首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tissue engineering (TE) envisions the creation of functional substitutes for damaged tissues through integrated solutions, where medical, biological, and engineering principles are combined. Bone regeneration is one of the areas in which designing a model that mimics all tissue properties is still a challenge. The hierarchical structure and high vascularization of bone hampers a TE approach, especially in large bone defects. Nanotechnology can open up a new era for TE, allowing the creation of nanostructures that are comparable in size to those appearing in natural bone. Therefore, nanoengineered systems are now able to more closely mimic the structures observed in naturally occurring systems, and it is also possible to combine several approaches ‐ such as drug delivery and cell labeling ‐ within a single system. This review aims to cover the most recent developments on the use of different nanoparticles for bone TE, with emphasis on their application for scaffolds improvement; drug and gene delivery carriers, and labeling techniques. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:590–611, 2017  相似文献   

2.
While testing regenerative medicine strategies, the use of animal models that match the research questions and that are related to clinical translation is crucial. During the initial stage of evaluating new strategies for bone repair, the main goal is to state whether the strategies efficiently induce the formation of new bone tissue at an orthotopic site. Here, we present a subperiosteal model in rat calvaria that allow the evaluation of a broad range of approaches including bone augmentation, replacement and regeneration. The model is a fast to perform, minimally invasive, and has clearly defined control groups. The procedure enables to evaluate the outcomes quantitatively using micro-computed tomography and qualitatively by histology and immunohistochemistry. We established this new model, using bone morphogenetic protein-2 as an osteoinductive factor and hyaluronic acid hydrogel as injectable biomaterial. We showed that this subperiosteal cranial model offers a minimally invasive and promising solution for a rapid initial evaluation of injectables for bone repair. We believe that this approach could be a powerful platform for orthopedic research and regenerative medicine.  相似文献   

3.
The loss of bone tissue represents a critical clinical condition that is frequently faced by surgeons. Substantial progress has been made in the area of bone research, providing insight into the biology of bone under physiological and pathological conditions, as well as tools for the stimulation of bone regeneration. The present review discusses recent advances in the field of gene‐enhanced bone tissue engineering. Gene transfer strategies have emerged as highly effective tissue engineering approaches for supporting the repair of the musculoskeletal system. By contrast to treatment with recombinant proteins, genetically engineered cells can release growth factors at the site of injury over extended periods of time. Of particular interest are the expedited technologies that can be applied during a single surgical procedure in a cost‐effective manner, allowing translation from bench to bedside. Several promising methods based on the intra‐operative genetic manipulation of autologous cells or tissue fragments have been developed in preclinical studies. Moreover, gene therapy for bone regeneration has entered the clinical stage with clinical trials for the repair of alveolar bone. Current trends in gene‐enhanced bone engineering are also discussed with respect to the movement of the field towards expedited, translational approaches. It is possible that gene‐enhanced bone tissue engineering will become a clinical reality within the next few years.  相似文献   

4.
Osteochondral defect management and repair remain a significant challenge in orthopedic surgery. Osteochondral defects contain damage to both the articular cartilage as well as the underlying subchondral bone. In order to repair an osteochondral defect the needs of the bone, cartilage and the bone-cartilage interface must be taken into account. Current clinical treatments for the repair of osteochondral defects have only been palliative, not curative. Tissue engineering has emerged as a potential alternative as it can be effectively used to regenerate bone, cartilage and the bone-cartilage interface. Several scaffold strategies, such as single phase, layered, and recently graded structures have been developed and evaluated for osteochondral defect repair. Also, as a potential cell source, tissue specific cells and progenitor cells are widely studied in cell culture models, as well with the osteochondral scaffolds in vitro and in vivo. Novel factor strategies being developed, including single factor, multi-factor, or controlled factor release in a graded fashion, not only assist bone and cartilage regeneration, but also establish osteochondral interface formation. The field of tissue engineering has made great strides, however further research needs to be carried out to make this strategy a clinical reality. In this review, we summarize current tissue engineering strategies, including scaffold design, bioreactor use, as well as cell and factor based approaches and recent developments for osteochondral defect repair. In addition, we discuss various challenges that need to be addressed in years to come.  相似文献   

5.
More than a decade has passed since the first experiments using adenovirus-transduced cells expressing bone morphogenetic protein 2 were performed for the synthesis of bone. Since this time, the field of bone gene therapy has tackled many issues surrounding safety and efficacy of this type of strategy. We present studies examining the parameters of the timing of bone healing, and remodeling when heterotopic ossification (HO) is used for bone fracture repair using an adenovirus gene therapy approach. We use a rat fibula defect, which surprisingly does not heal even when a simple fracture is introduced. In this model, the bone quickly resorbs most likely due to the non-weight bearing nature of this bone in rodents. Using our gene therapy system robust HO can be introduced at the targeted location of the defect resulting in bone repair. The HO and resultant bone healing appeared to be dose dependent, based on the number of AdBMP2-transduced cells delivered. Interestingly, the HO undergoes substantial remodeling, and assumes the size and shape of the missing segment of bone. However, in some instances we observed some additional bone associated with the repair, signifying that perhaps the forces on the newly forming bone are inadequate to dictate shape. In all cases, the HO appeared to fuse into the adjacent long bone. The data collectively indicates that the use of BMP2 gene therapy strategies may vary depending on the location and nature of the defect. Therefore, additional parameters should be considered when implementing such strategies.  相似文献   

6.
Tissue engineering offers new strategies for developing treatments for the repair and regeneration of damaged and diseased tissues. These treatments, using living cells, will exploit new developments in understanding the principles in cell biology that control and direct cell function. Arthritic diseases that affect so many people and have a major impact on the quality of life provide an important target for tissue engineering. Initial approaches are in cartilage repair; in our own programme we are elucidating the signals required by chondrocytes to promote new matrix assembly. These principles will extend to other tissues of the musculoskeletal system, including the repair of bone, ligament and tendon.  相似文献   

7.
Bone morphogenetic proteins (BMPs) that have the potential to elicit new bone in vivo have been used in a tissue-engineering approach for the repair of bone injuries and bone defects. Although it is now possible to generate large amounts of recombinant human (rh) BMPs for medical use, the major challenge remains in the development of optimal local delivery systems for these proteins. Here we describe the development of a synthetic biodegradable polymer, poly-d,l-lactic acid-p-dioxanone-polyethylene glycol block copolymer (PLA-DX-PEG). This polymer exhibits promising degradation characteristics for BMP delivery systems and good biocompatibility under test conditions. PLA-DX-PEG/rhBMP-2 composite implants induced ectopic new bone formation effectively when tested in vivo, and can repair large bone defects orthotopically. This polymeric delivery system represents an advance in the technology for the enhancement of bone repair.  相似文献   

8.
Recombinant human bone morphogenetic proteins (rhBMPs) have been extensively investigated for developing therapeutic strategies aimed at the restoration and treatment of orthopaedic as well as craniofacial conditions. In this first part of the review, we discuss the rationale for the necessary use of carrier systems to deliver rhBMP-2 and rhBMP-7 to sites of bone tissue regeneration and repair. General requirements for growth factor delivery systems emphasizing the distinction between localized and release-controlled delivery strategies are presented highlighting the current limitations in the development of an effective rhBMP delivery system applicable in clinical bone tissue engineering.  相似文献   

9.
Nanotechnology is emerging as a field of applied science and technology. Synthesis of nanoparticles is done by various physical and chemical methods but the biological system is gaining attention as an eco-friendly technique. The biosynthetic method employing plant parts is proving as a simple and cost-effective method for the synthesis of nanoparticles. The present mini review focuses on the different systems utilized for the synthesis of nanoparticles with special emphasis on the use of plants for the synthesis process, its applications and future directions.  相似文献   

10.
This review summarizes recent efforts to create vascularized bone tissue in vitro and in vivo through the use of cell-based therapy approaches. The treatment of large and recalcitrant bone wounds is a serious clinical problem, and in the United States approximately 10% of all fractures are complicated by delayed union or non-union. Treatment approaches with the use of growth factor and gene delivery have shown some promise, but results are variable and clinical complications have arisen. Cell-based therapies offer the potential to recapitulate key components of the bone-healing cascade, which involves concomitant regeneration of vasculature and new bone tissue. For this reason, osteogenic and vasculogenic cell types have been combined in co-cultures to capitalize on the function of each cell type and to promote heterotypic interactions. Experiments in both two-dimensional and three-dimensional systems have provided insight into the mechanisms by which osteogenic and vasculogenic cells interact to form vascularized bone, and these approaches have been translated to ectopic and orthotopic models in small-animal studies. The knowledge generated by these studies will inform and facilitate the next generation of pre-clinical studies, which are needed to move cell-based orthopaedic repair strategies into the clinic. The science and application of cytotherapy for repair of large and ischemic bone defects is developing rapidly and promises to provide new treatment methods for these challenging clinical problems.  相似文献   

11.
For bone repair, transplantation of periosteal progenitor cells (PCs), which had been amplified within supportive scaffolds, is applied clinically. More innovative bone tissue engineering approaches focus on the in situ recruitment of stem and progenitor cells to defective sites and their subsequent use for guided tissue repair. Chemokines are known to induce the directed migration of bone marrow CD34(-) mesenchymal stem cells (MSCs). The aim of our study was to determine the chemokine receptor expression profile of human CD34(-) PCs and to demonstrate that these cells migrate upon stimulation with selected chemokines. PCs were isolated from periosteum of the mastoid bone and displayed a homogenous cell population presenting an MSC-related cell-surface antigen profile (ALCAM(+), SH2(+), SH3(+), CD14(-), CD34(-), CD44(+), CD45(-), CD90(+)). The expression profile of chemokine receptors was determined by real-time PCR and immunohistochemistry. Both methods consistently demonstrated that PCs express receptors of all four chemokine subfamilies CC, CXC, CX(3)C, and C. Migration of PCs and a dose-dependent migratory effect of the chemokines CCL2 (MCP1), CCL25 (TECK), CXCL8 (IL8), CXCL12 (SDF1alpha), and CXCL13 (BCA1), but not CCL22 (MDC) were demonstrated using a 96-multiwell chemotaxis assay. In conclusion, for the first time, here we report that human PCs express chemokine receptors, present their profile, and demonstrate a dose-dependent migratory effect of distinct chemokines on these cells. These results are promising towards in situ bone repair therapies based on guiding PCs to bone defects, and encourage further in vivo studies.  相似文献   

12.
13.
Cell therapy, i.e., the use of cells to repair an affected tissue or organ, is at the forefront of regenerative and personalized medicine. Among the multiple cell types that have been used for this purpose [including adult stem cells such as mesenchymal stem cells or pluripotent stem cells], urine-derived stem cells (USCs) have aroused interest in the past years. USCs display classical features of mesenchymal stem cells such as differentiation capacity and immunomodulation. Importantly, they have the main advantage of being isolable from one sample of voided urine with a cheap and unpainful procedure, which is broadly applicable, whereas most adult stem cell types require invasive procedure. Moreover, USCs can be differentiated into renal cell types. This is of high interest for renal cell therapy-based regenerative approaches. This review will firstly describe the isolation and characterization of USCs. We will specifically present USC phenotype, which is not an object of consensus in the literature, as well as detail their differentiation capacity. In the second part of this review, we will present and discuss the main applications of USCs. These include use as a substrate to generate human induced pluripotent stem cells, but we will deeply focus on the use of USCs for cell therapy approaches with a detailed analysis depending on the targeted organ or system. Importantly, we will also focus on the applications that rely on the use of USC-derived products such as microvesicles including exosomes, which is a strategy being increasingly employed. In the last section, we will discuss the remaining barriers and challenges in the field of USC-based regenerative medicine.  相似文献   

14.
This review is intended to focus attention on the importance of essential metallo-element metabolism, particularly copper metabolism, as an important component of normal bone metabolism in maintenance and repair. Literature published since Rademacher's early (1) astute observation that copper supplementation increases the rate of bone healing documents and explains key roles of copper-dependent processes required for maintenance and repair of this tissue. State of the art approaches to treatment of bone diseases including lengthening of bone and repair of fractures, can be improved by paying closer attention to the roles of copper and other essential metallo-elements required for optimal treatment.  相似文献   

15.
Polyhydroxyalkanoates (PHAs) are a class of biopolyesters that are synthesized intracellularly by microorganisms, mainly by different genera of eubacteria. These biopolymers have diverse physical and chemical properties that also classify them as biodegradable in nature and make them compatible to living systems. In the last two decades or so, PHAs have emerged as potential useful materials in the medical field for different applications owing to their unique properties. The lower acidity and bioactivity of PHAs confer them with minimal risk compared to other biopolymers such as poly-lactic acid (PLA) and poly-glycolic acid (PGA). Therefore, the versatility of PHAs in terms of their non-toxic degradation products, biocompatibility, desired surface modifications, wide range of physical and chemical properties, cellular growth support, and attachment without carcinogenic effects have enabled their use as in vivo implants such as sutures, adhesion barriers, and valves to guide tissue repair and in regeneration devices such as cardiovascular patches, articular cartilage repair scaffolds, bone graft substitutes, and nerve guides. Here, we briefly describe some of the most recent innovative research involving the use of PHAs in medical applications. Microbial production of PHAs also provides the opportunity to develop PHAs with more unique monomer compositions economically through metabolic engineering approaches. At present, it is generally established that the PHA monomer composition and surface modifications influence cell responses.PHA synthesis by bacteria does not require the use of a catalyst (used in the synthesis of other polymers), which further promotes the biocompatibility of PHA-derived polymers.  相似文献   

16.
Mesenchymal Stem Cells (MSCs) are a bone marrow-derived population present in adult tissues that possess the important property of dividing when called upon and of differentiating into specialized cells. The evidence that MSCs were able to transdifferentiate into specialized cells of tissues different from bone marrow, in particular into nervous cells, opened up the possibility of using MSCs to substitute damaged neurons, that are normally not replaced but lost, in order to repair the Nervous System. The first neuronal differentiation protocols were based on the use of a mixture of toxic drugs which induced MSCs to rapidly acquire a neuronal-like morphology with the expression of specific neuronal markers. However, many subsequent studies demonstrated that the morphological and molecular modifications of MSCs were probably due to a stress response, rather than to a real differentiation into neuronal cells, thus throwing into question the possible use of MSCs to repair the nervous system. Currently, some papers are suggesting again that it may be possible to induce neuronal differentiation of MSCs by using several differentiation protocols, and by accompanying the morphological evidence of differentiation with functional evidence, thus demonstrating that MSC-derived cells not only seem to be neurons, but that they also function like neurons. In this review, we have attempted to shed light on the capacity of MSCs to genuinely differentiate into nervous cells, and to identify the most reliable protocols for obtaining neurons from MSCs for nervous system repair.  相似文献   

17.
18.
Ecto-5′-nucleotidase (CD73) generates adenosine, an osteoblast activator and key regulator of skeletal growth. It is unknown, however, if CD73 regulates osteogenic differentiation during fracture healing in adulthood, and in particular how CD73 activity regulates intramembranous bone repair in the elderly. Monocortical tibial defects were created in 46–52-week-old wild type (WT) and CD73 knock-out mice (CD73?/?) mice. Injury repair was analyzed at post-operative days 5, 7, 14 and 21 by micro-computed tomography (micro-CT), histomorphometry, proliferating cell nuclear antigen (PCNA) immunostaining, alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) histochemistry. Middle-aged CD73 knock-out mice exhibited delayed bone regeneration and significantly reduced bone matrix deposition detected by histomorphometry and micro-CT. Cell proliferation, ALP activity and osteoclast number were reduced in the CD73?/? mice, suggesting a combined defect in bone formation and resorption due the absence of CD73 activity in this model of intramembranous bone repair. Results from this study demonstrate that osteoblast activation through CD73 activity is essential during bone repair in aging mice, and it may present a drugable target for future biomimetic therapeutic approaches that aim at enhancing bone formation in the elderly patients.  相似文献   

19.
The repair of double-stranded DNA breaks by homologous recombination is essential for maintaining genome integrity. Much of what we know about this DNA repair pathway in eukaryotes has been gleaned from genetics, in vivo experiments with GFP-tagged proteins and traditional biochemical experiments with purified proteins. However, many questions have remained inaccessible to these experimental approaches. Recent technological advances have made it possible to directly visualize the behaviors of individual DNA and protein molecules in vitro, and it is now becoming feasible to apply these technology-driven approaches to complex biochemical systems, such as those involved in the repair of damaged DNA. This report summarizes the use of total internal reflection fluorescence microscopy to probe fundamental aspects of protein-DNA interactions at the single-molecule level, and specific emphasis is placed on our efforts to develop new methods and techniques for studying DNA repair. Using these new approaches we are investigating the DNA-binding behavior of human Rad51 and we have recently demonstrated that this protein can slide on dsDNA via a one-dimensional random walk mechanism driven solely by thermal fluctuations of the surrounding solvent. Here, we highlight some possible implications of this recent finding, and we also briefly discuss the potential benefits of future single-molecule studies in the study of protein-DNA interactions and DNA repair.  相似文献   

20.
The clinical use of massive bone allografts in orthopaedic surgery has become common practice in tumour operations and primary and revision total joint replacement. In certain special clinical situations associated with large bone loss, such as trauma, limb-length discrepancy repair or even infection, massive bone allografts can be successfully used. We present our treatment results of 47 patients who suffered from major bone loss due either to trauma, limb-length discrepancy repair, or infection. Our results (>2 years minimum follow-up to allow full-bone allograft incorporation) indicate that the use of massive bone allografts in these special and delicate medical conditions is feasible, and have good functional results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号