首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
柯玉文  刘江 《遗传》2018,40(11):977-987
染色质开放性和染色质三维高级结构在基因表达和调控中发挥着非常重要的作用,广泛参与分化、发育、肿瘤发生等细胞生理过程,是表观遗传研究的热点领域之一。动物胚胎发育起始于终端分化的卵子受精形成全能性的受精卵。在精卵结合的过程中,染色质开放性和染色质三维高级结构发生了剧烈的变化,经历继承、重编程、重新建立的过程,并指导调控受精卵分化发育最终成为多细胞、多器官组织的新生命个体。本文介绍了近年来研究染色质开放性和染色质三维高级结构的实验分析技术手段,染色质结构在动物早期胚胎发育过程中的变化规律及其在早期胚胎发育中的作用,染色质结构与其他表观遗传信息(甲基化、组蛋白修饰等)关系方面的重要研究进展和存在的科学问题,以期为表观遗传调控早期胚胎发育的研究提供参考。  相似文献   

2.
We have applied chromatin sequencing technology to the euryarchaeon Thermococcus kodakarensis, which is known to possess histone‐like proteins. We detect positioned chromatin particles of variable sizes associated with lengths of DNA differing as multiples of 30 bp (ranging from 30 bp to >450 bp) consistent with formation from dynamic polymers of the archaeal histone dimer. T. kodakarensis chromatin particles have distinctive underlying DNA sequence suggesting a genomic particle‐positioning code and are excluded from gene‐regulatory DNA suggesting a functional organization. Beads‐on‐a‐string chromatin is therefore conserved between eukaryotes and archaea but can derive from deployment of histone‐fold proteins in a variety of multimeric forms.  相似文献   

3.
Chromatin structure and dynamics: functional implications   总被引:4,自引:0,他引:4  
  相似文献   

4.
Dedifferentiation of cell identity to a progenitor-like or stem cell-like state with increased cellular plasticity is frequently observed in cancer formation.During this process,a subpopulation of cells in tumours acquires a stem cell-like state partially resembling to naturally occurring pluripotent stem cells that are temporarily present during early embryogenesis.Such characteris-tics allow these cancer stem cells (CSCs) to give rise to the whole tumour with its entire cellular heterogeneity and thereby support metastases formation while being resistant to current cancer therapeutics.Cancer devel-opment and progression are demarcated by transcrip-tional dysregulation.In this article,we explore the epigenetic mechanisms shaping gene expression dur-ing tumorigenesis and cancer stem cell formation,with an emphasis on 3D chromatin architecture.Comparing the pluripotant stem cell state and epigenetic repro-gramming to dedifferentiation in cellular transformation provides intriguing insight to chromatin dynamics.We suggest that the 3D chromatin architecture could be used as a target for re-sensitizing cancer stem cells to therapeutics.  相似文献   

5.
CHO cells were grown in the presence of 1 M CdCl2 and subjected to ATP-dependent replicative DNA synthesis after permeabilization. By decreasing the density of the cell culture replicative DNA synthesis was diminishing. At higher than 2 × 106 cell/ml concentration Cd had virtually no effect on the rate of DNA replication. Growth at higher cell concentrations could be supressed by increasing Cd concentration. After Cd treatment cells were synchronized by counterflow centrifugal elutriation. Cadmium toxicity on cell growth in early and mid S phase led to the accumulation of enlarged cells in late S phase. Flow cytometry showed increased cellular and nuclear sizes after Cd treatment. As the cells progressed through the S phase, 11 subpopulations of nuclear sizes were distinguished. Apoptotic chromatin changes were visualized by fluorescent microscopy in a cell cycle dependent manner. In the control untreated cells the main transitory forms of chromatin corresponded to those we have published earlier (veil-like, supercoiled chromatin, fibrous, ribboned structures, chromatin strings, elongated prechromosomes, precondensed chromosomes). Cadmium treatment caused: (a) the absence of decondensed veil-like structures and premature chromatin condensation in the form of apoptotic bodies in early S phase (2.2–2.4 average C-value), (b) the absence of fibrous structures, the lack of supercoiled chromatin, the appearance of uncoiled ribboned chromatin and perichromatin semicircles, in early mid S phase (2.5–2.9 C), (c) the presence of perichromatin fibrils and chromatin bodies in mid S phase (2.9–3.2 C), (d) early intra-nuclear inclusions, elongated forms of premature chromosomes, the extrusion and rupture of nuclear membrane later in mid S phase (3.3–3.4 C), (e) the exclusion of chromatin bodies and the formation of clusters of large-sized perichromatin granules in late S phase (3.5–3.8 C) and (f) large extensive disruptions and holes in the nuclear membrane and the clumping of incompletely folded chromosomes (3.8–4. C).  相似文献   

6.
In the dasyurid marsupial, Sminthopsis crassicaudata, the mature spermatozoon has an inner homogeneous (C1) and a peripheral indented (C2) region. Using DNase-gold conjugates, and biotinylated genomic DNA probes, DNA was found to occur in both C1 and C2 regions. The morphogenesis of the spermatozoon nucleus was investigated using ultrastructural and cytochemical studies. Spermiogenesis was divided into 15 steps. By step 10, condensation of the C1 region was complete, and at the caudal extremity of the spermatid nucleus, the nuclear envelope enclosed an electron-lucent space. This space and the surrounding nuclear envelope became very enlarged at step 11. At this stage, a plate of approximately 70 nm in thickness was present along the caudal segment of the C1 region; this “nuclear mantle” did not bind DNase-gold conjugates but stained for lysine-rich proteins using alcoholic phosphotungstic acid. Chromatin condensation resumed at step 12 with the appearance of spherical chromatin structures peripheral to the C1 chromatin. These structures then partially coalesced and the indentations of the C2 region were observed. The expanded nuclear envelope at the caudal extremity persisted in caput epididymal spermatozoa. Spherical inclusions within it did not bind to DNase-gold conjugates but stained for lysine-rich proteins. As the sperm traveled down the epididymis, these inclusions amassed near the nuclear pores and were then removed from the nucleus. In addition, the nuclear mantle was found to have disappeared by the time the spermatozoa reached the corpus epididymidis. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Chromatin, the complex of DNA and histone proteins, serves as a main integrator of cellular signals. Increasing evidence links cellular functional to chromatin state. Indeed, different metabolites are emerging as modulators of chromatin function and structure. Alterations in chromatin state are decisive for regulating all aspects of genome function and ultimately have the potential to produce phenotypic changes. Several metabolites such as acetyl-CoA, S-adenosylmethionine (SAM) or adenosine triphosphate (ATP) have now been well characterized as main substrates or cofactors of chromatin-modifying enzymes. However, there are other metabolites that can directly interact with chromatin influencing its state or that modulate the properties of chromatin regulatory factors. Also, there is a growing list of atypical enzymatic and nonenzymatic chromatin modifications that originate from different cellular pathways that have not been in the limelight of chromatin research. Here, we summarize different properties and functions of uncommon regulatory molecules originating from intermediate metabolism of lipids, carbohydrates and amino acids. Based on the various modes of action on chromatin and the plethora of putative, so far not described chromatin-regulating metabolites, we propose that there are more links between cellular functional state and chromatin regulation to be discovered. We hypothesize that these connections could provide interesting starting points for interfering with cellular epigenetic states at a molecular level.  相似文献   

8.
Lee SB  Lee CF  Ou DS  Dulal K  Chang LH  Ma CH  Huang CF  Zhu H  Lin YS  Juan LJ 《Cell research》2011,21(8):1230-1247
Chromatin assembly factor 1 (CAF1) consisting of p150, p60 and p48 is known to assemble histones onto newly synthesized DNA and thus maintain the chromatin structure. Here, we show that CAF1 expression was induced in human cytomegalovirus (HCMV)-infected cells, concomitantly with global chromatin decondensation. This apparent conflict was thought to result, in part, from CAF1 mislocalization to compartments of HCMV DNA synthesis through binding of its largest subunit p150 to viral immediate-early protein 2 (IE2). p150 interaction with p60 and IE2 facilitated HCMV DNA synthesis. The IE2Q548R mutation, previously reported to result in impaired HCMV growth with unknown mechanism, disrupted IE2/p150 and IE2/histones association in our study. Moreover, IE2 interaction with histones partly depends on p150, and the HCMV-induced chromatin decondensation was reduced in cells ectopically expressing the p150 mutant defective in IE2 binding. These results not only indicate that CAF1 was hijacked by IE2 to facilitate the replication of the HCMV genome, suggesting chromatin assembly plays an important role in herpesviral DNA synthesis, but also provide a model of the virus-induced chromatin instability through CAF1.  相似文献   

9.
Chromatin-bound proteins underlie several fundamental cellular functions, such as control of gene expression and the faithful transmission of genetic and epigenetic information. Components of the chromatin proteome (the “chromatome”) are essential in human life, and mutations in chromatin-bound proteins are frequently drivers of human diseases, such as cancer. Proteomic characterization of chromatin and de novo identification of chromatin interactors could, thus, reveal important and perhaps unexpected players implicated in human physiology and disease. Recently, intensive research efforts have focused on developing strategies to characterize the chromatome composition. In this review, we provide an overview of the dynamic composition of the chromatome, highlight the importance of its alterations as a driving force in human disease (and particularly in cancer), and discuss the different approaches to systematically characterize the chromatin-bound proteome in a global manner.  相似文献   

10.
The structure of rabbit, fowl, and Xenopus laevis sperm chromatin was explored by study of the reaction of their decondensed nuclei with DNase 1 and micrococcal nuclease. Those of rabbit and fowl were readily digested by DNase 1, and the polyacrylamide gel electrophoresis profiles of DNAs extracted from the digests were similar, each being polydisperse with a single discrete band of DNA smaller than 72 base pairs. There were differences, however, between the sperm chromatins in the course of their digestion by micrococcal nuclease. A limit digest at about 45% acid solubility was obtained with Xenopus sperm chromatin, while 90% of fowl sperm DNA was rendered acidsoluble by the enzyme. The gel profiles of the limit digests were polydisperse, but only those of rabbit and fowl sperm chromatins possessed a discrete band of DNA smaller than 72 base pairs. Bleomycin did not react with DNA of rabbit, fowl, or Xenopus spermatozoa. Since bleomycin reacts with somatic cell chromatin, and the course of DNase 1 or micrococcal nuclease digestion of sperm chromatin was different from that found for somatic cell chromatin, it would appear that sperm chromatin does not have the repeating nucleosometype structure of somatic cell chromatin. The nuclease digestion studies further suggest that the organization of rabbit and fowl sperm chromatins is similar, and is different from that of Xenopus sperm chromatin. The dependence of the structure of sperm chromatin on the composition of its basic proteins, and a possible structure for a protamine-type sperm chromatin, are discussed.  相似文献   

11.
12.
G9a and GLP lysine methyltransferases form a heterodimeric complex that is responsible for the majority of histone H3 lysine 9 mono- and di-methylation (H3K9me1/me2). Widely interspaced zinc finger (WIZ) associates with the G9a-GLP protein complex, but its role in mediating lysine methylation is poorly defined. Here, we show that WIZ regulates global H3K9me2 levels by facilitating the interaction of G9a with chromatin. Disrupting the association of G9a-GLP with chromatin by depleting WIZ resulted in altered gene expression and protein-protein interactions that were distinguishable from that of small molecule-based inhibition of G9a/GLP, supporting discrete functions of the G9a-GLP-WIZ chromatin complex in addition to H3K9me2 methylation.  相似文献   

13.
14.
Cells belonging to the germ lineage segregate physically and molecularly from their somatic neighbors during embryogenesis. While germ line‐specific chromatin modifications have been identified at later stages in the Caenorhabditis elegans nematode, none have been found in the single P4 germ line founder cell that arises at the beginning of gastrulation. Using light and electron microscopy, we now report that the chromatin organization in the germ line founder cell of the early C. elegans embryo is distinct from that in the neighboring somatic cells. This unique organization is characterized by a greater chromatin compaction and an expansion of the interchromatin compartment. The ultrastructure of individual chromatin domains does not differ between germ line and somatic cells, pointing to a specific organization mainly at the level of the whole nucleus. We show that this higher order reorganization of chromatin is not a consequence of the P4 nucleus being smaller than somatic nuclei or having initiated mitosis. Imaging of living embryos expressing fluorescent markers for both chromatin and P granules revealed that the appearance of a distinct chromatin organization in the P4 cell occurs approximately 10 min after its birth and coincides with the aggregation of P granules around the nucleus, suggesting a possible link between these two events. The higher order reorganization of chromatin that is reported here occurs during the establishment of definitive germ cell identity. The changes we have observed could therefore be a prerequisite for the programming of chromatin totipotency.  相似文献   

15.
16.
17.
In eukaryotic cells, DNA is tightly packed with the help of histone proteins into chromatin. Chromatin architecture can be modified by various post‐translational modifications of histone proteins. For almost 60 years now, studies on histone lysine acetylation have unraveled the contribution of this acylation to an open chromatin state with increased DNA accessibility, permissive for gene expression. Additional complexity emerged from the discovery of other types of histone lysine acylations. The acyl group donors are products of cellular metabolism, and distinct histone acylations can link the metabolic state of a cell with chromatin architecture and contribute to cellular adaptation through changes in gene expression. Currently, various technical challenges limit our full understanding of the actual impact of most histone acylations on chromatin dynamics and of their biological relevance. In this review, we summarize the state of the art and provide an overview of approaches to overcome these challenges. We further discuss the concept of subnuclear metabolic niches that could regulate local CoA availability and thus couple cellular metabolisms with the epigenome.  相似文献   

18.
《Epigenetics》2013,8(6):579-584
The aim of our study was to identify relationships between epigenetic parameters correlating with a relaxed chromatin state of the DUX4 promoter region and clinical severity as measured by a clinical severity score or muscle pathologic changes in D4Z4 contraction-dependent (FSHD1) and –independent (FSHD2) facioscapulohumeral muscular dystrophy patients. Twenty primary fibroblast (5 control, 10 FSHD1 and 5 FSHD2) and 26 primary myoblast (9 control, 12 FSHD1 and 5 FSHD2) cultures originating from patients with FSHD and controls were analyzed. Histone modification levels were determined by chromatin immunoprecipitation. We examined correlations between the chromatin compaction score (ChCS) defined by the H3K9me3:H3K4me2 ratio and an age corrected clinical severity score (CSS) or muscle pathology score (MPS). Possible relationships were investigated using linear regression analysis and significance was tested by Pearson’s product-moment coefficient.

We found a significant difference of the ChCS between controls and patients with FSHD1 and between controls and patients with FSHD2. Tissue specific differences in ChCS were also observed. We also found a near-significant relationship between ChCS and the age corrected CSS in fibroblasts but not in myoblasts. Surprisingly, we found a strong correlation between the MPS of the vastus lateralis and the CSS. Our results confirm the D4Z4 chromatin relaxation previously shown to be associated with FSHD in a small number of samples. A possible relationship between clinical and epigenetic parameters could be established in patient fibroblasts, but not in myoblasts. The strong correlation between the MPS of the vastus lateralis and the CSS suggests that this muscle can be used to study for surrogate markers of overall disease severity.  相似文献   

19.
The aim of our study was to identify relationships between epigenetic parameters correlating with a relaxed chromatin state of the DUX4 promoter region and clinical severity as measured by a clinical severity score or muscle pathologic changes in D4Z4 contraction-dependent (FSHD1) and –independent (FSHD2) facioscapulohumeral muscular dystrophy patients. Twenty primary fibroblast (5 control, 10 FSHD1 and 5 FSHD2) and 26 primary myoblast (9 control, 12 FSHD1 and 5 FSHD2) cultures originating from patients with FSHD and controls were analyzed. Histone modification levels were determined by chromatin immunoprecipitation. We examined correlations between the chromatin compaction score (ChCS) defined by the H3K9me3:H3K4me2 ratio and an age corrected clinical severity score (CSS) or muscle pathology score (MPS). Possible relationships were investigated using linear regression analysis and significance was tested by Pearson’s product-moment coefficient.   We found a significant difference of the ChCS between controls and patients with FSHD1 and between controls and patients with FSHD2. Tissue specific differences in ChCS were also observed. We also found a near-significant relationship between ChCS and the age corrected CSS in fibroblasts but not in myoblasts. Surprisingly, we found a strong correlation between the MPS of the vastus lateralis and the CSS. Our results confirm the D4Z4 chromatin relaxation previously shown to be associated with FSHD in a small number of samples. A possible relationship between clinical and epigenetic parameters could be established in patient fibroblasts, but not in myoblasts. The strong correlation between the MPS of the vastus lateralis and the CSS suggests that this muscle can be used to study for surrogate markers of overall disease severity.  相似文献   

20.
To obtain information on the remodeling of sperm chromatin during male pronuclei formation, we have followed the sperm specific histones (SpH) that form the nucleosomal core by Western immunoblot analysis with polyclonal antibodies directed against the core SpH. The results obtained indicate that the complete set of SpH is absent from zygote chromatin at the beginning of the first S phase. The disappearance of SpH is not coincidental for the five histone classes: SpH4 and SpH3 are lost 5-15 min post insemination (p.i.), SpH2B and SpH2A disappear 20-40 min p.i., and SpH1 is progressively diminished up to 30 min p.i. This order of sperm chromatin remodeling is not affected by the inhibition of protein synthesis by emetine, indicating that the factor(s) responsible for SpH disappearance are present in unfertilized eggs. The lost SpH's are not replaced by newly synthesized CS variants, since the basic proteins synthesized de novo during male pronuclei formation are not incorporated into chromatin remaining in the cytoplasm. These newly synthesized proteins are different from the CS variants as judged by their electrophoretic migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号