首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ahnak is a ~?700 kDa polypeptide that was originally identified as a tumour-related nuclear phosphoprotein, but later recognized to play a variety of diverse physiological roles related to cell architecture and migration. A critical function of Ahnak is modulation of Ca2+ signaling in cardiomyocytes by interacting with the β subunit of the L-type Ca2+ channel (CaV1.2). Previous studies have identified the C-terminal region of Ahnak, designated as P3 and P4 domains, as a key mediator of its functional activity. We report here the nearly complete 1H, 13C and 15N backbone NMR chemical shift assignments of the 11 kDa C-terminal P4 domain of Ahnak. This study lays the foundations for future investigations of functional dynamics, structure determination and interaction site mapping of the CaV1.2-Ahnak complex.  相似文献   

2.
Poor chemical shift referencing, especially for 13C in protein Nuclear Magnetic Resonance (NMR) experiments, fundamentally limits and even prevents effective study of biomacromolecules via NMR, including protein structure determination and analysis of protein dynamics. To solve this problem, we constructed a Bayesian probabilistic framework that circumvents the limitations of previous reference correction methods that required protein resonance assignment and/or three-dimensional protein structure. Our algorithm named Bayesian Model Optimized Reference Correction (BaMORC) can detect and correct 13C chemical shift referencing errors before the protein resonance assignment step of analysis and without three-dimensional structure. By combining the BaMORC methodology with a new intra-peaklist grouping algorithm, we created a combined method called Unassigned BaMORC that utilizes only unassigned experimental peak lists and the amino acid sequence. Unassigned BaMORC kept all experimental three-dimensional HN(CO)CACB-type peak lists tested within ±?0.4 ppm of the correct 13C reference value. On a much larger unassigned chemical shift test set, the base method kept 13C chemical shift referencing errors to within ±?0.45 ppm at a 90% confidence interval. With chemical shift assignments, Assigned BaMORC can detect and correct 13C chemical shift referencing errors to within ±?0.22 at a 90% confidence interval. Therefore, Unassigned BaMORC can correct 13C chemical shift referencing errors when it will have the most impact, right before protein resonance assignment and other downstream analyses are started. After assignment, chemical shift reference correction can be further refined with Assigned BaMORC. These new methods will allow non-NMR experts to detect and correct 13C referencing error at critical early data analysis steps, lowering the bar of NMR expertise required for effective protein NMR analysis.  相似文献   

3.
1H NMR complexation-induced changes in chemical shift (CIS) of HN protons have been used to characterize the complexes of barnase with the deoxyoligonucleotides d(GC) and d(CGAC). Quantitative shift changes are used not only to locate the most probable binding site (using ring-current shifts), but also to determine the orientation of the ligand within the binding site, based on a more complete shift calculation including bond magnetic anisotropies and electric field effects. For both ligands, the guanine is in the same binding site cleft, in the same position as identified in the crystal structure of the d(CGAC) complex. By contrast, a previous X-ray crystal structure of the d(GC) complex showed the ligand in the mouth of the active site, rather than at the guanyl-specific site, implying that the location may be an artifact of the crystallisation process.  相似文献   

4.

Introduction

Despite the use of buffering agents the 1H NMR spectra of biofluid samples in metabolic profiling investigations typically suffer from extensive peak frequency shifting between spectra. These chemical shift changes are mainly due to differences in pH and divalent metal ion concentrations between the samples. This frequency shifting results in a correspondence problem: it can be hard to register the same peak as belonging to the same molecule across multiple samples. The problem is especially acute for urine, which can have a wide range of ionic concentrations between different samples.

Objectives

To investigate the acid, base and metal ion dependent 1H NMR chemical shift variations and limits of the main metabolites in a complex biological mixture.

Methods

Urine samples from five different individuals were collected and pooled, and pre-treated with Chelex-100 ion exchange resin. Urine samples were either treated with either HCl or NaOH, or were supplemented with various concentrations of CaCl2, MgCl2, NaCl or KCl, and their 1H NMR spectra were acquired.

Results

Nonlinear fitting was used to derive acid dissociation constants and acid and base chemical shift limits for peaks from 33 identified metabolites. Peak pH titration curves for a further 65 unidentified peaks were also obtained for future reference. Furthermore, the peak variations induced by the main metal ions present in urine, Na+, K+, Ca2+ and Mg2+, were also measured.

Conclusion

These data will be a valuable resource for 1H NMR metabolite profiling experiments and for the development of automated metabolite alignment and identification algorithms for 1H NMR spectra.
  相似文献   

5.
Isotope labeling by residue type (LBRT) has long been an important tool for resonance assignments at the limit where other approaches, such as triple-resonance experiments or NOESY methods do not succeed in yielding complete assignments. While LBRT has become less important for small proteins it can be the method of last resort for completing assignments of the most challenging protein systems. Here we present an approach where LBRT is achieved by adding protonated 14N amino acids that are 13C labeled at the carbonyl position to a medium for uniform deuteration and 15N labeling. This has three important benefits over conventional 15N LBRT in a deuterated back ground: (1) selective TROSY-HNCO cross peaks can be observed with high sensitivity for amino-acid pairs connected by the labeling, and the amide proton of the residue following the 13C labeled amino acid is very sharp since its alpha position is deuterated, (2) the 13C label at the carbonyl position is less prone to scrambling than the 15N at the α-amino position, and (3) the peaks for the 1-13C labeled amino acids can be identified easily from the large intensity reduction in the 1H-15N TROSY-HSQC spectrum for some residues that do not significantly scramble nitrogens, such as alanine and tyrosine. This approach is cost effective and has been successfully applied to proteins larger than 40 kDa. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Heavy water (H218O) has been used to label DNA of soil microorganisms in stable isotope probing experiments, yet no measurements have been reported for the 18O content of DNA from soil incubated with heavy water. Here we present the first measurements of atom% 18O for DNA extracted from soil incubated with the addition of H218O. Four experiments were conducted to test how the atom% 18O of DNA, extracted from Ponderosa Pine forest soil incubated with heavy water, was affected by the following variables: (1) time, (2) nutrients, (3) soil moisture, and (4) atom% 18O of added H2O. In the time series experiment, the atom% 18O of DNA increased linearly (R 2 = 0.994, p < 0.01) over the first 72 h of incubation. In the nutrient addition experiment, there was a positive correlation (R 2 = 0.991, p = 0.006) between the log10 of the amount of tryptic soy broth, a complex nutrient broth, added to soil and the log10 of the atom% 18O of DNA. For the experiment where soil moisture was manipulated, the atom% 18O of DNA increased with higher soil moisture until soil moisture reached 30%, above which 18O enrichment of DNA declined as soils became more saturated. When the atom% 18O for H2O added was varied, there was a positive linear relationship between the atom% 18O of the added water and the atom% 18O of the DNA. Results indicate that quantification of 18O incorporated into DNA from H218O has potential to be used as a proxy for microbial growth in soil.  相似文献   

7.
The linear analysis of chemical shifts (LACS) has provided a robust method for identifying and correcting 13C chemical shift referencing problems in data from protein NMR spectroscopy. Unlike other approaches, LACS does not require prior knowledge of the three-dimensional structure or inference of the secondary structure of the protein. It also does not require extensive assignment of the NMR data. We report here a way of extending the LACS approach to 15N NMR data from proteins, so as to enable the detection and correction of inconsistencies in chemical shift referencing for this nucleus. The approach is based on our finding that the secondary 15N chemical shift of the backbone nitrogen atom of residue i is strongly correlated with the secondary chemical shift difference (experimental minus random coil) between the alpha and beta carbons of residue i − 1. Thus once alpha and beta 13C chemical shifts are available (their difference is referencing error-free), the 15N referencing can be validated, and an appropriate offset correction can be derived. This approach can be implemented prior to a structure determination and can be used to analyze potential referencing problems in database data not associated with three-dimensional structure. Application of the LACS algorithm to the current BMRB protein chemical shift database, revealed that nearly 35% of the BMRB entries have δ 15N values mis-referenced by over 0.7 ppm and over 25% of them have δ 1HN values mis-referenced by over 0.12 ppm. One implication of the findings reported here is that a backbone 15N chemical shift provides a better indicator of the conformation of the preceding residue than of the residue itself. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
In protein NMR experiments which employ nonnative labeling, incomplete enrichment is often associated with inhomogeneous line broadening due to the presence of multiple labeled species. We investigate the merits of fractional enrichment strategies using a monofluorinated phenylalanine species, where resolution is dramatically improved over that achieved by complete enrichment. In NMR studies of calmodulin, a 148 residue calcium binding protein, 19F and 1H-15N HSQC spectra reveal a significant extent of line broadening and the appearance of minor conformers in the presence of complete (>95%) 3-fluorophenylalanine labeling. The effects of varying levels of enrichment of 3-fluorophenylalanine (i.e. between 3 and >95%) were further studied by 19F and 1H-15N HSQC spectra,15N T1 and T2 relaxation measurements, 19F T2 relaxation, translational diffusion and heat denaturation experiments via circular dichroism. Our results show that while several properties, including translational diffusion and thermal stability show little variation between non-fluorinated and >95% 19F labeled samples, 19F and 1H-15N HSQC spectra show significant improvements in line widths and resolution at or below 76% enrichment. Moreover, high levels of fluorination (>80%) appear to increase protein disorder as evidenced by backbone 15N dynamics. In this study, reasonable signal to noise can be achieved between 60–76% 19F enrichment, without any detectable perturbations from labeling.  相似文献   

9.
Thioredoxins (Trx) are ubiquitous proteins that regulate several biochemical processes inside the cell. Trx is an important player, displaying oxidoreductase activity and helping to keep and regulate the oxidative state of the cellular environment. Trx also participates in the regulation of many cellular functions, such as DNA synthesis, protection against oxidative stress, cell cycle and signal transduction. The oxidized Trx is the target for another set of proteins, such as thioredoxin reductase (TrR), which used the reductive potential of NADPH. The oxidized state of Trx also plays important role in regulation of redox state in the cells. In this regard, the oxidized form of Trx is a putative conformer that contributes to the cellular redox environment. Here we report the chemical shift assignments (1H, 13C and 15N) in solution at 15 °C. We also showed the secondary structure analysis of the oxidized form of yeast thioredoxin (yTrx1) as basis for future NMR studies of protein–target interactions and dynamics. The assignment was done at low concentration (200 µM) because it is important to keep intact the water cavity.  相似文献   

10.
11.
We compare the computed on the base of quantum mechanical-molecular mechanical (QM/MM) modeling kinetic isotope effects (KIEs) for a series of the 18O-labeled substrates in enzymatic hydrolysis of guanosine triphosphate (GTP) with those measured experimentally. Following the quantitative structure-activity relationship concept, we introduce the correlation between KIEs and structure of substrates with the help of a labeling index, which also aids better imaging of presentation of both experimental and theoretical data. An evident correlation of the computed and measured KIEs provides support to the predominantly dissociative-type reaction mechanism of enzymatic GTP hydrolysis predicted in QM/MM simulations.  相似文献   

12.
13.
Calcineurin (CaN) plays an important role in T-cell activation, cardiac system development and nervous system function. Previous studies have demonstrated that the regulatory domain (RD) of CaN binds calmodulin (CaM) towards the N-terminal end. Calcium-loaded CaM activates the serine/threonine phosphatase activity of CaN by binding to the RD, although the mechanistic details of this interaction remain unclear. It is thought that CaM binding at the RD displaces the auto-inhibitory domain (AID) from the active site of CaN, activating phosphatase activity. In the absence of calcium-loaded CaM, the RD is disordered, and binding of CaM induces folding in the RD. In order to provide mechanistic detail about the CaM–CaN interaction, we have undertaken an NMR study of the RD of CaN. Complete 13C, 15N and 1H assignments of the RD of CaN were obtained using solution NMR spectroscopy. The backbone of RD has been assigned using a combination of 13C-detected CON-IPAP experiments as well as traditional HNCO, HNCA, HNCOCA and HNCACB-based 3D NMR spectroscopy. A 15N-resolved TOCSY experiment has been used to assign Hα and Hβ chemical shifts.  相似文献   

14.
A systematic comparison of 4-[18F]fluorobenzaldehyde-O-(2-{2-[2-(pyrrol-2,5-dione-1-yl)ethoxy]-ethoxy}-ethyl)oxime ([18F]FBOM) and 4-[18F]fluorobenzaldehyde-O-[6-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-hexyl]oxime ([18F]FBAM) as prosthetic groups for the mild and efficient 18F labeling of cysteine-containing peptides and proteins with the amine-group reactive acylation agent, succinimidyl-4-[18F]fluorobenzoate ([18F]SFB), is described. All three prosthetic groups were prepared in a remotely controlled synthesis module. Synthesis of [18F]FBOM and [18F]FBAM was accomplished via oxime formation through reaction of appropriate aminooxy-functionalized labeling precursors with 4-[18F]fluorobenzaldehyde. The obtained radiochemical yields were 19% ([18F]FBOM) and 29% ([18F]FBAM), respectively. Radiolabeling involving [18F]FBAM and [18F]FBOM was exemplified by the reaction with cysteine-containing tripeptide glutathione (GSH), a cysteine-containing dimeric neurotensin derivative, and human native low-density lipoprotein (nLDL) as model compounds. Radiolabeling with the acylation agent [18F]SFB was carried out using a dimeric neurotensin derivative and nLDL. Both thiol-group reactive prosthetic groups show significantly better labeling efficiencies for the peptides in comparison with the acylation agent [18F]SFB. The obtained results demonstrate that [18F]FBOM is especially suited for the labeling of hydrophilic cysteine-containing peptides, whereas [18F]FBAM shows superior labeling performance for higher molecular weight compounds as exemplified for nLDL apolipoprotein constituents. However, the acylation agent [18F]SFB is the preferred prosthetic group for labeling nLDL under physiological conditions.  相似文献   

15.
Performance of 18 DFT functionals (B1B95, B3LYP, B3PW91, B97D, BHandHLYP, BMK, CAM-B3LYP, HSEh1PBE, M06-L, mPW1PW91, O3LYP, OLYP, OPBE, PBE1PBE, tHCTHhyb, TPSSh, wB97xD, VSXC) in combinations with six basis sets (cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, aug-cc-pVTZ, IGLO-II, and IGLO-III) and three methods for calculating magnetic shieldings (GIAO, CSGT, IGAIM) was tested for predicting 1H and 13C chemical shifts for 25 organic compounds, for altogether 86 H and 88 C atoms. Proton shifts varied between 1.03 ppm to 12.00 ppm and carbon shifts between 7.87 ppm to 209.28 ppm. It was found that the best method for calculating 13C shifts is PBE1PBE/aug-cc-pVDZ with CSGT or IGAIM approaches (mae?=?1.66 ppm), for 1H the best results were obtained with HSEh1PBE, mPW1PW91, PBE1PBE, CAM-B3LYP, and B3PW91 functionals with cc-pVTZ basis set and with CSGT or IGAIM approaches (mae?=?0.28 ppm). We found that often larger basis sets do not give better results for chemical shifts. The best basis sets for calculating 1H and 13C chemical shifts were cc-pVTZ and aug-cc-pVDZ, respectively. CSGT and IGAIM NMR approaches can perform really well and are in most cases better than popular GIAO approach.
Graphical Abstract Mean absolute errors for 1H and 13C chemical shifts and computational times of neutral toluene molecule with aug-cc-pVDZ basis set and CSGT approach
  相似文献   

16.
Human uracil N-glycosylase isoform 2—UNG2 consists of an N-terminal intrinsically disordered regulatory domain (UNG2 residues 1–92, 9.3 kDa) and a C-terminal structured catalytic domain (UNG2 residues 93–313, 25.1 kDa). Here, we report the backbone 1H, 13C, and 15N chemical shift assignment as well as secondary structure analysis of the N-and C-terminal domains of UNG2 representing the full-length UNG2 protein.  相似文献   

17.
The Y145Stop prion protein (PrP23-144), which has been linked to the development of a heritable prionopathy in humans, is a valuable in vitro model for elucidating the structural and molecular basis of amyloid seeding specificities. Here we report the sequential backbone and side-chain 13C and 15N assignments of mouse and Syrian hamster PrP23-144 amyloid fibrils determined by using 2D and 3D magic-angle spinning solid-state NMR. The assigned chemical shifts were used to predict the secondary structures for the core regions of the mouse and Syrian hamster PrP23-144 amyloids, and the results compared to those for human PrP23-144 amyloid, which has previously been analyzed by solid-state NMR techniques.  相似文献   

18.
Inconsistent 13C and 15N chemical shift referencing is a continuing problem associated with protein chemical shift assignments deposited in BioMagResBank (BMRB). Here we describe a simple and robust approach that can quantitatively determine the 13C and 15N referencing offsets solely from chemical shift assignment data and independently of 3D coordinate data. This novel structure-independent approach permitted the assessment and determination of 13C and 15N reference offsets for all protein entries deposited in the BMRB. Tests on 452 proteins with known 3D structures show that this structure-independent approach yields 13C and 15N referencing offsets that exhibit excellent agreement with those calculated on the basis of 3D structures. Furthermore, this protocol appears to improve the accuracy of chemical shift-derived secondary structural identification, and has been formally incorporated into a computer program called PSSI (http//www.pronmr.com).Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s10858-004-7441-3  相似文献   

19.
The major virulence factor of enterotoxigenic Escherichia coli is the heat-labile enterotoxin (LT), an AB5 toxin closely related to the cholera toxin. LT consists of six subunits, the catalytically active A-subunit and five B-subunits arranged as a pentameric ring (LTB), which enable the toxin to bind to the epithelial cells in the intestinal lumen. LTB has two recognized binding sites; the primary binding site is responsible for anchoring the toxin to its main receptor, the GM1-ganglioside, while the secondary binding site recognizes blood group antigens. Herein, we report the 1H, 13C, 15N main chain assignment of LTB from human isolates (hLTB; 103 a.a. per subunit, with a total molecular mass of 58.5 kDa). The secondary structure was predicted based on 13C′, 13Cα, 13Cβ, 1HN and 15N chemical shifts and compared to a published crystal structure of LTB. Neolactotetraose (NEO) was titrated to hLTB and chemical shift perturbations were measured. The chemical shift perturbations were mapped onto the crystal structure, confirming that NEO binds to the primary binding site of hLTB and competes with GM1-binding. Our new data further lend support to the hypothesis that binding at the primary binding site is transmitted to the secondary binding site of the toxin, where it may influence the binding to blood group antigens.  相似文献   

20.
The changes in relative polyphosphate content, estimated as the intensity ratio of core polyphosphate signal and intracellular inorganic phosphate signal from 31P NMR spectra, during the growth of Phycomyces blakesleeanus are reported. The ratio increases from 16 h to 28 h of growth, the minimum occurs at 32 h, followed by sharp increase up to 36 h, and a steady decrease afterwards. The changes in the biomass during mycelium growth showed steady increases, with a stagnation period between 32 h and 36 h during which a pronounced increase in the intensity ratio of core polyphosphates to intracellular inorganic phosphate signal occurred. The reduction of growth temperature from 22°C to 18°C significantly decreased the rate and intensity of growth, but the pattern of polyphosphate changes remained unchanged. The changes of the intensity ratio of core polyphosphates to intracellular inorganic phosphate signal are linked to characteristic stages of sporangiophore development. Analysis of core polyphosphates, intracellular inorganic phosphate and β-ATP signal intensities suggest the role of polyphosphates as an energy and/or a phosphate reserves during Phycomyces development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号