首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wheat scab (Fusarium Head Blight, FHB) is a destructive disease in the warm and humid wheat-growing areas of the world. Finding diverse sources of FHB resistance is critical for genetic diversity of resistance for wheat breeding programs. Leymus racemosus is a wild perennial relative of wheat and is highly resistant to FHB. Three wheat- L. racemosus disomic addition (DA) lines DA5Lr#1, DA7Lr#1 and DALr.7 resistant to FHB were used to develop wheat- L.racemosus translocation lines through irradiation and gametocidal gene-induced chromosome breakage. A total of nine wheat-alien translocation lines with wheat scab resistance were identified by chromosome C-banding, GISH, telosomic pairing and RFLP analyses. In line NAU614, the long arm of 5Lr#1 was translocated to wheat chromosome 6B. Four lines, NAU601, NAU615, NAU617, and NAU635, had a part of the short arm of 7Lr#1 transferred to different wheat chromosomes. Four other lines, NAU611, NAU634, NAU633, and NAU618, contained translocations involving Leymus chromosome Lr.7 and different wheat chromosomes. The resistance level of the translocation lines with a single alien chromosome segment was higher than the susceptible wheat parent Chinese Spring but lower than the alien resistant parent L. racemosus. At least three resistance genes in L. racemosus were identified. One was located on chromosome Lr.7, and two could be assigned to the long arm of 5Lr#1 and the short arm of 7Lr#1.  相似文献   

2.
Differential C-banding and in situ hybridization were employed in a cytogenetic comparison of thee N-genome Aegilops species: diploid Ae. uniaristata, tetraploid Ae. ventricosa, and hexaploid Ae. recta. The formation of Ae. recta was shown to involve only minor functional modifications of the parental genomes, while intraspecific divergence was accompanied by large genome rearrangements, namely, translocations involving the total chromosome arms of all of the three genomes. The formation of tetraploid Ae. ventricosa involved substantial structural chromosome rearrangements, including a partial deletion of the short arm of chromosome 5D, including the nucleolus-organizing region; a redistribution of C bands on chromosomes of the D and N genomes along with a reduction of the heterochromatin content; and a considerable decrease in the hybridization intensity of the pAs1 repeat. Chromosomes of the Ae. ventricosa D genome were more similar to chromosomes of the Ae. crassa D1 genome than to Ae. tauschii chromosomes.  相似文献   

3.
本文研究了高大山羊草(Aegilops longissima)的C-带带型,并对“中国春”-高大山羊草双端体异附加系(21"+t"_Bl)、双端体异代换系(20"+t"+t"_Bl)、2个二体异代换系(20"+1"_Bl)和易位系(4A/4Bl)进行了鉴定。本文还对小麦的B染色体组和4A染色体的起源进行了讨论。从带型上的明显差别可以推测高大山羊草不是B染色体组的直接供体。它们可能共同起源于一个原始的染色体组。  相似文献   

4.
黑麦6R抗白粉病基因向小麦的渗进与鉴定   总被引:2,自引:0,他引:2  
张文俊 Snap.  JW 《遗传学报》1999,26(5):563-570
为了将黑麦6R染色体上抗小麦白粉病的基因导入小麦,选用了一个6R/6D代换系M24为亲本之一,分别与小麦栽培品种和第6部分同源群缺体系杂交,杂种出现6R或/或6A,6B,6D单,双或三单体等各种情况,取其花药进行培养,共获得241个再生植株,对其中32个抗白粉病的花粉植株经染色体计数,C-分带,基因组原位杂交,同工酶等电聚焦电泳和或/RFLP分子标记检测,发现有6株仍保持为6R/6D代换系,有10  相似文献   

5.
孙仲平  王占斌  徐香玲  李集临 《遗传学报》2004,31(11):1268-1274
将中国春-黑麦(1R-7R)二体附加系与中国春-2C(Aegilops cylindrica)二体附加系杂交,获得F1,对F1体细胞染色体进行C分带鉴定和花粉母细胞减数分裂行为的观察与分析,发现减数分裂行为异常。对自交获得的430株F2进行单株染色体C分带和荧光原位分子杂交鉴定,检测到易位、缺失、等臂染色体、双着丝点染色体等染色体畸变类型。此外还检测到2C与小麦2A、2B、2D染色体的二体或单体自发代换系。杂交F。染色体畸变的规律与频率如下:研究共得到含黑麦染色体的变异22株,变异频率为5,1%。其中含黑麦染色体的易位系为10株,占2,3%;缺失12株,占2.79%;黑麦的等臂染色体3株,占O.7%。易位染色体既有含小麦着丝点的(大部分),也含有黑麦着丝点的(仅1例)。黑麦的染色体畸变中,发生于不同同祖群的频率不同,1R为5个,2R为3个;3R为1个;4R为3个;5R为6个;6R为4个。易位多为端部易位。共鉴定出小麦的缺失系54株,其中A基因组有27个,占6.27%;B基因组有20个,占4,65%;D基因组有7个,占1.66%。对杀配子染色体对小麦及黑麦不同同祖群染色体作用的差异性及作用特点进行了探讨。  相似文献   

6.
黑麦碱基因(Sec–1)表达缺失的1RS/1BL易位系的鉴定   总被引:5,自引:0,他引:5  
晏本菊  张怀琼  任正隆 《遗传》2005,27(4):513-517
用改良的Giemsa C-带技术、DNA原位杂交和酸性聚丙烯酰胺凝胶电泳(A-PAGE)对来源于小麦品种绵阳11与不同黑麦自交系远缘杂交获得的高代株系(BC1F7)的染色体结构和醇溶蛋白进行了研究。结果发现,在鉴定的200个株系中,有45个株系经C-带和A-PAGE检测均一致地发现它们含有一对1RS /1BL易位染色体,而一个株系843-1-1,C-带鉴定、原位杂交结果均证明它含有一对1RS/1BL易位染色体,但A-PAGE醇溶蛋白图谱却不具有黑麦1RS染色体臂的黑麦碱特征带,而表达出既不同于黑麦碱又不同于亲本绵阳11的醇溶蛋白带型。这一结果表明,利用不同的黑麦亲本资源,可以获得黑麦碱基因Sec-1表达缺失的新的1RS/1BL易位系。这种新的1RS/1BL易位系缺失了影响小麦品质的黑麦碱蛋白,因此是进一步研究1RS/1BL 易位对小麦品质影响的珍贵材料。研究指出,在利用外源基因的植物育种中,外源种供体材料的遗传多样性是值得重视的基因资源。  相似文献   

7.
Individual plants from the BC1F5 and BC1F6 backcross progenies of barley--wheat (= H. geniculatum All.) (2n = 28) x T. aestivum L. (2n = 42)] and the BC1F6 progeny of their amphiploids were used to obtain alloplasmic euploid (2n = 42) lines L-28, L-29, and L-49 and alloplasmic telocentric addition (2n = 42 + 2t) lines L-37, L-38, and L-50. The lines were examined by genomic in situ hybridization (GISH), microsatellite analysis, chromosome C-banding, and PCR analysis of the mitochondrial 18S/5S repeat. Lines L-29 and L-49 were characterized by substitution of wild barley chromosome 7H1 for common wheat chromosome 7D. In line L-49, common wheat chromosomes 1B, 5D, and 7D were substituted with homeologous barley chromosomes. Lines L-37, L-38, and L-50 each contained a pair of telocentric chromosomes, which corresponded to barley chromosome arm 7H'L. All lines displayed heteroplasmy for the mitochondrial 18S/5S locus; i.e., both barley and wheat sequences were found.  相似文献   

8.
Introgressive hybridization is an efficient means to improve the genetic diversity of cultivated cereals, including triticale. To identify the triticale lines with Aegilops introgressions, genotyping was carried out with ten lines obtained by crossing hexaploid triticale with genome-substitution forms of the common wheat cultivar Aurora: Aurolata (AABBUU), Aurodes (AABBSS), and Aurotika (AABBTT). The genome composition of the triticale lines was studied by in situ hybridization, and recombination events involving Aegilops and/or common wheat chromosomes were assumed for nine out of the ten lines. Translocations involving rye chromosomes were not observed. Substitutions for rye chromosomes were detected in two lines resulting from crosses with Aurolata. Genomic in situ hybridization (GISH) with Ae. umbellulata DNA and molecular genetic analysis showed that chromosome 1R was substituted with Ae. umbellulata chromosome 1U in one of the lines and that 2R(2U) substitution took place in the other line. Fluorescence in situ hybridization (FISH) with the Spelt1 and pSc119.2 probes revealed a translocation from Ae. speltoides to the long arm of chromosome 1B in one of the two lines resulting from crosses with Aurodes and a translocation in the long arm of chromosome 7B in the other line. In addition, the pSc119.2 probe revealed chromosome 1B rearrangements in four lines resulting from crosses with Aurolata and in a line resulting from crosses with Aurotika. The lines were tested for main productivity parameters. A negative effect on all productivity parameters was demonstrated for Ae. umbellulata chromosome 2U. The overwinter survival in all of the lines was similar to or even higher than in the original triticale cultivars. A substantial increase in winter resistance as compared with the parental cultivar was observed for the line carrying the T7BS-7SL translocation. The line with the 1R(1U) chromosome substitution seemed promising for the baking properties of triticale.  相似文献   

9.
Maan[1] and Endo[2] et al. first reported that some chromosomes from Ae. longgissima, Ae. sharonensis and Ae. triuncialis showed preferential transmission when introduced into wheat background. The mechanism for this phenomenon rests with the fact that contrary to the normal fertility of gametes with these chromosomes, chromosome structural aberrations occur seriously in the gametes without these chromosomes, causing less compatibility in selective fertilization and resulting in semi-sterilit…  相似文献   

10.
The chromosome 7Dv of Aegilops ventricosa (syn. Triticum ventricosum, 2n = 4x = 28, genome DvDvMvMv) carries the gene Pch1 for resistance to eyespot. This gene has previously been transferred to chromosome 7D of bread wheat, T. aestivum (2n = 6x = 42, genome AABBDD). To (1) enhance the level of resistance of bread wheat by increasing the copy number of Pch1, and (2) create eyespot-resistant triticales, meiotically stable Pch1-carrying durum lines were selected from the backcross progenies of a cross between Ae. ventricosa and T. durum cv. Creso ph1c (2n = 4x = 28, genome AABB). The Pch1 transfer, likely resulting from homoeologous recombination, was located at the distal position on the long arm of chromosome 7A. The 7A microsatellite marker Xgwm 698 was found closely linked in repulsion to the introgression in the resistant recombination lines, and the endopeptidase allele located on chromosome 7A of cv. Creso ph1c was lost.  相似文献   

11.
Specific chromosomes of certain Aegilops species introduced into wheat genome background may often facilitate chromosome breakage and refusion, and finally result in a variety of chromosome restructuring. Such a phenomenon is commonly called gametocidal effect of the chromosomes. The chromosome 2C of Ae. cylindrica is one of such chromosomes. In the present study, scab resistant wheat-L. racemosus addition lines involving chromosomes Lr.2 and Lr.7 were crossed to wheat-Ae. cylindrica disomic addition line Add2C. Then F1 hybrids were subsequently backcrossed with wheat cv “Chinese Spring”. BC1 plants with chromosome structural aberration were identified by C-banding. In the self-pollinated progenies of these plants, three translocation lines were developed and characterized by mitotic and meiotic analysis combined with C-banding and fluorescent in situ hybridization (FISH) using biotin-labeled genomic DNA of L. racemosus as probe. Some other putative translocation lines to be further characterized were also found. The practicability and efficiency of the translocation between wheat and alien chromosomes induced by gametocidal chromosomes, as well as the potential use of the developed alien translocation lines were also discussed.  相似文献   

12.
Based on the cross (Triticum aestivum L. x Secale cereale L.) x T. aestivum L., wheat-rye substitution lines (2n = 42) were produced with karyotypes containing, instead of a pair of homologous wheat chromosomes, a homeologous pair of rye chromosomes. The chromosome composition of these lines was described by GISH and C-banding methods, and SSR analysis. The results of genomic in situ hybridization demonstrated that karyotype of these lines included one pair of rye chromosomes each and lacked wheat--rye translocations. C-banding and SSR markers were used to identify rye chromosomes and determine the wheat chromosomes at which the substitution occurred. The lines were designated 1R(1D), 2R(2D)2, 2R(2D)3, 3R(3B), 6R(6A)2. The chromosome composition of lines IR(1A), 2R(W)1, 5R(W), 5R(5A), and 6R(W)1, which were earlier obtained according to the same scheme for crossing, was characterized using methods of telocentric analysis, GISH, C-banding, and SSR analysis. These lines were identified as 1R(1A), 2R(2D)1, 5R(5D), 5R(5A), and 6R(6A)1, C-banding of chromosomes belonging to line 1R(1A) revealed the presence of two translocated chromosomes (3DS.3DL-del. and 4AL.W) during simultaneous amplification of SSR markers located on 3DL and 4AS arms. The "combined" long arm of the newly derived chromosome 4A is assumed to be formed from the long arm of chromosome 4AS itself and a deleted segment 3DL. All examined lines are cytologically stable, except for 3R(3B), which does not affect the stability of rye 3R chromosome transfer. Chromosome identification and classification of the lines will permit them to be models for genetic studies that can be used thereafter as promising "secondary gene pools" for the purpose of plant breeding.  相似文献   

13.
Fusarium head blight (FHB) resistance was identified in the alien species Leymus racemosus, and wheat-Leymus introgression lines with FHB resistance were reported previously. Detailed molecular cytogenetic analysis of alien introgressions T01, T09, and T14 and the mapping of Fhb3, a new gene for FHB resistance, are reported here. The introgression line T09 had an unknown wheat-Leymus translocation chromosome. A total of 36 RFLP markers selected from the seven homoeologous groups of wheat were used to characterize T09 and determine the homoeologous relationship of the introgressed Leymus chromosome with wheat. Only short arm markers for group 7 detected Leymus-specific fragments in T09, whereas 7AS-specific RFLP fragments were missing. C-banding and genomic in situ hybridization results indicated that T09 has a compensating Robertsonian translocation T7AL·7Lr#1S involving the long arm of wheat chromosome 7A and the short arm of Leymus chromosome 7Lr#1 substituting for chromosome arm 7AS of wheat. Introgression lines T01 (2n = 44) and T14 (2n = 44) each had two pairs of independent translocation chromosomes. T01 had T4BS·4BL-7Lr#1S + T4BL-7Lr#1S·5Lr#1S. T14 had T6BS·6BL-7Lr#1S + T6BL·5Lr#1S. These translocations were recovered in the progeny of the irradiated line Lr#1 (T5Lr#1S·7Lr#1S). The three translocation lines, T01, T09, and T14, and the disomic addition 7Lr#1 were consistently resistant to FHB in greenhouse point-inoculation experiments, whereas the disomic addition 5Lr#1 was susceptible. The data indicated that at least one novel FHB resistance gene from Leymus, designated Fhb3, resides in the distal region of the short arm of chromosome 7Lr#1, because the resistant translocation lines share a common distal segment of 7Lr#1S. Three PCR-based markers, BE586744-STS, BE404728-STS, and BE586111-STS, specific for 7Lr#1S were developed to expedite marker-assisted selection in breeding programs.  相似文献   

14.
B Friebe  N Tuleen  J Jiang  B S Gill 《Génome》1993,36(4):731-742
C-banding polymorphism was analyzed in 17 accessions of Triticum longissimum from Israel and Jordan, and a generalized idiogram of this species was established. C-banding analysis was further used to identify two sets of disomic T. aestivum - T. longissimum chromosome addition lines and 13 ditelosomic addition lines and one monotelosomic (6S1L) addition line. C-banding was also used to identify T. aestivum - T. longissimum chromosome substitution and translocation lines. Two major nucleolus organizing regions (NORs) on 5S1 and 6S1 and one minor NOR on 1S1 were detected by in situ hybridization using a 18S-26S rDNA probe. Sporophytic and gametophytic compensation tests were used to determine the homoeologous relationships of T. longissimum chromosomes. The T. longissimum chromosomes compensate rather well and fertility was restored even in substitution lines involving wheat chromosomes 2A, 4B, and 6B that contain major fertility genes. Except for the deleterious gametocidal genes, T. longissimum can be considered as a suitable donor of useful genes for wheat improvement.  相似文献   

15.
利用大量小麦亲本材料和优良品种(系)与具有粘果、易变、偏凸和二角山羊草细胞质的小麦雄性不育系杂交,并对其杂交F1过氧化物同工酶进行了分析,结果表明:(1)二角山羊草细胞质与小麦核内的遗传物质组成两个不同的核质互作不育系统,粘、易、偏型不育系育性基本表现一致,而二角型不育系除了与前三种不育系具有相同的1BL/1RS保持系以外,对某些小麦近缘植物的杂交后代材料还表现出育性特异性。(2)粘、易、偏和二角型同核异质不育系5-1及其与V9125杂交F1过氧化物同工酶分析表明,粘、易、偏和二角型不育系5-1过氧化物同工酶带型基本表现一致,粘、易、偏不育系5-1与V9125杂交F1过氧化物同工酶带型基本表现一致,而二角型不育系5-1杂交F1过氧化物同工酶则表现出酶带减少变弱。  相似文献   

16.
An Aegilops ventricosa Tausch (2n = 28, DvDvNvNv) subtelocentric chromosome added to wheat (Triticum aestivum L.) in a disomic addition line was found to carry the genes for resistance Yr17, Lr37, Sr38, and Cre5 already transferred onto chromosome 2AS of the wheat line VPM1. Previous works demonstrated that this Ae. ventricosa chromosome is translocated with respect to the standard wheat genome. The present investigations showed that this chromosome pre-existed in Ae. ventricosa and contains only chromatin specific to the N genome. Using biochemical markers and suitable cytogenetic materials including the monoisosomic addition line for the translocated long arm (6NvL-2NvS), its structure was defined as being 6NvSdel.6NvL-2NvS. It consists of a segment of the short arm 2Nv, containing the resistance genes, attached to a group 6 chromosome lacking a distal part of its short arm. The 2 re arrangements could already be present in Aegilops uniaristata Vis. (2n = 14, NN), the source of the Nv genome of Ae. ventricosa.  相似文献   

17.
APAGE技术在小麦细胞质雄性不育系选育中的应用研究   总被引:10,自引:0,他引:10  
利用大量小麦亲本材料和优良品种(系)与具有粘果、易变、偏凸和二角山羊草细胞质的小麦雄性不育系杂交,筛选出一系列保持系。利用APAGE(酸性聚丙烯酰胺凝胶电泳)技术对其进行了醇溶蛋白电泳图谱分析,发现大部分保持系表现出1BL/lRS易位系的1RS醇溶蛋白标记位点GldlB3。利用细胞学镜鉴,发现含有GldlB3标记位点的保持系均只含有两个随体,而不含有GldlB3标记位点的保持系均含有4个随体,证明了GldlB3标记位点与两个随体数的一致性。粘、易、偏型不育系育性基本表现一致,而二角型不育系除了与前3种不育系具有相同的保持系以外,对某些小麦品种(系)还表现出育性特异性。同时还讨论了ANGE技术在快速筛选小麦细胞质雄性不育保持系中的作用,为非1BL/1RS不育系的选育提供了必要的手段。  相似文献   

18.
当柱穗山羊草(Aegilops cylindrica Host.)2C染色体单体添加到普通小麦品种中国春和以中国春为背景的派生系时,减数分裂时,不含2C染色体的配子会发生染色体结构变异。为了制备一套黑麦1R染色体缺失系以用于定位黑麦1R染色体上的控制重要农艺性状的基因,把一条2C染色体导人到小黑麦1R二体附加系(21″ 1R″)中,然后让这些个体(21″ 1R″ 2C′,2n=45)自交,以便产生1R染色体结构变异体。实验共检测了345粒F,种子,83粒种子带有结构变异的黑麦1R染色体(24.1%)。通过C分带和原位杂交检测,对来自于23株F2的46个F3植株所带有的异常1R染色体进行了归类:其中1RL端体为39.1%,1RL等臂染色体为2.2%,1RL易位系为32.6%。1RS端体为4.3%,1RS等臂染色体为4.3%,切点在长臂上的缺失体为2.2%。在6.5%的植株中同时含有2种类型的1R染色体结构变异。其余8.7%带有异常1R染色体的个体因为没有原位杂交结果而无法判断是属于哪种类型。已获得的1R结构变异株将有可能进一步发展成为一套可用于定位黑麦1R染色体上重要功能基因的遗传材料。另外,还探讨了综合应用细胞学和分子标记方法鉴定易位染色体中小麦染色体片段的尝试,并对所获结果进行了讨论。  相似文献   

19.
Summary Hexaploid triticales were crossed with common wheats, and the resultant froms were selected for either triticale (AD 213/5-80) or common wheat (lines 381/80, 391/80, 393/80). The cytogenetic analysis showed that all forms differ in their chromosome composition. Triticale AD 213/5-80 and wheat line 381/80 were stable forms with 2n = 6x = 42. Lines 391/80 and 393/80 were cytologically unstable. In triticale AD 213/5-80, a 2R (2D) chromosome substitution was found. Each of the three wheat lines had a chromosome formed by the translocation of the short arm of IR into the long arm of the IB chromosome. In line 381/80, this chromosome seems to be inherited from the Kavkaz wheat variety. In lines 391/80 and 393/80, this chromosome apparently formed de novo since the parent forms did not have it. The karyotype of line 381/80 was found to contain rye chromosomes 4R/7R, 5R and 7R/4R. About 15% of the cells in line 391/80 contained an isochromosome for the 5R short arm and also a chromosome which arose from the translocation of the long arms of the 5D and 5R chromosomes. About one-third of the cells in the common wheat line 393/80 contained the 5R chromosome. This chromosome was normal or rearranged. Practical applications of the C-banding technique in the breeding of triticale is discussed.  相似文献   

20.
Summary C-banding patterns and nucleolar activity were analyzed in Dasypyrum villosum, its added chromosomes to hexaploid wheat and the hexaploid amphiploid Triticum dicoccum-D. villosum. Two different populations of the allogamous species D. villosum (2n= 14, VV) from Greece and Italy were analyzed showing a similar polymorphism for C-banding pattern. Six of the seven addition lines were identified by their characteristic C-banding pattern. No polymorphism between both members of each added alien chromosome was found. Furthermore, nucleolar activity and competition were studied by using silver staining procedure. In D. villosum only one chromosome pair, A, was found to be responsible for organizing nucleoli. The results obtained in the amphiploid and in the addition lines demonstrate that nucleolar activity is restricted to SAT-chromosomes 1B and 6B of wheat, while those of D. villosum remain inactive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号