首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Competition causes regular spacing of alder in Alaskan shrub tundra   总被引:1,自引:0,他引:1  
Summary Alders (Alnus crispa) in shrub tundra in northern Alaska showed significant regularity of spacing. Removal of neighboring alder shrubs stimulated nutrient accumulation and growth of remaining alders but did not stimulate nutrient accumulation or growth of any other shrub species. This demonstrates that neighboring alders competed with one another and that, when alders were removed, the resources made available were used preferentially by remaining alders rather than by the community in general. Neither patterns of seedling establishment nor patterns of frostrelated features could explain the regular distribution of alder. We suggest that regular patterns of plant distribution are restricted to sites of low-resource availability, because in these habitats (1) there is strong competition for a scarce resource, and (2) there are only one or a few dominant species to compete for these resources in a given canopy height or rooting depth.  相似文献   

2.
Kaelke  C.M.  Dawson  J.O. 《Plant and Soil》2003,254(1):167-177
Alteration of natural flooding regimes can expose lowlands to waterlogged soil conditions during any month of the year. The seasonality of flooding may have profound effects on the carbon and nitrogen budgets of N-fixing alders (Alnus spp.), and in turn, may impact the C and N economy of extensive alder-dominated, wetland ecosystems, including those dominated by speckled alder (Alnus incana ssp. rugosa). To better understand this process, two-year-old, nodulated seedlings of speckled alder were subjected to late spring (May 10 – July 10), summer (July 10 – September 8), and fall (September 8 – November 8) flooding treatments. Alders were root-flooded outdoors in tanks containing an N-free nutrient solution and compared with unflooded alders at the experimental site. Flooding arrested N fixation, photosynthesis, and growth of alders without recovery in all flooding treatments for the remainder of the growing season. Late spring and summer flooding resulted in complete mortality of alders while all seedlings survived flooding in the fall. Fall flooding increased foliar N resorption by 140% over unflooded seedlings. Eighty-seven percent of the total N fixed and 89% of biomass accumulation for the entire growing season occurred in unflooded alders after July 10. In unflooded alders, nitrogen fixation rates per unit mass declined by 63% for nodules, 28% for leaves, and 48% for whole seedlings during the fall, while total N fixed per plant in the fall was similar to that fixed in the summer. The majority of newly fixed N in unflooded alders was allocated to leaves before September 8 and to roots/nodules combined after September 8. In unflooded plants, the greatest proportion of new biomass was partitioned to leaves before July 10, to stems between July 10 and September 8, and equally to stems and roots/nodules after September 8. Fall-flooded alders did not increase root or nodule biomass. Proportional allocation of plant resources were such that the ratio of N fixed to seedling growth of unflooded alders decreased by 19% during summer before rebounding by 6% in fall. Seasonality of flooding alters seedling survival, growth, and resource allocation, and may be a critical determinant of speckled alder recruitment and occurrence in wetlands.  相似文献   

3.
The effects of defoliation of alder (Alnus glutinosa) on subsequent herbivory by alder leaf beetle (Agelastica alni) were studied in ten alder stands in northern Germany. At each site, one tree was manually defoliated (c. 20% of total foliage) to simulate herbivory. Subsequent damage by A. alni was assessed on ten alders at each site on six different dates from May to September 1994. After defoliation, herbivory by A. alni increased with distance from the defoliated tree. Laboratory experiments supported the field results. Not only leaf damage in the field, but also the extent of leaf consumption in laboratory feeding-preference tests and the number of eggs oviposited per leaf in another laboratory test were positively correlated with distance from the defoliated tree. Resistance was therefore induced not only in defoliated alders, but also in their undamaged neighbours. Consequently, defoliation of alders may trigger interplant resistance transfer, and therefore reduce herbivory in whole alder stands.  相似文献   

4.
Buds and staminate catkins of alder (Alnus spp) form an important winter food for hazel grouse Bonasa bonasia in the Fennoscandian boreal forest Alder was found to be highly preferred over other deciduous trees, particularly alders ≥ 10 m tall and ≤15 m from spruce forest Winter territories were probably feeding territories, as size was correlated negatively with alder density and almost significantly correlated negatively with competitor density All winter territories were found to contain ample winter food resources for hazel grouse However, the distribution of territories was associated significantly with the distribution of alders at two levels of scale, the territory level and the landscape level Moreover, relationships between the abundance of alders and hazel grouse were found at two additional levels of scale the local patch level and the biogeographic region level This agreement of the results from four levels of scale strongly suggested that the abundance and distribution of alder was a major factor limiting hazel grouse winter territories within dense Norway spruce Picea abies forests in the boreal zone of Fennoscandia Alder was relatively uncommon and exhibited a clumped dispersion pattern at the local and landscape scales, being associated with wet and rich soils The close relationship to alder implies that hazel grouse winter habitats, even in natural forests, also should be distributed patchily Hazel grouse may select the catkins and buds of alder because it is a very nutntous food source, and small species, such as the hazel grouse, require more nutritious food than larger species  相似文献   

5.
Summary Nitrogen cycling was studied during the third growing season in pure and mixed plantings (33×33 cm spacing) of hybrid poplar and black alder in southeastern Canada. After 3 years, hybrid poplar growth and N content of living tissues in a plot and of individual hybrid poplar plants increased with the proportion of black alder in a planting. No differences were detected among N contents of individual alder plants regardless of plot treatment. Black alder allocated a larger portion of its N to roots than hybrid poplar. Symbiotic nitrogen fixation was estimated to account for 80% of the nitrogen in aboveground alder tissues in the pure treatment using natural15N dilution. N return in leaf litter was estimated to be 70kg ha–1 in the pure alder treatment and decreased to a minimum of 20 kg ha–1 in the pure hybrid poplar plots. No difference was detected among treatments for throughfall N content. Nitrogen concentration in roots and leaf litterfall of black alder was higher than hybrid poplar. Significant soil N accretion occurred in mixed plantings containing two alders to one poplar and pure black alder plantings. Nitrogen availability (NO3–N) increased with the amount of black alder in a plot. Results suggest that the early increase in nitrogen accumulation of hybrid poplar in mixed treatments can be attributed to an increase of total soil N availability resulting from the input of large amounts of N from easily mineralizable alder tissue.  相似文献   

6.
The purpose of this study was (i) to evaluate biomass productionand nitrogen utilization in grey alder and (ii) to investigatecarbon utilization in alders fixing nitrogen or supplied withnitrate. Two experiments were made, each using two groups ofalders (Alnus incana (L.) Moench) growing in a climate chamber.In each experiment one group was inoculated with a local sourceof Frankia. The other group was not inoculated but receivednitrate in the same amount as the first group fixed nitrogen.Therefore, the rate of nitrate application increased duringthe experimental period. Biomass production, growth, nitrogencontent and nitrogen utilization were determined in one experiment.Growth, nitrate reductase activity, net photosynthesis and rootrespiration were measured in the second experiment. In experimentone there was no significant difference in biomass productionbetween the two groups of plants. Of the nitrate given 99% wastaken up and 1% of this uptake was excreted in an organic form.In the second experiment the plant development was similar innodulated and non-nodulated alders during the period studied.Nitrate reductase activity was found in both root- and shoot-tipsof the non-nodulated alders. At both days 24 and 30, the amountof carbon respired compared to the amount of carbon assimilatedwas similar for the nodulated alders as for the non-nodulatedalders. As nitrogen fixation increased, photosynthesis alsoincreased. Thus, there was an inter-relationship between netphotosynthesis and nitrogen fixation. Key words: Alnus-Frankia symbioses, carbon utilization, nitrogen (N2 ) utilization  相似文献   

7.
The crown-association sampling method was developed to examine horizontal and vertical spatial associations in forest tree communities. We sampled tree crowns along line transects and recorded the lateral contact of neighboring crowns within the canopy and the vertical overlap of crowns between the understory and the canopy. Deviations from random association can be examined for lateral and vertical associations. It is also possible to compare the results for vertical overlap among study sites. Three natural mixed forests were sampled: a warm-temperate rainforest on Yakushima Island (southern Japan), and two cool-temperate mixed forests in Ohdaigahara (central Japan) and on the Shiretoko Peninsula (northern Japan).  相似文献   

8.
Surface waters in forested watersheds in the Adirondack Mountains and northern New York State are susceptible to nitrogen (N) saturation. Atmospheric deposition of N to watersheds in this region has been measured but the extent of internal N inputs from symbiotic N2 fixation in alder-dominated wetlands is not known. We estimated N2 fixation by speckled alder in these wetlands by the 15N natural abundance method and by acetylene reduction using a flow-through system. Foliar N derived from fixation (%Ndfa) was estimated for five wetlands. The '15N of speckled alder foliage from four of the five sites did not differ significantly (PА.05) from that of nodulated speckled alders grown in N-free water culture (-1.2ǂ.1‰). Estimates from the 15N natural abundance method indicated that alders at these sites derive 85-100% of their foliar N from N2 fixation. At one of the sites, we also measured biomass and N content and estimated that the alder foliage contained 43 kg N ha-1 of fixed N in 1997. This estimate was based on a foliar N content of 55.4lj kg N ha-1 (mean-SE), 86dž%Ndfa, and an assumption that 10% of foliar N was derived from reserves in woody tissues. At this site, we further estimated via acetylene reduction that 37ᆞ kg N ha-1 was fixed by speckled alders in 1998. This estimate used the theoretical 4:1 C2H2 reduction to N2 fixation ratio and assumed no night-time fixation late in the season. Nitrogen inputs in wet and dry deposition at this site are approximately 8 kg N ha-1 year-1. We conclude that speckled alder in wetlands of northern New York State relies heavily on N2 fixation to meet N demands, and symbiotic N2 fixation in speckled alders adds substantial amounts of N to alder-dominated wetlands in the Adirondack Mountains. These additions may be important for watershed N budgets, where alder-dominated wetlands occupy a large proportion of watershed area.  相似文献   

9.
Understanding how genetic variation within a foundation species determines the structure of associated communities and ecosystem processes has been an emerging frontier in ecology. Previous studies in common gardens identified close links between intraspecific variation and multispecies community structure, and these findings are now being evaluated directly in the complex natural ecosystem. In this study, we examined to what extent genomic variation in a foundation tree species explains the structure of associated arthropod communities in the field, comparing with spatial, temporal and environmental factors. In a continuous mixed forest, arthropods were surveyed on 85 mature alders (Alnus hirsuta) in 2 years. Moreover, we estimated Nei's genetic distance among the alders based on 1,077 single nucleotide polymorphisms obtained from restricted‐site‐associated DNA sequencing of the alders’ genome. In both years, we detected significant correlations between genetic distance and dissimilarity of arthropod communities. A generalized dissimilarity modelling indicated that the genetic distance of alder populations was the most important predictor to explain the variance of arthropod communities. Among arthropod functional groups, carnivores were consistently correlated with genetic distance of the foundation species in both years. Furthermore, the extent of year‐to‐year changes in arthropod communities was more similar between more genetically closed alder populations. This study demonstrates that the genetic similarity rule would be primarily prominent in community assembly of plant‐associated arthropods under temporally and spatially variable environments in the field.  相似文献   

10.
Evidence for host race formation in the leaf beetle Galerucella lineola   总被引:4,自引:0,他引:4  
We examined preference and performance of four Finnish Galerucella lineola F. populations on alder and willow. In standardized two‐choice laboratory feeding trials with alder and willow, only two naturally alder‐associated G. lineola populations accepted alder. Two conspecific willow‐associated populations preferred willow. These preferences seem to be unstable, however, because they can be modified by the beetles’ experience. Thus, there probably is not a complete host preference‐based isolation of alder‐ and willow‐associated G. lineola beetles in nature. In performance experiments, larvae of all four populations survived better on willow than on alder. This may indicate that willows are the ancestral hosts for G. lineola. Nevertheless, larvae of the two alder‐associated G. lineola populations survived better on alder than larvae of the two willow‐associated populations. On the other hand, larvae of the two willow‐associated populations survived better on willow than larvae of the two alder‐associated populations. This performance trade‐off suggests that G. lineola encounters different selective pressures on alders and willows. On both of them, selection probably disfavours those G. lineola genotypes that are the most successful and abundant on alternative hosts. This may reduce the effects of gene flow that is likely to occur as a consequence of incomplete host preference‐based isolation of alder‐ and willow‐associated G. lineola populations. Data from pupal weights support the idea that alder‐ and willow‐associated G. lineola populations may be genetically differentiated. Pupae of the two alder‐associated populations were heavier than those of the willow‐associated populations irrespective of whether larvae had fed on alder or on willow. Overall, our results indicate host race formation in G. lineola. This process may be enforced by the variable abundance of alders and willows in local communities.  相似文献   

11.
Summary Three hypotheses of insect-plant interactions were tested by rearing fall webworm larvae in the laboratory on foliage from red alder trees with different histories of western tent caterpillar herbivory. Fall webworm larvae raised on foliage from trees which had been attacked previously for two summers by moderate densities of western tent caterpillars grew faster and attained heavier pupal weights than did those fed foliage from unattacked trees. This contradicts the hypothesis that moderate levels of previous herbivory induces the production of plant defensive chemicals in red alders. Growth of webworms, when fed foliage from unattacked trees adjacent to alders that were attacked by fall webworm larvae, was the same as when fed foliage from trees isolated by distance from attacked trees. This contradicts the hypothesis that attacked trees stimulate the production of defensive chemicals in neigh-boring trees. Young and mature alder foliage was equally good for fall webworm growth and survival, and foliage from trees heavily attacked by both fall webworm and western tent caterpillars for three years produced slow growth rates and small pupal sizes. This supports the hypothesis that continued heavy insect attack can cause the deterioration of the food quality of attacked trees.  相似文献   

12.
Nitrogen-fixing root nodules are formed by Frankia spp. (Actinomycetales) on dicotyledonous hosts such as alders ( Alnus spp.). Flavonoid-containing preparations from seed washes of red alder ( Alnus rubra Bong.), and individual compounds isolated from such preparations, influenced nodulation of A. rubra by Frankia. Nodulation was enhanced by one flavonoid-like compound, and apparently inhibited by two other such compounds. Four flavonoid-like compounds had no significant effect on nodulation. The seven individual compounds purified from the seed washes were characterized spectrally as possible flavanones and isoflavones. Both the enhancer and the inhibitors appeared to be possible flavanones.  相似文献   

13.
Mature tree effects on the mortality and herbivory of current-year seedlings were investigated in a common subcanopy species,Acer mono Maxim., in a cool temperature mixed forest. The mortality of natural seeldings under the canopy withA. mono layers was greater than that under the canopy without them. Also, the mortality of seedlings in planters located under the crown of anA. mono tree was at least 1.8 times greater than that of those in planters about 5 m away from the crown edge.Pyrrhalta fuscipennis (Coleoptera: Chrysomelidae) and other specialist insects, having probably dropped fromA. mono crowns, were more frequently observed in planters underA. mono crowns than in those far the crowns. Leaf area loss due to specialist herbivores was probably the main cause of increase in the mortality ofA. mono seedlings close to conspecific adults. It is implied that seedling predation by specialist herbivores coming from parent trees is a substantial factor promoting local seed dispersal ofA. mono.  相似文献   

14.
Vegetation development in the lowland floodplain alder carr “Na bahně” (eastern Bohemia, the Czech Republic) has been studied by means of pollen and macrofossil analyses and combined with vegetation analysis performed over the last 70 years. Local successional changes started with an oxbow lake (160 cal BC) which has later terrestrialised (630 cal AD). Then it changed from a typical alluvial fen into aSphagnum-dominated spring mire (950 cal AD) supplied by water arising from a river terrace surrounding the locality from three sites. In the centre of this wetland a small patch of alder carr developed (100 cal. AD), showing some tendency towards cyclic succession. The alder carr alternated several times with an openCarex fen (1100 cal AD to recent). The last fen-to-alder carr transition has been documented by direct observation during this century. Possible autogenic and allogenic factors driving the succession are discussed. The model of autogenic cyclic succession corresponds well with direct field observations and can be used to interpret alder carr structure, its dynamics, and function.  相似文献   

15.
We investigated the influence of red alder (Alnus rubra) stand density in upland, riparian forests on invertebrate and detritus transport from fishless headwater streams to downstream, salmonid habitats in southeastern Alaska. Red alder commonly regenerates after soil disturbance (such as from natural landsliding or timber harvesting), and is common along streams in varying densities, but its effect on food delivery from headwater channels to downstream salmonid habitats is not clear. Fluvial transport of invertebrates and detritus was measured at 13 sites in spring, summer and fall during two years (2000–2001). The 13 streams encompassed a riparian red alder density gradient (1–82% canopy cover or 0–53% basal area) growing amongst young-growth conifer (45-yr-old stands that regenerated after forest clearcutting). Sites with more riparian red alder exported significantly more invertebrates than did sites with little alder (mean range across 1–82% alder gradient was about 1–4 invertebrates m?3 water, and 0.1–1 mg invertebrates m?3 water, respectively). Three-quarters of the invertebrates were of aquatic origin; the remainder was of terrestrial origin. Aquatic taxa were positively related to the alder density gradient, while terrestrially-derived taxa were not. Streams with more riparian alder also exported significantly more detritus than streams with less alder (mean range across 1–82% alder gradient was 0.01–0.06 g detritus m?3 water). Based on these data, we predict that headwater streams with more riparian alder will provide more invertebrates and support more downstream fish biomass than those basins with little or no riparian alder, provided these downstream food webs fully utilize this resource subsidy.  相似文献   

16.
We studied species richness, composition and vertical distribution of epiphytic bryophytes in submontane rainforest of Central Sulawesi. Bryophytes were sampled on eight canopy trees and on eight trees in the forest understorey. Microclimate was measured at trunk bases and at crown bases. The total recorded number of 146 epiphytic bryophyte species is among the highest ever reported for tropical forests and underlines the importance of the Malesian region as a global biodiversity hotspot. Species composition differed significantly between understorey trees and canopy tree trunks on the one hand, and the forest canopy on the other. Fourty-five percent of the bryophyte species were restricted to canopy tree crowns, 12% to the understorey. Dendroid and fan-like species mainly occurred in the forest understorey whereas tufts were most species rich in the tree crowns. The findings reflect the different microclimatic regimes and substrates found in the understorey and in the forest canopy. The results indicate that assessments of the bryophyte diversity of tropical forests are inadequate when understorey trees and tree crowns are excluded.  相似文献   

17.
The contribution of lignin to the formation of humic compounds was examined in different environments of the terrestrial-aquatic interface in the Garonne River valley in southwestern France. Alluvial soils and submerged or nonsubmerged river and pond sediments containing alder, poplar, or willow [14C-lignin]ligno-celluloses were incubated. After a 49-day incubation period, 10 to 15% of labeled lignins in alluvial soils was recovered as evolved 14CO2. In nonsubmerged sediments, 10% of the applied activity was released as 14CO2, and in submerged sediments, only 5% was released after 60 days of incubation. In the different alluvial soils and sediments, the bulk of residual activity (70 to 85%) remained in the two coarsest-grain fractions (2,000 to 100 and 100 to 50 μm). Only 2 to 6% of the residual activity of these two coarse fractions was recovered as humic and fulvic acids, except in the case of alder [14C-lignin]lignocellulose, which had decomposed in a soil collected beneath alders. In this one 55% of the residual activity was extracted as humic substances from the 2,000- to 100-μm fraction. Humic and fulvic acids represented from 6 to 50% of the residual activity in the finest-grain fractions (50 to 20 and 20 to 0 μm). The highest percentages were obtained in soil collected beneath alders and in submerged pond sediment. The contribution of different groups of microorganisms, as well as nutrients and clay content, may influence humic-substance formation in such environments. Physical stability also may be an important factor for complex microbial activity involved in this process.  相似文献   

18.
Summary The occurrence and the infectivity of Frankia, the root-nodule endophyte ofAlnus glutinosa, were studied in different kinds of soil in the Netherlands. Both field and pot experiments indicated that many soils, on which alders have not been grown before, had low numbers of endogenous Frankia or none at all. Inoculation of these soils usually enhanced growth and nodulation of alders.The effect of fertilizer treatments on growth and nodulation ofA. glutinosa were studied in experimental plots. Alders grown in sandy soils, dressed with farmyard manure had the highest yield and the most nodules. The influence of inoculation with homogenates of Sp(+) and Sp(–) nodules and with a pure culture of Frankia AvcIl were studied in pot experiments. The quantity of different kinds of inoculum needed to obtain good growth and nodulation of alder was estimated. The results indicated that addition of a nodule homogenate of 90 g fresh AvcIl Sp(+) nodules is sufficient to inoculate one hectare of nursery soil to produce 10 nodules per plant, while a thousand times larger amount of inoculum is necessary when Sp(–) nodules are used. The limitations and the potentials of using nodule homogenates and pure cultures of Frankia for inoculation in forestry are discussed.  相似文献   

19.
This study compares phenological observations of Corylus (hazel) and Alnus (alder) flowering with airborne pollen counts of these taxa recorded using volumetric spore traps (2009–2011). The work was carried out in the Polish cities of Szczecin and Rzeszów that are located in different climatic regions. Correlations between pollen concentrations and meteorological data were investigated using Spearman’s rank correlation analysis. The timings of hazel and alder pollination and the occurrence of airborne pollen varied greatly and were significantly influenced by meteorological conditions (p < 0.05). The flowering synchronization of hazel and alder pollination in Szczecin and Rzeszów varied over the study period. Hazel and alder trees flowered notably earlier in stands located in places that were exposed to sunlight (insolated) and sheltered from the wind. On the other hand, a delay in the timing of pollination was observed in quite sunny but very windy sites. In Rzeszów, maximum hazel pollen concentrations did not coincide with the period of full pollination (defined as between 25 % hazel and alder and 75 % of flowers open). Conversely, in Szczecin, the highest hazel pollen concentrations were recorded during phenophases of the full pollination period. The period when the highest alder pollen concentrations were recorded varied between sites, with Rzeszów recording the highest concentrations at the beginning of pollination and Szczecin recording alder pollen throughout the full pollination period. Substantial amounts of hazel and alder pollen grains were recorded in the air of Rzeszów (but not Szczecin) before the onset of the respective pollen seasons.  相似文献   

20.
Summary Alders have an important role to play in biomass producing stands because of their N2-fixing ability and their capacity to withstand soils having an excess of moisture. The objectives of preliminary trials were (1) to find if there is any alder-genotype xFrankia-strain interaction when the effect of inoculating the bacteria was compared to no inoculation in seed beds of different species and provenances of alder, (2) to measure the possible effect of black alders interplanted in poplars compared to pure poplar plots. Two trials were laid out to study the alder-Frankia interaction. Both produced interaction. In the first one the inoculation had a favorable effect onAlnus glutinosa at age 2 years andA. cordata at age 1 and 2 and no effect onA. rubra. In the second one the inoculation had a depressive effect at age 1 on 2 of 3 provenances ofA. rubra and no effect on 1A. rubra, 3A.glutinosa and 3A. cordata provenances.A closely spaced field trial associating one black alder provenance and the poplar clone UNAL gives no superiority of mixed plots compared to pure plots. The results suggest that the N2-fixation of alders is not profitable to poplars at age 3 with a 1.5×2 m spacing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号