首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Complete sequence of the lamprey fibrinogen alpha chain   总被引:5,自引:0,他引:5  
The complete amino acid sequence of the lamprey fibrinogen alpha chain has been determined by a combination of peptide sequencing and cDNA and genomic cloning. The chain, which has an apparent molecular weight by dodecyl sulfate-polyacrylamide gel electrophoresis of ca. 100,000, is composed of 961 amino acid residues and has a calculated molecular weight of 96,722. It is distinguished by a large number of 18-residue repeats in a region where mammalian fibrinogens have 13-residue repeats. The data are in accord with our previous finding that the lamprey alpha chain has a distinctive amino acid composition, almost half the residues being glycine, serine, or threonine. The chain differs from mammalian alpha chains in that there are no cysteines in the carboxy-terminal half, and thus no intrachain loop, nor are there any RGD sequences in the lamprey alpha chain. Taken together with previous data on the sequences of the beta and gamma chains, the findings bear significantly on our understanding of fibrin formation. The alpha chain also provides an interesting case of structural convergence during evolution.  相似文献   

2.
D W Chung  E W Davie 《Biochemistry》1984,23(18):4232-4236
cDNAs and the genomic DNA coding for the gamma and gamma' chains of human fibrinogen have been isolated and characterized by sequence analysis. The cDNAs coding for the gamma and gamma' chains share a common nucleotide sequence coding for the first 407 amino acid residues in each polypeptide chain. The predominant gamma chain contains an additional four amino acids on its carboxyl-terminal end (residues 408-411). These four amino acids, together with the 3' noncoding sequences, are encoded by the tenth exon. Removal of the ninth intervening sequence following the processing and polyadenylation reactions yields a mature mRNA coding for the predominant gamma chain. The less prevalent gamma' chain contains 20 amino acids at its carboxyl-terminal end (residues 408-417). These 20 amino acids are encoded by the immediate 5' end of the ninth intervening sequence. This results from an occasional processing and polyadenylation reaction that occurs within the region normally constituting the ninth intervening sequence. Accordingly, the gene for the gamma chain of human fibrinogen gives rise to two mRNAs that differ in sequence on their 3' ends. These mRNAs code for polypeptide chains with different carboxyl-terminal sequences. Both of these polypeptides are incorporated into the fibrinogen molecule present in plasma.  相似文献   

3.
The beta chain of human fibrinogen contains 461 amino acid residues, 15 of which are methionines. The calculated molecular weight, independent of a single carbohydrate cluster, is 52 230. In this regard, we have isolated and characterized all 16 cyanogen bromide fragments. In one case (CNI), we have concentrated on a disputed portion of a previously reported fragment. The arrangement of the cyanogen bromide peptides was deduced by the use of overlap fragments obtained from the tryptic digestion of modified and unmodified beta-chains and from digestions with staphylococcal protease, as well as by considerations involving the plasmic digestion products of fibrinogen. In one case two adjacent fragments were aligned by homology with the corresponding segments of the gamma chain. The homology of the beta chain with the gamma chain is especially strong over the course of the carboxy-terminal two-thirds of the sequence. Neither of these chains appears to be homologous with the alpha chain in these regions. With a few minor exceptions, the sequence reported in this article is in agreement with data reported by other groups in Stockholm and Munich.  相似文献   

4.
Doolittle RF  Pandi L 《Biochemistry》2007,46(35):10033-10038
In a recent report, we showed that alanine can replace glycine at the amino terminus of synthetic B-knobs that bind to human fibrin(ogen). We now report a survey of 13 synthetic peptides with the general sequence XHRPYam, all tested with regard to their ability to delay fibrinolysis in an in vitro system activated by t-PA, the results being used as measures of binding affinity to the betaC hole. Unexpectedly, some large and bulky amino acids, including methionine and arginine, are effective binders. Amino acids that branch at the beta carbon (valine, isoleucine, and threonine) do not bind effectively. Crystal structures were determined for two of the peptides (GHRPYam and MHRPYam) complexed with fibrin fragment D-dimer; the modeling of various other side chains showed clashing in the cases of beta-carbon substituents. The two crystal structures also showed that the enhanced binding observed with pentapeptides with carboxyl-terminal tyrosine, compared with that of their tetrapeptide equivalents, is attributable to an interaction between the tyrosine side chain and a guanidino group of a nearby arginine (beta406). The equivalent position in gamma-chains of human fibrin(ogen) is occupied by a lysine (gamma338), but in chicken and lamprey fibrin(ogen), it is an arginine, just as occurs in beta chains. Accordingly, the peptides GPRPam and GPRPYam, which are surrogate A-knobs, were tested for their influence on fibrin polymerization with fibrinogen from lamprey and humans. In lampreys, GPRPYam is a significantly better inhibitor, but in humans, it is less effective than GPRPam, indicating that in the lamprey system the same tyrosine-arginine interaction can also occur in the gamma-chain setting.  相似文献   

5.
The complete amino acid sequence of the alpha chain of human fibrinogen has been determined. It contains 610 amino acid residues and has a calculated molecular weight of 66,124. The chain has 10 methionines, and fragmentation with cyanogen bromide yields 11 peptides [Doolittle, R.F., Cassman, K.G., Cottrell, B.A., Friezner, S.J., Hucko, J.T., & Takagi, T. (1977) Biochemistry 16, 1703]. The arrangement of the 11 fragments was determined by the isolation of peptide overlaps from plasmic and staphylococcal protease digests of fibrinogen and/or alpha chains. In addition, certain of the cyanogen bromide fragments, preliminary reports of whose sequences have appeared previously, have been reexamined in order to resolve several discrepancies. The alpha chain is homologous with the beta and gamma chains of fibrinogen, although a large repetitive segment of unusual composition is absent from the latter two chains. The existence of this unusual segment divides the sequence of the alpha chain into three zones of about 200 residues each that are readily distinguishable on the basis of amino acid composition alone.  相似文献   

6.
In order to study thrombin interaction with fibrinogen, thrombin binding to fragments D and E (prepared by plasmin digestion of fibrinogen) and to intact S-carboxymethylated chains of fibrinogen (A alpha, B beta, and gamma) was analyzed by autoradiography, immunoblotting, and affinity chromatography. Complex formation was observed between late fragment E and thrombin but not with fragment D. The three reduced chain remnants of fragment E all formed complexes with thrombin. Also, thrombin bound to the intact, separated A alpha, B beta, and gamma chains of fibrinogen as well as to the alpha and beta chains of fibrin. In these experiments the extended substrate-binding site, but not the catalytic-binding site, was being examined because fragment E had as its amino-terminal amino acids Val20 in the alpha chain, Lys54 in the beta chain, and Tyr1 in the gamma chain. Also, thrombin inhibited in its active center by D-phenyl-alanyl-L-prolyl-L-arginine-chloromethyl ketone bound to fragment E and to the separated chains in the same manner as unmodified thrombin. A lysine residue to thrombin was essential for its binding to fibrinogen. Thrombin attached to CNBr-activated Sepharose through its amino groups did not bind to fragment E, but when thrombin was attached through its carboxyl groups, it bound fragment E.  相似文献   

7.
A new procedure is described for the isolation of the alpha and beta chains of the hormone. In this method, thenative hormone is incubated in acidic urea and the chains are then separated by ion-exchange chromatography. The amino-terminal residue of the alpha subunit is valine. The carboxy-terminal end of the alpha subunit is of variable length. No amino-terminal residue was detected for the beta chain; glycine was found at its carboxy-terminal end by the selective titration method. The amino acid and carbohydrate compositions of the hormone and both subunits are presented. The beta chain contains sialic acid and is devoid of galactosamine in contrast to the beta subunits of other species. Contamination of our human lutenizing hormone preparation by other pituitary glycoprotein hormones such as thyroid-stimulating hormone and follicle-stimulating hormone amounted to 0.5 and 0.25 percent by weight respectively. Cross-contamination of the initial alpha and beta subunit preparations was measured by specific radioimmunoassays and amounted to 4.1 and 2 percent by weight respecitively. Further extensive purification of these subunit preparations was then performed by means of affinity chromatography using immunosorbants. The final preparations exhibited a residual cross-contamination amounting to 0.2 and 0.02 percent by weight for the alpha and beta subunits respectively.  相似文献   

8.
Fragment D has been isolated as an apparently single molecular weight species (molecular weight about 100,000) from plasmin digests of humman fibrinogen, using a combination of affinity chromatography on insolubilized "fibrin monomer" and gel filtration. This fragment consists of three chains with molecular weights of 15,000 (Dbeta), 42,500 (Dgamma1) or 39,500 (Dgamma2), and 14,000 (Dalpha) held together by disulfide bonds. The S-carboxymethyl derivatives of the chains have been separated by gel filtration and ion exchange chromatography, and their identity has been confirmed by peptide mapping and immunological analysis. The chain with a molecular weight of 45,000 is a fragment of the Bbeta chain of fibrinogen. The chain derived from the gamma chain of fibrinogen occurred in two molecular forms having molecular weight 42,500 and 39,500. The chain derivative with molecular weight 14,000 is most likely derived from the Aalpha chain of fibrinogen. The chains were characterized by NH2-terminal sequence analysis, amino acid composition, and carbohydrate staining. The two molecular analysis, amino acid composition, and carbohydrate staining. The two molecular forms of the gamma chain appeared to be identical except for an NH2-terminal peptide extension of 23 amino acid residues in the longer chain. The latter has sequences in common with the COOH-terminal part of the gamma chain of the NH2-terminal disulfide knot (BROMBACK, B., BRONDAHL, N. J., HESSEL, B., IWANAGA, S., and WALLEN, P. (1973) J. Biol. Chem. 248, 5806-5820); its NH2-terminal residue being Ala-63 of the gamma chain of fibrinogen.  相似文献   

9.
The properties of porcine follitropin and its subunits which have not yet been characterized are presented. The porcine follitropin obtained has a biological potency of 81 times the National Institutes of Health Porcine Follitropin P-1 preparation. Its contamination by lutropin and thyrotropin amounted to 1 and 0.5 percent by weight respectively, as measured by radioimmunoassay. The alpha and beta subunits of porcine follitropin were obtained by incubation in an acidic urea solution followed by anion exchange chromatography. The amino acid composition of porcine follitropin alpha subunit was found to be identical to that of alpha chain of porcine lutropin and thyrotropin. These porcine alpha chains differ, nevertheless, markedly in their carbohydrate composition particularly with respect to their mannose and galactose contents. The amino-terminal residue of the follitropin alpha subunit is threonyl. The carboxy-terminal end of the alpha chain is of variable length. Cysteyl residue was detected at the aminoterminal end of the follitropin beta chain with glutamic acid at its carboxy-terminal end. Cross-contamination of the alpha and beta subunit preparations was measured by specific radioimmunoassay and amounted to 0.5 and 0.1 percent by weight respectively.  相似文献   

10.
The cyanogen bromide fragment, N-DSK, containing the NH2-terminal portions of the three chains of fibrinogen, was found to exist in dimeric and polymeric forms. These different forms gave rise to identical chain fragments on reduction and alkylation. The B beta chain of N-DSK from fibrinogen and the beta chain of N-DSK from fibrin were isolated and characterized. The B beta chain fragment has a blocked NH2-terminal residue, and fibrinopeptide B is released on digestion with thrombin. The beta chain fragment has glycine as NH2-terminal residue. The molecular weight of the B beta chain fragment is 12200 as determined by ultracentrifugal analysis. Gel electrophoresis in sodium dodecyl sulphate gave the molecular weights of 14000 and 13000 for the B beta chain and beta chain fragments, respectively. The NH2-terminal B beta chain fragment consists of 118 amino acid residues and the beta chain fragment of 104 residues. The amino acid sequence of beta chain fragment is identical to B beta chain fragment except for the fibrinopeptide B portion. The isolation of a B beta-related fragment (B beta +), with a molecular weight of 30000, is also reported. The presence of B beta + was explained on the basis of incomplete cleavage at the Met-118 residue during treatment with cyanogen bromide. Some functional aspects of the B beta chain fragment are discussed.  相似文献   

11.
Human fibrinogen exposed to protease III from Crotalus atrox venom is cleaved near the NH2 terminus of the B beta chain yielding a species of Mr 325,000 (Fg325) with impaired thrombin clottability. The derivative was compared with intact fibrinogen in a number of ways to determine whether the functional defect resulted from a conformational change or from the loss of a polymerization site. NH2-terminal amino acid sequencing of isolated A alpha, B beta, and gamma chains showed that Fg325 contained intact A alpha and gamma chains, but differed from fibrinogen by the absence of the first 42 residues of the B beta chain. Fibrinopeptide A was present and was cleaved at the same rate in both fibrinogen and Fg325. The rate and extent of A alpha and gamma cross-linking by factor XIIIa was also indistinguishable. In contrast, the thrombin-catalyzed coagulation of Fg325 was 46% less in extent and 180-fold slower than observed for intact fibrinogen. A conformational comparison of Fg325 and fibrinogen was made using immunochemical and spectroscopic approaches. Antisera specific for different regions of the fibrinogen molecule were used to characterize the epitopes in Fg325. The only significant differences were found in the NH2-terminal region of the B beta chain, probed with antiserum to B beta 1-118. The conformational similarity of Fg325 and fibrinogen was confirmed by the identity of both near and far UV CD spectra of the two proteins. Structural, functional, and immunochemical results imply that cleavage of 42 NH2-terminal residues from the B beta chain is not accompanied by a measurable conformational change. The residues of this B beta chain segment, which are evidently located on the surface of the molecule, in conjunction with the NH2-terminal part of the A alpha chain appear to play an important role in the expression of a fibrin polymerization site.  相似文献   

12.
The amino acid sequences of the Fd fragments of two human pathological immunoglobulins of the immunoglobulin G1 class are reported. Comparison of the two sequences shows that the heavy-chain variable regions are similar in length to those of the light chains. The existence of heavy chain variable region subgroups is also deduced, from a comparison of these two sequences with those of another gamma 1 chain, Eu, a mu chain, Ou, and the partial sequence of a fourth gamma 1 chain, Ste. Carbohydrate has been found to be linked to an aspartic acid residue in the variable region of one of the gamma 1 chains, Cor.  相似文献   

13.
Biosynthesis of the alpha and beta chains of rabbit and human adult hemoglobin is initiated with a methionyl residue, which is removed during elongation of the peptide chain. To study the initiation of biosynthesis of the delta chain of human fetal hemoglobin, fresh placental blood was used for labeling experiments with radioactive amino acids. Labeled nascent peptide chains were purified from the polysomal fraction of placental blood reticulocytes. The number of amino acid residues in nascent gamma chain at the time of removal of its N-terminal methionine was estimated to be 40--60 from the relative yields of labeled tryptic peptides.  相似文献   

14.
Laminins are the major cell-adhesive proteins in the basement membrane, consisting of three subunits termed alpha, beta, and gamma. The putative binding site for integrins has been mapped to the G domain of the alpha chain, although trimerization with beta and gamma chains is necessary for the G domain to exert its integrin binding activity. The mechanism underlying the requirement of beta and gamma chains in integrin binding by laminins remains poorly understood. Here, we show that the C-terminal region of the gamma chain is involved in modulation of the integrin binding activity of laminins. We found that deletion of the C-terminal three but not two amino acids within the gamma1 chain completely abrogated the integrin binding activity of laminin-511. Furthermore, substitution of Gln for Glu-1607, the amino acid residue at the third position from the C terminus of the gamma1 chain, also abolished the integrin binding activity, underscoring the role of Glu-1607 in integrin binding by the laminin. We also found that the conserved Glu residue of the gamma2 chain is necessary for integrin binding by laminin-332, suggesting that the same mechanism operates in the modulation of the integrin binding activity of laminins containing either gamma1 or gamma2 chains. However, the peptide segment modeled after the C-terminal region of gamma1 chain was incapable of either binding to integrin or inhibiting integrin binding by laminin-511, making it unlikely that the Glu residue is directly recognized by integrin. These results, together, indicate a novel mechanism operating in ligand recognition by laminin binding integrins.  相似文献   

15.
Fibrinogen chains are assembled in a stepwise manner in the rough endoplasmic reticulum prior to secretion of the final six-chain dimeric molecule. Previous studies indicated that the synthesis of B beta may be a rate-limiting factor in the assembly of human fibrinogen. To determine the domains of B beta which interact with the other two component chains of fibrinogen, deletion mutants of B beta were transiently co-expressed, together with A alpha and gamma chains, in COS cells, and fibrinogen assembly and secretion were measured. Deletion of the COOH-terminal half of the B beta chain (amino acids 208-461) did not affect assembly and secretion. Assembly of A alpha, gamma, and B beta also occurred when the first NH2-terminal 72 amino acids of B beta were deleted, but not when 93 amino acids were deleted. This indicates that the B beta domain between amino acids 73 and 93 is necessary for the assembly of the three fibrinogen chains. This domain marks the start of the alpha-helical "coiled-coil" region of fibrinogen.  相似文献   

16.
cDNA coding for preproglobulin beta, a precursor protein of 11-S globulin beta subunit, was cloned and the nucleotide sequence has been determined. The sequence covers the whole coding region (1440 base pairs) with 5' and 3' noncoding region (30 and 214 base pairs, respectively). The deduced amino acid sequence of preproglobulin beta consists of a 21-amino-acid N-terminal signal peptide, preceding the acidic gamma polypeptide region (275 amino acids) and the subsequent basic delta region (184 amino acids). The site for post-translational cleavage of the precursor polypeptide to make the gamma and delta chains is estimated to be located between the asparagine-glycine residues. The N-terminal amino acid of the gamma chain of mature 11-S globulin beta subunit was reported to be blocked by 5-oxoproline (pyroglutamic acid) [Ohmiya et al. (1980) Plant Cell Physiol. 21, 157-167]. It was shown that the blocked N-terminal amino acid is coded as a glutamine residue. The derived amino acid sequence was also compared with those of precursor proteins of other 11-S globulins such as soybean glycinin, cotton beta globulin, pea legumin and rape 11-S globulin by dot matrix analysis.  相似文献   

17.
The role of the single carbohydrate moiety present on the HLA-A2 molecule was studied by introducing several amino acid substitutions (by site-directed mutagenesis of the HLA-A2 gene) in the consensus glycosylation sequence Asn-X-Ser. Two different amino acid substitutions of the asparagine residue at position 86 (glutamine and aspartic acid) resulted in the synthesis of ca. 39,000-molecular-weight nonglycosylated heavy chains that were detected in the cytoplasm but not on the surface of mouse L-cell transfectants. However, a low level of surface expression was detected following transfection of human (rhabdomyosarcoma) cells or mouse L cells containing human beta 2-microglobulin. The defect in surface expression was not due to the absence of the glycan moiety, since the substitution of a glycine for a serine at amino acid 88 did not have the same drastic effect in the presence of human beta 2-microglobulin. These and other data suggest that the asparagine residue may play a critical role in the conformation of the HLA heavy chain and its interaction with beta 2-microglobulin. Immunofluorescence microscopy following permeabilization of the transfectants demonstrated that the unglycosylated HLA heavy chains are sequestered in an unidentified cellular compartment that is different from the Golgi structure.  相似文献   

18.
G R Crabtree  J A Kant 《Cell》1982,31(1):159-166
In a variety of species, including rodents and man, the gamma chain of fibrinogen consists of two nonallelic forms, called gamma A and gamma B, or gamma and gamma '. We have found that these two fibrinogen gamma chains in the rat arise by translation of two mRNAs of 1700 and 2200 nucleotides, which are produced from a single gene by alternative splice patterns. The more abundant, gamma A chain mRNA is 1561 nucleotides long, excluding the polyadenylated region, and encodes a protein 83% homologous with the human gamma A chain. A hydrophobic "signal" polypeptide of 25 amino acids is present at the amino terminus. The gamma B (gamma ') mRNA is identical with the gamma A sequence with the exception of a 513 bp insert located 202 bp from the poly(A) extension. This 513 bp insert is identical to the seventh and final intron of the gamma-fibrinogen gene, and is located four codons prior to the termination codon for the gamma A chain. Translation into this sequence produces a unique 12 amino acid carboxylterminus in the rat gamma B (gamma ') polypeptide that is homologous with the known carboxylterminus of the human gamma B (gamma ') chain.  相似文献   

19.
Previous studies indicated that synthesis of B beta chain may be a rate-limiting factor in the production of human fibrinogen since Hep G2 cells contain surplus pools of A alpha and gamma but not of B beta chains, and fibrinogen assembly commences by the addition of preformed A alpha and gamma chains to nascent B beta chains attached to polysomes. To test whether B beta chain synthesis is rate limiting Hep G2 cells were transfected with B beta cDNA, and its effect on fibrinogen synthesis and secretion was measured. Two sets of stable B beta cDNA-transfected Hep G2 cells were prepared, and both cell lines synthesized 3-fold more B beta chains than control cells. The B beta-transfected cells also synthesized and secreted increased amounts of fibrinogen. Transfection with B beta cDNA not only increased the synthesis of B beta chain but also increased the rate of synthesis of the other two component chains of fibrinogen and maintained surplus intracellular pools of A alpha and gamma chains. Transfection with B beta cDNA did not affect the synthesis of albumin, transferrin, or anti-chymotrypsin and had a small inhibitory effect on the synthesis of C-reactive protein. Taken together these studies demonstrate that increased B beta chain synthesis specifically causes increased production of the other two component chains of fibrinogen and that unequal and surplus amounts of A alpha and gamma chains are maintained intracellularly.  相似文献   

20.
Class II histocompatibility DR antigen alpha and beta chains were isolated from preparations of human T-cell lymphotropic virus type III grown in human H-9 cells. The proteins were purified by reversed-phase high-pressure liquid chromatography and identified by direct N-terminal amino acid sequence analysis of each chain. The purified DR alpha chain had an N-terminal amino acid sequence identical to the known sequence of human DR alpha chain through the first 37 residues. The N-terminal amino acid sequence of the purified DR beta chain was identical to that of human DR4 beta chain. The DR alpha and beta chains appeared to be identical to the p34-36K and p30-32K proteins, respectively, concentrated in immunostimulatory complexes prepared from unfractionated virus and were the major immunogens in these complexes. These proteins represent a ready source of antigens which can cause false-positive enzyme-linked immunosorbent assay reactions in individuals previously exposed to allogenic histocompatibility antigens. The removal of the DR chains from virus preparations by use of available monoclonal antibodies or other means should result in a lower rate of initial false-positive enzyme-linked immunosorbent assay reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号