首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thymocytes fail to tolerize the developing T cell repertoire to self MHC class I (MHC I) Ags because transgenic (CD2Kb) mice expressing H-2Kb solely in lymphoid cell lineages reject skin grafts mismatched only for H-2Kb. In this study, we examined why thymocytes fail to tolerize the T cell repertoire to self MHC I Ags. The ability of CD2Kb mice to reject H-2Kb skin grafts was age dependent because CD2Kb mice older than 20 wk accepted skin grafts. T cells from younger CD2Kb mice proliferated, but did not develop cytotoxic functions in vitro in response to H-2Kb. Proliferative responses were dominated by H-2Kb-specific, CD4+ T cells rather than CD8+ T cells. Representative CD4+ T cell clones from CD2Kb mice were MHC II restricted and recognized processed H-2Kb. TCR transgenic mice were generated from one CD4+ T cell clone (361) to monitor development of H-2Kb-specific immature thymocytes when all thymic cells or lymphoid cell lineages only expressed H-2Kb. Thymocyte precursors were not eliminated and mice were not tolerant to H-2Kb when Tg361 TCR transgenic mice were intercrossed with CD2Kb mice. In contrast, all thymocyte precursors were eliminated efficiently in thymic microenvironments in which all cells expressed H-2Kb. We conclude that self MHC I Ags expressed exclusively in thymocytes do not induce T cell tolerance because presentation of processed self MHC I Ags on self MHC II molecules fails to induce negative selection of CD4+ T cell precursors. This suggests that some self Ags are effectively compartmentalized and cannot induce self-tolerance in the T cell repertoire.  相似文献   

2.
Immune responses by mice to heterologous insulins are controlled by H-2-linked Ir genes. In studies to determine the mechanism(s) of nonresponsiveness, we found that although pork insulin fails to stimulate antibody or proliferative responses in H-2b mice, it does stimulate enhanced responses to subsequent challenge with an immunogenic species of insulin, such as beef insulin. Experiments described in this communication analyze the cell type primed in H-2b mice by pork insulin using an adoptive transfer protocol. The results demonstrate that pork insulin primes T cells that can express helper activity when recipient mice are challenged with beef but not pork insulin. This helper T cell activity is insulin specific in both elicitation and effect but is dependent upon stimulation by beef insulin for expression. Our interpretation of these results is that 2 antigen-specific T cell subpopulations are required for the generation of insulin-specific antibody responses and that the Ir gene defect in this case is expressed as a failure of specific interaction of these 2 T cell populations.  相似文献   

3.
Two types of insulin-reactive T cell hybridomas expressing TCR-alpha beta were derived from nonresponder H-2b mice immunized with pork insulin. One type had characteristics of conventional class II-restricted Th cells. These CD4+ CD8- I-Ab-restricted T cells recognized a self determinant, present within the insulin B-chain. This determinant was distinct from the immunodominant A-chain loop determinant that is recognized by the majority of T cells induced after immunization with normally immunogenic beef insulin. Our results suggest that this determinant is readily generated during immunologic processing of insulins, including nonimmunogenic pork insulin and self insulin. A second type of T cell lacking CD4 and CD8 recognized a distinct B-chain determinant of insulin in a class II-dependent, but MHC unrestricted, fashion. These cells may represent a novel subpopulation which has bypassed conventional selection during development in the thymus.  相似文献   

4.
Previous experiments have demonstrated that the immune response of MHC congenic mice to pigeon cytochrome c is under Ir gene control. Expression of I-E-encoded gene products influences both the magnitude and fine specificity of the Th cell response to pigeon cytochrome c and phylogenetic derivatives. Results of those experiments implicate both determinant selection and repertoire selection as mechanisms of Ir gene control in this system. In this report we have compared the TCR expressed in pigeon cytochrome c-reactive Th cells from B10.A(I-Ek), B10.A(5R) (I-Eb), and B10.S(9R) (I-Es) mice. The B10.A(5R) strain is a low responder to pigeon cytochrome c, but in response to moth cytochrome c this strain produces T cells which respond to pigeon or moth cytochrome c on B10.A APC. These cells are phenotypically identical to the predominant clonal phenotype seen in the B10.A response to pigeon cytochrome c. In this report, we show that the B10.A and B10.A(5R) pigeon cytochrome c-reactive T cells express essentially identical T cell receptors. These results, coupled with recent studies reporting a relatively low affinity for I-Eb molecules by pigeon cytochrome c peptides compared with moth cytochrome c peptides, strongly argue that the immune response defect in the B10.A(5R) strain is due to a defect in Ag presentation (determinant selection). In contrast, B10.A and B10.S(9R) strains are high responders to pigeon cytochrome c. Both strains produce T cell clones which are capable of responding to cytochrome c presented by either B10.A or B10.S(9R) APC in vitro. We show that, even in T cells with this MHC restriction degeneracy, the TCR expressed in the two strains are different. Because the APC of both strains can clearly present the cytochrome c Ag, we conclude that the differential expression of the TCR in the responses is due to a T cell repertoire selection difference in the two strains. Thus, for the response to one Ag in three MHC congenic strains, there exists evidence that both determinant selection and repertoire selection can be mechanisms of Ir gene control of an immune response.  相似文献   

5.
The genetic control of the murine T cell proliferative response to insulin was examined. It was found for two responder strains of mice that each recognizes a different determinant on the insulin molecule. H-2b mice recognize a determinant in the A chain loop of insulin whereas H-2d mice recognize a determinant that resides in the B chain, possibly in the last eight amino acids. Using H-2 recombinant strains of mice, the location of Ir gene control of the response to both determinants was mapped to the K region and/or I-A subregion of H-2. The possibility of non-MHC regulation of MHC-controlled immune responses is suggested by studies of recombinant inbred strains of mice.  相似文献   

6.
Immune responses by mice to heterologous insulins are controlled by H-2 linked Ir genes. In studies to determine the mechanisms responsible for nonresponsiveness, we found that although pork insulin failed to stimulate antibody or proliferative responses in H-2b mice, it did prime T cells that can express helper activity in adoptive recipient mice. This helper activity was insulin-specific in both elicitation and expression. In studies presented in this paper, we have extended this analysis to the response patterns of helper T cells stimulated by sheep, horse, and rat insulins in mice bearing different H-2 haplotypes. The results demonstrate that nonresponder forms of insulin, including rat insulin, prime T cells in H-2b and H-2d, but not H-2k, mice. These results suggest that regulation of nonresponsiveness to insulin appears to be through different pathways in mice bearing different H-2 haplotypes.  相似文献   

7.
We have studied T cell tolerance to defined determinants within ML-M using wild-type (WT; ML-M(+/+)) and LysMcre (ML-M(-/-)) C3H (H-2(k)) mice to determine the relative contribution of ML-M-derived epitopes vs those from other self Ags in selection of the ML-M-specific T cell repertoire. ML-M was totally nonimmunogenic in WT mice, but was rendered immunogenic in LysMcre mice. Most of the response to ML-M in LysMcre mice was directed to the immunodominant determinant region 105-119. This determinant is spontaneously displayed (without adding exogenous ML-M) by macrophages of WT, but not LysMcre, mice and is stimulatory for peptide 105-119 (p105-119)-primed T cells. Moreover, neonatal tolerization of LysMcre mice with p105-119 or ML-M abrogated the T cell response to subsequent challenge with ML-M or p105-119. Furthermore, p95-109 and p110-125 of ML-M were immunogenic in LysMcre mice, but not in WT mice, thereby representing subdominant, tolerance-inducing epitopes of ML-M. As expected, the T cell repertoire to cryptic ML determinants in WT mice was also intact in LysMcre mice. Furthermore, the pattern of response to the related homologue of ML-M, hen eggwhite lysozyme, was similar in these two groups of mice. Thus, several codominant T cell determinants within ML-M contribute significantly to tolerance induction, and the anti-cryptic T cell repertoire to ML-M was positively selected on non-ML-M self ligands. These results reveal that the induction of self tolerance to a multideterminant protein follows the quantitative hierarchy of self-determinant expression and are of relevance in understanding the pathogenesis of autoimmunity.  相似文献   

8.
Recent data suggest that the diversity of self peptides presented in the thymus during development contributes to positive selection of a diverse T cell repertoire. We sought to determine whether a previously defined "hole in the immunological repertoire" could be explained by the absence of an appropriate selecting self peptide. The repertoire defect in question is the inability of bm8 mice to make an H-2K-restricted response to OVA. Like other OVA-specific, H-2K-restricted receptors, OT-I-transgenic T cells are not positively selected in bm8 mice. Using criteria we had previously established for identifying positive selection ligands, we found peptides that could restore positive selection of OT-I thymocytes in bm8 mice. Thus, the T cell repertoire can be limited by a requirement for specific self peptides during development. Data with MHC-specific Abs suggested that peptides might be able to force MHC residues to adopt different conformations in Kb vs Kbm8. This shows that peptides can potentially contribute to ligand diversity both directly (via variability in the solvent-exposed side chains) and indirectly (through their effect on the MHC conformation). Our data support a model where self peptide diversity allows selection of T cells specific for a broad range of MHC conformations.  相似文献   

9.
Cell-mediated and humoral immune responses to heterologous insulins in mice are controlled by H-2 linked, dominant, immune response (Ir) genes. For example, mice bearing the H-2d haplotype develop T cell proliferative responses and produce antibody after injection with porcine insulin, whereas mice bearing other H-2 haplotypes do not. Data presented in this communication demonstrate that homozygous and heterozygous H-2d mice produce insulin-binding antibodies when immunized with porcine insulin or proinsulin. Some (H-2b,k,s) insulin-nonresponder mice produce insulin-binding antibodies after injection of proinsulin, whereas other insulin-nonresponder strains (H-2q) do not. All strains, except homozygous H-2q mice, produce antibodies specific for proinsulin, suggesting that the response to porcine proinsulin is also controlled by H-2-linked Ir genes. More importantly, F1 hybrids between insulin-nonresponder C57BL/10 (H-2b) and DBA/1 (H-2q) produce no insulin-binding antibodies when injected with proinsulin, despite the fact that proinsulin-binding antibodies are produced by these mice.  相似文献   

10.
Polymorphism within the MHC not only affects peptide specificity but also has a critical influence on the T cell repertoire; for example, the CD8 T cell response toward an immunodominant HSV glycoprotein B peptide is more diverse and of higher avidity in H-2(bm8) compared with H-2(b) mice. We have examined the basis for the selection of these distinct antiviral T cell repertoires by comparing the high-resolution structures of K(b) and K(bm8), in complex with cognate peptide Ag. Although K(b) and K(bm8) differ by four residues within the Ag-binding cleft, the most striking difference in the two structures was the disparate conformation adopted by the shared residue, Arg(62). The altered dynamics of Arg(62), coupled with a small rigid-body movement in the alpha(1) helix encompassing this residue, correlated with biased Valpha usage in the B6 mice. Moreover, an analysis of all known TCR/MHC complexes reveals that Arg(62) invariably interacts with the TCR CDR1alpha loop. Accordingly, Arg(62) appears to function as a conformational switch that may govern T cell selection and protective immunity.  相似文献   

11.
The T cell proliferative response in mice to the synthetic polymer GAT is under Ir gene control, mapping to the I-A subregion of the H-2 major histocompatibility complex (MHC). Antigen-dependent proliferation in vitro of in vivo GAT-primed lymph node cells can be inhibited by a monoclonal antibody to Ia-17, an I-A public determinant. Using this antibody for direct immunofluorescent analysis, T cells in GAT-stimulated proliferative culture are identified that express syngeneic I-A during culture. This expression is strictly antigen dependent, requires restimulation in vitro, and requires the presence of I-A-positive adherent antigen-presenting cells. T cells bearing I-A can be enriched by a simple affinity procedure, and I-A-positive cells separated on a FACS are shown to retain antigen-specific reactivity. The acquisition of I-A determinants by T cells under these culture conditions is not nonspecific. The Ia determinants borne by T cell blasts appear to be dictated by the I subregion to which the relevant Ir gene maps, and which codes for the Ia molecule involved in presentation of the antigen. Thus, (B6A)F1 (H-2b X H-2a)F1 LNC express I-Ak antigens when proliferating to GAT but not when stimulated by GLPhe, the response to which is under I-E subregion control. The relation of Ir gene function to Ia-restricted antigen presentation and self-Ia recognition is discussed.  相似文献   

12.
The class II-associated invariant chain peptide (CLIP) region of the invariant chain (Ii) directly influences MHC class II presentation by occupying the MHC class II peptide-binding groove, thereby preventing premature loading of peptides. Different MHC class II alleles exhibit distinct affinities for CLIP, and a low affinity interaction has been associated with decreased dependence upon H-2M and increased susceptibility to rheumatoid arthritis, suggesting that decreased CLIP affinity alters the MHC class II-bound peptide repertoire, thereby promoting autoimmunity. To examine the role of CLIP affinity in determining the MHC class II peptide repertoire, we generated transgenic mice expressing either wild-type human Ii or human Ii containing a CLIP region of low affinity for MHC class II. Our data indicate that although degradation intermediates of Ii containing a CLIP region with decreased affinity for MHC class II do not remain associated with I-A(b), this does not substantially alter the peptide repertoire bound by MHC class II or increase autoimmune susceptibility in the mice. This implies that the affinity of the CLIP:MHC class II interaction is not a strong contributory factor in determining the probability of developing autoimmunity. In contrast, in the absence of H-2M, MHC class II peptide repertoire diversity is enhanced by decreasing the affinity of CLIP for MHC class II, although MHC class II cell surface expression is reduced. Thus, we show clearly, in vivo, the critical chaperone function of H-2M, which preserves MHC class II molecules for high affinity peptide binding upon dissociation of Ii degradation intermediates.  相似文献   

13.
The phenomenon of tolerance to noninherited maternal Ags (NIMA) is poorly understood. To analyze the NIMA effect C57BL/6 (H-2(b/b)) males were mated with B6D2F(1) (H-2(b/d)) females, whereby 50% of the offspring are H-2(b/b) mice that have been exposed to maternal H-2(d) alloantigens. Controls were H-2(b/b) offspring of C57BL/6 mothers, either inbred C57BL/6 mice or F(1) backcross mice from breedings with H-2(b/d) fathers. We found that 57% of the H-2(b/b) offspring of semiallogeneic (H-2(b/d)) mothers accepted fully allogeneic DBA/2 (H-2(d/d)) heart grafts for >180 days, while similar transplants were all rejected by day 11 in controls (p < 0.0004). Foster nursing studies showed that both oral and in utero exposure to NIMA are required for this tolerogenic effect. An effect of NIMA was also found to extend the survival of skin grafts from a semiallogeneic donor (p < 0.02). Pretransplant analysis of splenocytes showed a 40-90% reduction of IL-2-, IL-5-, and IFN-gamma-producing T cells responding to H-2(d)-expressing APC in NIMA(d)-exposed vs control mice. Injection of pregnant BALB/c-dm2 (H-2L(d)-negative) female mice i.v. with H-2L(d)(61-80) peptide profoundly suppressed the offspring's indirect pathway alloreactive CD4(+) T cell response to H-2L(d). These results suggest that the natural exposure of the fetus and newborn to maternal cells and/or soluble MHC Ags suppresses NIMA-allospecific T cells of the offspring, predisposing to organ transplant tolerance in adult mice.  相似文献   

14.
Expression of a retrovirally transduced MHC class I Ag, H-2K(b) (K(b)), in bone marrow-derived cells leads to specific prolongation of K(b) disparate skin grafts. To examine the extent to which peptides derived from K(b) contribute to the induction of tolerance, retroviruses carrying mutant K(b) genes designed to enter separate pathways of Ag presentation were constructed. Thymectomized and CD8 T cell-depleted mice that had been irradiated and reconstituted with bone marrow cells expressing a secreted form of K(b) showed prolongation of K(b) disparate skin graft survival. Skin graft prolongation was not observed when similar experiments were performed using mice that were not CD8 T cell depleted. This suggests that hyporesponsiveness can be induced in CD4 T cells, but not CD8 T cells by Ags presented via the exogenous pathway of Ag processing. Modest prolongation of skin allografts was observed in mice reconstituted with bone marrow cells transduced with retroviruses carrying a gene encoding a mutant K(b) molecule expressed only in the cytoplasm. Prolongation was also observed in similar experiments in mice that were thymectomized and CD4 T cell depleted following complete reconstitution, but not in mice that were reconstituted and then thymectomized and CD8 T cell depleted. Thus, hyporesponsiveness can be induced in a subset of CD8 T cells by recognition of peptides derived from K(b) through both the direct and indirect pathways of Ag recognition, while CD4 T cell hyporesponsiveness to MHC class I disparate grafts occurs only through the indirect pathway of Ag recognition.  相似文献   

15.
The fine specificities of immune T cells were studied in a system in which the response to the antigen can involve two immune response (Ir) genes and two epitopes on a single synthetic polypeptide immunogen. The (BALB/c X SJL)F1 (H-2d X H-2s) mice can respond to the random terpolymer poly(Glu55, Lys36, Phe9) (GLPhe) through the H-2d-linked Ir gene (Ir-d) or through the complementing Ir gene (Ir-dxs), which controls the immune response to poly(Glu, Phe), epitopes that are present in GLPhe. Nine groups of monoclonal T cells were obtained from (H-2d X H-2s)F1 mice immunized with GLPhe. These groups were delineated by the differences in major histocompatibility (MHC) restriction on antigen-presenting cells (APC) and the cross-reactions with GPhe or GLT. A unique T cell line was discovered that can react to the three polymers (GLPhe, GLT, GPhe) even though GLT and GPhe immune T cells do not normally show reciprocal cross-reactions. The monoclonal T cells retain helper activities in the Mishell-Dutton culture. Although the activation of T cells is antigen specific and MHC restricted, the subsequent B cell response is nonspecific.  相似文献   

16.
The influence of T cell genotype and T cell maturation environment on the generation of the T cell alloreactive repertoire was evaluated in the H-2b cytotoxic T lymphocyte response to Kb mutant determinants expressed by the strain B6-H-2bm6. Specifically, by constructing radiation bone marrow chimeras with B6 or B10 (H-2b) donor cells and B10.BR, B10.A(4R), B10.MBR, and B6.C-H-2bm1 irradiated mice as recipients, it was possible to investigate the major histocompatibility complex (MHC)-encoded gene products of the host environment required for the generation of a bm6-specific H-2b CTL response. The results of such experiments confirmed the previous finding that the alloreactive T cell repertoire is influenced both by T cell MHC genotype and by the MHC gene products of the T cell maturation environment. In addition, the results of the present study further demonstrated that in the chimeric donor and host genetic combinations used, it was both necessary and sufficient that there be a homology of K region-encoded determinants for the generation of a bm6-specific CTL response. Experiments utilizing a mixed responder population of unresponsive B6----B10.D2 spleen cells and responsive Lyt-2 congenic B6.Lyt-2.1 spleen cell suggested that the cellular defect(s) underlying the unresponsiveness of the chimeric cells to bm6-encoded determinants was at the level of the CTL precursor. Together, these findings indicate that an interaction of the K region-encoded gene products of the T cell and its maturation environment play a critical role in the generation of the CTL repertoire specific for bm6 mutant determinants. We discuss here the possibility that this interaction may reflect a requirement that T cells recognize such mutant allodeterminants in association with self restriction elements present on the same mutant K region-encoded molecule.  相似文献   

17.
In addition to their overexpression in cancer cells, most of the tumor-associated Ags are expressed at low but detectable levels in normal tissues. It is not clear whether the repertoire of T cells specific for unmutated tumor Ags is shaped by negative selection during T cell development. The transgenic adenocarcinoma of mouse prostate (TRAMP) model is transgenic for the SV40 large T Ag (Tag) under the control of the rat probasin regulatory elements. Although it has been established that T lymphocytes from TRAMP mice are tolerant to SV40 Tag, the mechanism of the tolerance is largely unknown. To examine whether the T cell clonal deletion is responsible for the tolerance, we crossed the TRAMP mice with mice transgenic for a rearranged TCR specific for SV40 Tag presented by the H-2K(k). Double transgenic TRAMP/TCR mice showed profound thymic deletion of SV40 Tag-reactive T cells, including a 6- to 10-fold reduction in the total thymocyte numbers and a >50-fold reduction in phenotypically mature T cells. Consistent with this finding, we observed that the SV40 Tag and endogenous mouse probasin genes are expressed at low levels in the thymus. These results demonstrate that clonal deletion is a major mechanism for tolerance to Ags previously regarded as prostate-specific, and provide direct evidence that the T cell repertoire specific for an unmutated tumor Ag can be shaped by clonal deletion in the thymus.  相似文献   

18.
Transgenic mice expressing a T cell receptor heterodimer specific for a fragment of pigeon cytochrome c plus an MHC class II molecule (I-Ek) have been made. We find that H-2k alpha beta transgenic mice have an overall increase in the number of T cells and express a 10-fold higher fraction of cytochrome c-reactive cells than H-2b mice. Surface staining of thymocytes indicates that in H-2b mice, T cell development is arrested at an intermediate stage of differentiation (CD4+8+, CD310). Analyses of mice carrying these T cell receptor genes and MHC class II I-E alpha constructs indicate that his developmental block can be reversed in H-2b mice by I-E expression on cortical epithelial cells of the thymus. These data suggest that a direct T cell receptor-MHC interaction occurs in the thymus in the absence of nominal antigen and results in the enhanced export of T cells, consistent with the concept of "positive selection".  相似文献   

19.
The level of CD8 expression can determine the outcome of thymic selection.   总被引:1,自引:0,他引:1  
E A Robey  F Ramsdell  D Kioussis  W Sha  D Loh  R Axel  B J Fowlkes 《Cell》1992,69(7):1089-1096
During thymic development, thymocytes that can recognize major histocompatability complex (MHC) molecules on thymic epithelial cells are selected to survive and mature (positive selection), whereas thymocytes that recognize MHC on hematopoietic cells are destroyed (negative selection). It is not known how MHC recognition can mediate both death and survival. One model to explain this paradox proposes that thymocytes whose T cell antigen receptors (TCRs) recognize MHC with high affinity are eliminated by negative selection, whereas low affinity TCR-MHC interactions are sufficient to mediate positive selection. Here we report that, while the expression of a 2C TCR transgene leads to positive selection of thymocytes in H-2b mice, expression of both a CD8 transgene and a 2C TCR transgene causes negative selection. This observation indicates that quantitative differences in TCR-MHC recognition are a critical determinant of T cell fate, a finding predicted by the affinity model for thymic selection.  相似文献   

20.
Immune responses to GAT are controlled by H-2-linked Ir genes; soluble GAT stimulates antibody responses in responder mice (H-2b) but not in nonresponder mice (H-2q). In nonresponder mice, soluble GAT stimulates suppressor T cells that preempt function of helper T cells. After immunization with soluble GAT, spleen cells from (responder x nonresponder: H-2b X H-2q)F1 mice develop antibody responses to responder H-2b GAT-M phi but not to nonresponder H-2q GAT-M phi. This failure of immune F1 spleen cells to respond is due to an active suppressor T cell mechanism that is activated by H-2q, but not H-2b, GAT-M phi and involves two regulatory T cell subsets. Suppressor-inducer T cells are immune radiosensitive Lyt-1 +2-, I-A-, I-J+, Qa-1+ cells. Suppressor-effector T cells can be derived from virgin or immune spleens and are radiosensitive Lyt-1-2+, I-A-, I-J+, Qa-1+ cells. This suppressor mechanism can suppress responses of virgin or immune F1 helper T cells and B cells. Helper T cells specific for H-2b GAT-M phi are easily detected in F1 mice after immunization with soluble GAT; helper T cells specific for H-2q GAT-M phi are demonstrated after elimination of the suppressor-inducer and -effector cells. These helper T cells are radioresistant Lyt-1+2-, I-A+, I-J-, Qa-1- cells. These data indicate that the Ir gene defect in responses to GAT is not due to a failure of nonresponder M phi to present GAT and most likely is not due to a defective T cell repertoire, because the relevant helper T cells are primed in F1 mice by soluble GAT and can be demonstrated when suppressor cells are removed. These data are discussed in the context of mechanisms for expression of Ir gene function in responses to GAT, especially the balance between stimulation of helper vs suppressor T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号