. coli could also catalyze the disulfide reduction. These indicated that APE1061 and APE0641 express thioredoxin (ApTrx) and thioredoxin reductase (ApTR) of A. pernix, respectively. ApTR is expressed as an active homodimeric flavoprotein in the E. coli system. The optimum temperature was above 90 degrees C, and the half-life of heat inactivation was about 4 min at 110 degrees C. The heat stability of ApTR was enhanced in the presence of excess FAD. ApTR could reduce both thioredoxins from A. pernix and E. coli and showed a similar molar specific activity for both proteins. The standard state redox potential of ApTrx was about -262 mV, which was slightly higher than that of Trx from E. coli (-270 mV). These results indicate that a lower redox potential of thioredoxin is not necessary for keeping catalytic disulfide bonds reduced and thereby coping with oxidative stress in an aerobic hyperthermophilic archaea. Furthermore, the thioredoxin system of aerobic hyperthermophilic archaea is biochemically close to that of the bacteria.  相似文献   

7.
The reactivity of human thioredoxin (HTR) was tested in several reactions. HTR was as efficient as E. coli or plant and algal thioredoxins when assayed with E. coli ribonucleotide reductase or for the reduction of insulin. On the other hand, HTR was poorly reduced by NADPH and the E. coli flavoenzyme NADPH thioredoxin reductase as monitored in the DTNB reduction test. When reduced with dithiothreitol (DTT), HTR was much less efficient than thioredoxin m and thioredoxin f, the respective specific thioredoxins for the chloroplast enzymes NADP-malate dehydrogenase (NADP-MDH) and fructose 1,6 bisphosphatase (FBPase). Finally, HTR could be used in the photoactivation of NADP-MDH although less efficiently than thioredoxin m, proving nevertheless that it can be reduced by the iron sulfur enzyme ferredoxin thioredoxin reductase in the presence of photoreduced ferredoxin. Based on sequence comparisons, it was expected that HTR would display a reactivity similar to chloroplast thioredoxin f rather than to thioredoxin m. However the observed behavior of FTR did not exactly fit this prediction. The results are discussed in relation to the structural data available for the proteins.  相似文献   

8.
Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a kcat of 610 min(-1) and a Km of 610 microM using E. coli thioredoxin as substrate. The reported kcat is 25% of the kcat of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate.  相似文献   

9.
10.
Arsenate reductase (ArsC) encoded by Staphylococcus aureus arsenic-resistance plasmid pI258 reduces intracellular arsenate(V) to the more toxic arsenite(III), which is subsequently extruded from the cell. It couples to thioredoxin, thioredoxin reductase and NADPH to be enzymatically active. ArsC is extremely sensitive to oxidative inactivation, has a very dynamic character hampering resonance assignments in NMR and produces peculiar biphasic Michaelis-Menten curves with two V(max) plateaus. In this study, methods to control ArsC oxidation during purification have been optimized. Next, application of Selwyn's test of enzyme inactivation was applied to progress curves and reveals that the addition of tetrahedral oxyanions (50 mM sulfate, phosphate or perchlorate) allows the control of ArsC stability and essentially eliminates the biphasic character of the Michaelis-Menten curves. Finally, 1H-15N HSQC NMR spectroscopy was used to establish that these oxyanions, including the arsenate substrate, exert their stabilizing effect on ArsC through binding with residues located within a C-X5-R sequence motif, characteristic for phosphotyrosine phosphatases. In view of this need for a tetrahedral oxyanion to structure its substrate binding site in its active conformation, a reappraisal of basic kinetic parameters of ArsC was necessary. Under these new conditions and in contrast to previous observations, ArsC has a high substrate specificity, as only arsenate could be reduced ( Km=68 microM, k(cat)/ Km =5.2 x 10(4 )M-1s-1), while its product, arsenite, was identified as a mixed inhibitor ( K*iu=534 microM, K*ic=377 microM).  相似文献   

11.
Motexafin gadolinium (MGd) is a chemotherapeutic drug that selectively targets tumor cells and mediates redox reactions generating reactive oxygen species. Thioredoxin (Trx), NADPH, and thioredoxin reductase (TrxR) of the cytosol/nucleus or mitochondria are major thiol-dependent reductases with many functions in cell growth, defense against oxidative stress, and apoptosis. Mammalian TrxRs are selenocysteine-containing flavoenzymes; MGd was an NADPH-oxidizing substrate for human or rat TrxR1 with a Km value of 8.65 microM (kcat/Km of 4.86 x 10(4) M(-1) s(-1)). The reaction involved redox cycling of MGd by oxygen producing superoxide and hydrogen peroxide. MGd acted as a non-competitive inhibitor (IC50 of 6 microM) for rat TrxR. In contrast, direct reaction between MGd and reduced human Trx was negligible. The corresponding reaction with reduced Escherichia coli Trx was also negligible, but MGd was a better substrate (kcat/Km of 2.23 x 10(5) M(-1) s(-1)) for TrxR from E. coli and a strong inhibitor of Trx-dependent protein disulfide reduction. Ribonucleotide reductase (RNR), a 1:1 complex of the non-identical R1- and R2-subunits, catalyzes the essential de novo synthesis of deoxyribonucleotides for DNA synthesis using electrons from Trx and TrxR. MGd inhibited recombinant mouse RNR activity with either 3 microM reduced human Trx (IC50 2 microM) or 4 mM dithiothreitol (IC50 6 microM) as electron donors. Our results demonstrate MGd-induced enzymatic generation of reactive oxygen species by TrxR plus a powerful inhibition of RNR. This may explain the effects of the drug on cancer cells, which often overproduce TrxR and have induced RNR for replication and repair.  相似文献   

12.
D-Sorbitol-6-phosphate 2-dehydrogenase catalyzes the NADH-dependent conversion of D-fructose 6-phosphate to D-sorbitol 6-phosphate and improved production and purification of the enzyme from Escherichia coli is reported. Preliminary inhibition studies of the enzyme revealed 5-phospho-D-arabinonohydroxamic acid and 5-phospho-D-arabinonate as new substrate analogue inhibitors of the F6P catalyzed reduction with IC50 values of (40 +/- 1) microM and (48 +/- 3) microM and corresponding Km/IC50 ratio values of 14 and 12, respectively. Furthermore, we report here the phosphomannose isomerase substrate D-mannose 6-phosphate as the best inhibitor of E. coli D-sorbitol-6-phosphate 2-dehydrogenase yet reported with an IC50 = 7.5 +/- 0.4 microM and corresponding Km/IC50 ratio = about 76.  相似文献   

13.
The thioredoxin system, comprising NADPH, thioredoxin reductase and thioredoxin reduces protein disulfides via redox-active dithiols. We have discovered that sodium selenite is a substrate for the thioredoxin system; 10 microM selenite plus 0.05 microM calf thymus thioredoxin reductase at pH 7.5 caused a non-stoichiometric oxidation of NADPH (100 microM after 30 min). In contrast, thioredoxin reductase from Escherichia coli showed no direct reaction with selenite, but addition of 3 microM E. coli thioredoxin also resulted in non-stoichiometric oxidation of NADPH, consistent with oxidation of the two active-site thiol groups in thioredoxin to a disulfide. Kinetically, the reaction was complex with a lag phase at low selenite concentrations. Under anaerobic conditions the reaction stopped after 1 mol selenite had oxidized 3 mol NADPH; the admission of air then resulted in continued consumption of NADPH consistent with autooxidation of selenium intermediate(s). Ferricytochrome c was effectively reduced by calf thymus thioredoxin reductase and selenite in the presence of oxygen. Selenite caused a strong dose-dependent inhibition of the formation of thiol groups from insulin disulfides with either the E. coli or calf-thymus thioredoxin system. Thus, under aerobic conditions selenite catalyzed, NADPH-dependent redox cycling with oxygen, a large oxygen-dependent consumption of NADPH and oxidation of reduced thioredoxin inhibiting its disulfide-reductase activity.  相似文献   

14.
Characterization of Escherichia coli-Anabaena sp. hybrid thioredoxins   总被引:2,自引:0,他引:2  
Thioredoxin is a small redox protein with an active-site disulfide/dithiol. The protein from Escherichia coli has been well characterized. The genes encoding thioredoxin in E. coli and in the filamentous cyanobacterium Anabaena PCC 7119 have been cloned and sequenced. Anabaena thioredoxin exhibits 50% amino acid identity with the E. coli protein and interacts with E. coli enzymes. The genes encoding Anabaena and E. coli thioredoxin were fused via a common restriction site in the nucleotide sequence coding for the active site of the proteins to generate hybrid genes, coding for two chimeric thioredoxins. These proteins are designated Anabaena-E. coli (A-E) thioredoxin for the construct with the Anabaena sequence from the N-terminus to the middle of the active site and the E. coli sequence to the C-terminus, and E. coli-Anabaena (E-A) for the opposite construct. The gene encoding the A-E thioredoxin complements all phenotypes of an E. coli thioredoxin-deficient strain, whereas the gene encoding E-A thioredoxin is only partially effective. Purified E-A thioredoxin exhibits a much lower catalytic efficiency with E. coli thioredoxin reductase and ribonucleotide reductase than either E. coli or Anabaena thioredoxin. In contrast, the A-E thioredoxin has a higher catalytic efficiency in these reactions than either parental protein. Reaction with antibodies to E. coli and Anabaena thioredoxins shows that the antigenic determinants for thioredoxin are located in the C-terminal part of the molecule and retain the native conformation in the hybrid proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Cysteine proteinases 4 (EhCP4) of Entamoeba histolytica are considered important for ameba pathogenicity. The recombinant gene was obtained by cloning and expression of the EhCP4 gene in heterologous host Escherichia coli BL-21 (DE3), were used to evaluate their ability to induce immune protective responses in minipig against challenge infection in a minipig-E. histolytica model. There was a 53.16% reduction (P<0.001) in the group of recovery of challenged E. histolytica compared with that in the control group. Specific anti-EhCP4 antibodies from immune protected minipig had significantly higher levels of immunoglobulin G (IgG) (P<0.001). This is a first report demonstrating that a recombinant form of EhCP4 generated in E. coli, to immunize a minipig model of E. histolytica, and there is significant protection. This study may help to understand the EhCP4 for human in the future.  相似文献   

16.
A second thioredoxin, distinct from the one reported by Meng and Hogenkamp in 1981 (J. Biol. Chem. 256, 9174-9182), has been purified to homogeneity from an Escherichia coli strain containing a plasmid encoding a Corynebacterium nephridii thioredoxin. Thioredoxin genes from C. nephridii were cloned into the plasmid pUC13 and transformants were identified by complementation of a thioredoxin negative (trxA-) E. coli strain. The abilities of the transformants to support the growth of several phages suggested that more than one thioredoxin had been expressed [Lim et al. (1987) J. Biol. Chem. 262, 12114-12119]. In this paper we present the purification and characterization of one of these thioredoxins. The new thioredoxin from C. nephridii, designated thioredoxin C-2, is a heat-stable protein containing three cysteine residues/molecule. It serves as a substrate for C. nephridii thioredoxin reductase and E. coli and Lactobacillus leichmannii ribonucleotide reductases. Thioredoxin C-2 catalyzes the reduction of insulin disulfides by dithiothreitol or by NADPH and thioredoxin reductase and is a hydrogen donor for the methionine sulfoxide reductase of E. coli. Spinach malate dehydrogenase (NADP+) and phosphoribulokinase are activated by this thioredoxin while glyceraldehyde-3-phosphate dehydrogenase (NADP+) is not. Like the thioredoxin first isolated from C. nephridii, this new thioredoxin is not a reducing substrate for the C. nephridii ribonucleotide reductase. The complete primary sequence of this second thioredoxin has been determined. The amino acid sequence shows a high degree of similarity with other thioredoxins. Surprisingly, in contrast to the other sequences, this new thioredoxin contains the tetrapeptide -Cys-Ala-Pro-Cys- at the active site. With the exception of the T4 thioredoxin, this is the first example of a thioredoxin that does not have the sequence -Cys-Gly-Pro-Cys-. Our results suggest that, like plant cells, bacterial cells may utilize more than one thioredoxin.  相似文献   

17.
Kinetic parameters for NADPH and NADH have been determined at pH 8.1 for spinach, yeast, and E. coli glutathione reductases. NADPH exhibited low Km values for all enzymes (3-6 microM), while the Km values for NADH were 100 times higher (approximately 400 microM). Under our experimental conditions, the percentage of maximal velocities with NADH versus those measured with NADPH were 18.4, 3.7, and 0.13% for the spinach, yeast, and E. coli enzymes, respectively. Primary deuterium kinetic isotope effects were independent of GSSG concentration between Km and 15Km levels, supporting a ping-pong kinetic mechanism. For each of the three enzymes, NADPH yielded primary deuterium kinetic isotope effects on Vmax only, while NADH exhibited primary deuterium kinetic isotope effects on both V and V/K. The magnitude of DV/KNADH at pH 8.1 is 4.3 for the spinach enzyme, 2.7 for the yeast enzyme, and 1.6 for the E. coli glutathione reductase. The experimentally determined values of TV/KNADH of 7.4, 4.2, and 2.2 for the spinach, yeast, and E. coli glutathione reductases agree well with those calculated from the corresponding DV/KNADH using the Swain-Schaad expression. This suggests that the intrinsic primary kinetic isotope effect on NADH oxidation is fully expressed. In order to confirm this conclusion, single-turnover experiments have been performed. The measured primary deuterium kinetic isotope effects on the enzyme reduction half-reaction using NADH match those measured in the steady state for each of the three glutathione reductases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Cysteine proteinases 112 (EhCP112) of Entamoeba histolytica are considered important for ameba pathogenicity. The recombinant gene was obtained by cloning and expression of the EhCP112 gene in heterologous host Escherichia coli BL-21 (DE3), were used to evaluate their ability to induce immune protective responses in minipig against challenge infection in a minipig-E. histolytica model. There was a 46.29% reduction (P<0.001) in the group of recovery of challenged E. histolytica compared with that in the control group. Specific anti-EhCP112 antibodies from immune protected minipig had significantly higher levels of immunoglobulin G (IgG) (P<0.001). This is a first report demonstrating that a recombinant form of EhCP112 generated in E. coli, to immunize a minipig model of E. histolytica, and there is significant protection. This study may help to understand the EhCP112 for human in the future.  相似文献   

19.
The genes that encode thioredoxin and thioredoxin reductase of Streptomyces clavuligerus were cloned, and their DNA sequences were determined. Previously, we showed that S. clavuligerus possesses a disulfide reductase with broad substrate specificity that biochemically resembles the thioredoxin oxidoreductase system and may play a role in the biosynthesis of beta-lactam antibiotics. It consists consists of two components, a 70-kDa NADPH-dependent flavoprotein disulfide reductase with two identical subunits and a 12-kDa heat-stable protein general disulfide reductant. In this study, we found, by comparative analysis of their predicted amino acid sequences, that the 35-kDa protein is in fact thioredoxin reductase; it shares 48.7% amino acid sequence identity with Escherichia coli thioredoxin reductase, the 12-kDa protein is thioredoxin, and it shares 28 to 56% amino acid sequence identity with other thioredoxins. The streptomycete thioredoxin reductase has the identical cysteine redox-active region--Cys-Ala-Thr-Cys--and essentially the same flavin adenine dinucleotide- and NADPH dinucleotide-binding sites as E. coli thioredoxin reductase and is partially able to accept E. coli thioredoxin as a substrate. The streptomycete thioredoxin has the same cysteine redox-active segment--Trp-Cys-Gly-Pro-Cys--that is present in virtually all eucaryotic and procaryotic thioredoxins. However, in vivo it is unable to donate electrons to E. coli methionine sulfoxide reductase and does not serve as a substrate in vitro for E. coli thioredoxin reductase. The S. clavuligerus thioredoxin (trxA) and thioredoxin reductase (trxB) genes are organized in a cluster. They are transcribed in the same direction and separated by 33 nucleotides. In contrast, the trxA and trxB genes of E. coli, the only other organism in which both genes have been characterized, are physically widely separated.  相似文献   

20.
We have cloned and sequenced three genes from Rhizobium meliloti (Sinorhizobium meliloti) that are involved in sulfate activation for cysteine biosynthesis. Two of the genes display homology to the Escherichia coli cysDN genes, which code for an ATP sulfurylase (EC 2.7.7.4). The third gene has homology to the E. coli cysH gene, a 3'-phosphoadenosine-5'-phosphosulfate (PAPS) reductase (EC 1.8.99.4), but has greater homology to a set of genes found in Arabidopsis thaliana that encode an adenosine-5'-phosphosulfate (APS) reductase. In order to determine the specificity of the R. meliloti reductase, the R. meliloti cysH homolog was histidine tagged and purified, and its specificity was assayed in vitro. Like the A. thaliana reductases, the histidine-tagged R. meliloti cysH gene product appears to favor APS over PAPS as a substrate, with a Km for APS of 3 to 4 microM but a Km for PAPS of >100 microM. In order to determine whether this preference for APS is unique to R. meliloti among members of the family Rhizobiaceae or is more widespread, cell extracts from R. leguminosarum, Rhizobium sp. strain NGR234, Rhizobium fredii (Sinorhizobium fredii), and Agrobacterium tumefaciens were assayed for APS or PAPS reductase activity. Cell extracts from all four species also preferentially reduce APS over PAPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号