首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The crystal structure of tri-O-ethylamylose has been solved by stereochemical conformation and packing analysis and by X-ray fibre diagram analysis. The unit cell is orthorhombic, space group P212121, with = 16.13 (± 0.04) Å, b = 11.66 (± 0.02) Å, and c (fibre repeat) = 15.48 (± 0.02) Å. Density measurements, together with the observation of only a fourth-order meridional reflection, indicated that portions of two four-fold helices pass through the unit cell. The actual chain conformation is that of a 43 helix with the EtO-6 group in the tg (trans to O-5, and gauche to C-4) position. The tri-O-ethylamylose structure is compared with those of other amylose derivatives.  相似文献   

2.
The previously determined 3D NMR solution structure of cyclophilin-bound cyclosporin A (CsA) was docked onto the X-ray crystal structure of cyclophilin. Intermolecular nuclear Overhauser effects (NOE) between CsA and cyclophilin were used as constraints in a restrained energy minimization to generate a model of the complex which satisfied all the NOE distance constraints. The model shows that the residues 9 to 11 and 1 to 5 of the cyclic CsA molecule are in contact with cyclophilin. Comparing the model of the CsA—cyclophilin complex to the X-ray crystal structure of a complex of cyclophilin with a substrate for peptidyl-proline cis-trans isomerase activity, i.e. the linear tetrapeptide substrate ae-Ala-Ala-Pro-Ala-amc (ac. acetyl; amc. amidomethylcoumarin), one notices that the contacting peptide segments in the two ligands are oriented in opposite directions, and that the side chain or MeVal-11 of CsA superposes rather precisely with the position of the prolyl residue in ae-Ala-Ala-Pro-Ala-amc.  相似文献   

3.
The 5 Å resolution crystal structure analysis of ribosomal protein L30 from Bacillus stearothermophilus is described. The molecule is shown to be compact and extend to about 25–30 Å in each dimension.  相似文献   

4.
The free-living nematode Caenorhabditis elegans expresses 18 cyclophilin isoforms, eight of which are conserved single domain forms, comprising two closely related secreted or type B forms (CYP-5 and CYP-6). Recombinant CYP-5 has been purified, crystallised and the X-ray structure solved to a resolution of 1.75A. The detailed molecular architecture most strongly resembles the structure of human cyclophilin B with conserved changes in loop structure and N and C-terminal extensions. Interestingly, the active site pocket is occupied by a molecule of dithiothreitol though this has little effect on the geometry of the active site which is similar to other cyclophilin structures. The peptidyl-prolyl isomerase activity of CYP-5 has been characterised against the substrate N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide, and gives a k(cat)/K(m) value of 3.6x10(6)M(-1)s(-1) that compares with a value of 6.3x10(6)M(-1)s(-1) for human cyclophilin B. The immunosuppressive drug cyclosporin A binds and inhibits CYP-5 with an IC(50) value of 50nM, which is comparable to the value of 84nM found for human cyclophilin B. CYP-6 has 67% sequence identity with CYP-5 and a molecular model was built based on the CYP-5 crystal structure. The model shows that CYP-5 and CYP-6 are likely to have very similar structures, but with a markedly increased number of negative charges distributed around the surface of CYP-6. The spatial expression patterns of the cyclophilin B isoforms were examined using transgenic animals carrying a LacZ reporter fusion to these genes, and both cyp-5 and cyp-6 are found to be expressed in an overlapping fashion in the nematode gut. The temporal expression pattern of cyp-5 was further determined and revealed a constitutive expression pattern, with highest abundance levels being found in the embryo.  相似文献   

5.
In this paper, we report the crystal and molecular structure of μ-oxo-bis(5,10,15,20)tetrakispentafluorophenyl)porphinatoiron(III) [(TPP(F5)Fe)2O]. The crystals belong to the tetragonal system, space group I41/a, with a =b = 26.362(7),c = 30.886(8)Å,V = 21465Å3,Z = 8 and Dcalc = 1.496. Discrepancy indices are R1 = 0.084 and R2 = 0.104 for 3320 reflections having I3σ(I). The FeNp average distance, 2.088(11)Å, is at the long end of the range of high-spin ferric porphyrin while the FeO distances (1.775(1)Å) are similar to those of the non-halogenated analog (TPPFe)2O. The FeOFe angle of 178.4(5)° shows an essentially linear oxo bridge. The 0.673(2)Ådisplacement of the iron atom from the porphyrin mean plane is unusually large. The facing porphyrin rings are twisted 47° with respect of each other giving the molecule nearly exact D4d symmetry.  相似文献   

6.
The syntheses and structures of [Ni(H2O)6]2+[MF6]2− (M = Ti,Zr,Hf) and Ni3(py)12F6·7H2O are reported. The former three compounds are isostructural, crystallizing in the trigonal space group (No. 148) with Z = 3. The lattice parameters are a = 9.489(4), C = 9.764(7) Å, with V = 761(1) Å3 for Ti; a = 9.727(2), C = 10.051(3) Å, with V = 823.6(6) Å3 for Zr; and a = 9.724(3), C = 10.028(4)Å, with V = 821.2(8)Å3 for Hf. The structures consist of discrete [Ni(H2O)6]2+ and [MF6]2− octahedra joined by O---HF hydrogen bond Large single crystals were grown in an aqueous hydrofluoric acid solution. Ni3(py)12F6·7H2O crystallizes in the monoclinic space group I2/a (No. 15) with Z = 4. The lattice parameters are a = 16.117(4), B = 8.529(3), C = 46.220(7) Å, β = 92.46(2)°, and V = 6348(5) Å3. The structure consists of discrete Ni(py)4F2 octahedra linked through H---O---HF and H---O---HO hydrogen bonding interactions. Single c were grown from a (HF)x·pyridine/pyridine/water solution.  相似文献   

7.
Cyclophilin38 (CYP38) is one of the highly divergent cyclophilins from Arabidopsis thaliana. Here, we report the crystal structure of the At-CYP38 protein (residues 83 to 437 of 437 amino acids) at 2.39-Å resolution. The structure reveals two distinct domains: an N-terminal helical bundle and a C-terminal cyclophilin β-barrel, connected by an acidic loop. Two N-terminal β-strands become part of the C-terminal cyclophilin β-barrel, thereby making a previously undiscovered domain organization. This study shows that CYP38 does not possess peptidyl-prolyl cis/trans isomerase activity and identifies a possible interaction of CYP38 with the E-loop of chlorophyll protein47 (CP47), a component of photosystem II. The interaction of CYP38 with the E-loop of CP47 is mediated through its cyclophilin domain. The N-terminal helical domain is closely packed together with the putative C-terminal cyclophilin domain and establishes a strong intramolecular interaction, thereby preventing the access of the cyclophilin domain to other proteins. This was further verified by protein–protein interaction assays using the yeast two-hybrid system. Furthermore, the non-Leucine zipper N-terminal helical bundle contains several new elements for protein–protein interaction that may be of functional significance. Together, this study provides the structure of a plant cyclophilin and explains a possible mechanism for autoinhibition of its function through an intramolecular interaction.  相似文献   

8.
The first 1:2 metal complexes of 2-(2′-pyridyl)quinoxaline (L) have been isolated. The physical and spectroscopic characteristics of the compounds [MCl2L2] (M = Ni, Cu, Cd) and [CuIL2](PF6) are described. The structure of the copper(I) complex has been determined by X-ray diffraction methods. Crystals are orthorhombic, space group Pcnb with A = 11.014(2), B = 12.886(2), C = 17.806(4) Å, V = 2527.1(9) Å3 and Z = 4. Refinement of the structure gave a final R factor of 0.046 (Rw = 0.041) for 814 unique reflections having I > 2.0σ(I). The ligand L acts as a bidentate chelate, the ligated atoms being the pyridine nitrogen and the nearest quinoxaline nitrogen. The structure of [CuL2]+ consists of a distorted tetrahedral arrangement around the copper(I) atom with Cu---N bond lengths of 2.023(6) and 2.059(5) Å and the N---Cu---N angle of the chelating ligand equal to 80.6(2)°. A monomeric trans pseudo-octahedral stereochemistry is assigned for the [MCl2L2] complexes.  相似文献   

9.
The reaction between cimetidine in a methanolic solution of KOH and a dichloromethane solution of PPh3AuCl affords a new compound with formula [L-Au-PPh3] (I) (L = 2-(N-methyl-N′-cyano-N″-ethylguanidino)thiolate), the thiolato ligand resulting from cleavage of one of the thioether bonds of cimetidine. (I) has been characterized by elemental analysis, infrared, and 1H and 13C NMR spectroscopy. Single crystal x-ray structure determination shows that the gold atom is linearly coordinated by a phosphine ligand (Au-P 2.258(1) Å) and by an S atom (Au-S 2.282(1) Å) of the thiolato ligand. Crystal data: triclinic, space group P with a = 8.848(1), b = 11.343(3), c = 12.107(3)Å, = 87.63(1), β = 85.24(1), γ = 79.89(1)°, R = 0.024 for 3673 reflections with I > 3 δ (I).  相似文献   

10.
Compounds of formula [Al(CH3CN)6][MCl6]3(CH3CN)3 (M=Ta (1); Nb (2); Sb (3)) have been synthesized from the reactions of MCl5 and AlCl3 in acetonitrile and characterized by X-ray crystallography. Complex 1 crystallizes in the tetragonal space group P4/mbm with a = B = 10.408(2), C = 7.670(3) Å, V = 830.9(4) Å3 and Z = 2/3. Complex 2 crystallizes in the tetragonal space group P4/mnc with a = B = 330(a), C = 15.320(3) Å3 V = 1634.8(4) Å3 and Z = 4/3. Complex 3 also crystallizes in the tetragonal space group P4/mnc with a = B = 10.313(1), C = 15.238(2) Å, V = 1621.0(1) Å3 and Z = 4/3. The non-integer Z values for complexes 1–3 result unusual problems of disorder and/or twinning in these crystal structures due to their high symmetry. The M---Cl distances range from 2.329(3) Å in the Ta complex to 2.355(1) Å in the Sb complex, while the Al---N distances are similar in all three complexes, ranging from 1.92(1) to 1.97(1) Å, respectively. Complexes 1–3 are the first structurally characterized complexes that contain a (hexaacetonitrile)aluminum(III) cation.  相似文献   

11.
The crystal and the molecular structure of 4,1′,6′-trichloro-4,1′,6′-trideoxy-galacto-sucrose (TGS) was determined by X-ray analysis at 294 K. Crystals of TGS are orthorhombic, space group P212121, with a = 7.318(3), b = 12.027(4), c = 18.136(5) Å, V = 1596(1) Å3, Z = 4; Dx = 1.655 g.cm-3, λ(MoK) = 0.71073 Å, μ(MoK) = 5.44 cm-1, F(000) = 816. The X-ray intensities of 2649 reflections with I 2.5σ(I) were measured with Zr-filtered MoK-radiation. The structure was solved by the Patterson procedure and refined by full-matrix least-squares to a final R-value of 0.0298. Large conformational differences between TGS and sucrose were observed, particularly in the conformation of the glycosidic linkage. These differences originate from chlorine substitution, which affects intramolecular hydrogen bonding and sweet-taste glucophores.  相似文献   

12.
Treatment of the A-ring aromatic steroids estrone 3-methyl ether and β-estradiol 3, 17-dimethyl ether with Mn(CO)5+BF4 in CH2Cl2 yields the corresponding [(steroid)Mn(CO)3]BF4 salts 1 and 2 as mixtures of and β isomers. The X-ray structure of [(estrone 3-methyl ether)Mn(CO)3]BF4 · CH2Cl2 (1) having the Mn(CO)3 moiety on the side of the steroid is reported: space group P21 with a=10.3958(9), b=10.9020(6), c=12.6848(9) Å, β=111.857(6)°, Z=2, V=1334.3(2) Å3, calc=.481 cm−3, R=0.0508, and wR=0.0635. The molecule has the traditional ‘piano stool’ structure with a planar arene ring and linear Mn---C---O linkages. The nucleophiles NaBH4 and LiCH2C(O)CMe3 add to [(β-estradiol 3,17-dimethyl ether)Mn(CO)3]BF4 (2) in high yield to give the corresponding - and β-cyclohexadienyl manganese tricarbonyl complexes (3). The nucleophiles add meta to the arene -OMe substituent and exo to the metal. The and β isomers of 3 were separated by fractional crystallization and the X-ray structure of the β isomer with an exo-CH2C(O)CMe3 substituent is reported (complex 4): space group P212121 with a=7.5154(8), b=15.160(2), c=25.230(3) Å, Z=4, V=2874.4(5) Å3, calc=1.244 g cm−3, R=0.0529 and wR2=0.1176. The molecule 4 has a planar set of dienyl carbon atoms with the saturated C(1) carbon being 0.592 Å out of the plane away from the metal. The results suggest that the manganese-mediated functionalization of aromatic steroids is a viable synthetic procedure with a range of nucleophiles of varying strengths.  相似文献   

13.
Chicken liver basic fatty acid-binding protein (pI = 9.0) has been purified with a high yield by a modification of a method originally applied to rat liver. The final product is highly homogeneous and can be used to grow crystals that belong to two different space groups. The crystals are either tetragonal, space group P42212 with a = b = 60.2 Å and c = 138.1 Å or orthorhombic, space group P212121 with a = 60.7 Å, b = 40.1 Å and c = 66.7 Å. The second form appears to be more suitable for X-ray diffraction studies, it diffracts to at least 2.8 Å resolution and it is believed to contain one protein molecule in the crystallographic asymmetric unit.  相似文献   

14.
The metal ion complexing properties of the ligand HQC (8-hydroxyquinoline-2-carboxylic acid) are reported. The structures of [Zn(HQCH)2] · 3H2O (1) and [Cd(HQCH)2] · 3H2O (2) were determined (HQCH = HQC with phenol protonated). Both 1 and 2 are triclinic, space group , with Z = 2. For 1 a = 7.152(3), b = 9.227(4), c = 15.629(7) Å,  = 103.978(7)°, β = 94.896(7)°, γ = 108.033(8)°, R = 0.0499. For 2 a = 7.0897(5), b = 9.1674(7), c = 16.0672(11) Å,  = 105.0240(10)°, β = 93.9910(10)°, γ = 107.1270(10)°, R = 0.0330. In 1 the Zn has a distorted octahedral coordination geometry, with Zn–N of 2.00 and 2.15 Å, and Zn–O to the protonated phenolic oxygens of 2.431 and 2.220 Å. The structure of 2 is similar, with Cd–N bonds of 2.220 and 2.228 Å, with Cd–O bonds to the protonated phenolate oxygens of 2.334 and 2.463 Å. The structures of 1 and 2, and isomorphous Ni(II) and Co(II) HQC complexes reported in the literature, show very interesting short (<2.5 Å) O–O distances in H-bonds involving the protons on the coordinated phenolates and lattice water molecules. These are discussed in relation to the possible role of short low-energy H-bonds in alcohol dehydrogenase in mediating the transfer of the hydroxyl proton of the alcohol to an adjacent serine oxygen.

The formation constants for HQC are determined by UV–Visible spectroscopy at 25 °C in 0.1 M NaClO4 with Mg(II), Ca(II), Sr(II), Ba(II), La(III), Gd(III), Zn(II), Cd(II), Ni(II), Cu(II), and Pb(II). These show greatest stabilization with metal ions with an ionic radius above 1.0 Å. This is as would be expected from the fact that HQC forms two five-membered chelate rings on complex-formation, which favors larger metal ions. The ligand design concept of using rigid aromatic backbones in ligands to achieve high levels of preorganization, and hence the high log K values (for a tridentate ligand) and strong metal ion selectivities observed for HQC, is discussed.  相似文献   


15.
The nanometer range structure of potato (Solanum tuberosum L.) tubers was examined by wide-angle, small-angle and ultra small-angle X-ray scattering methods. The crystallinity of starch, the lattice constants of the hexagonal lattice of amylopectin, the average crystallite size in the direction [100], the lamellar distance and the thickness of lamella stacks were determined from the data. A new achievement presented in this paper is that reasonable results for these parameters of potato starch were obtained by carrying out experiments on slices and mashes of raw potato tubers. The effects of sample preparation were also investigated by doing experiments on air-dried and re-hydrated potato samples, and on isolated potato starch as well. Changes in the structure of three different cultivars grown in Finland (S. tuberosum cv. Satu, Saturna and Lady Rosetta) were studied monthly from August to May. The physiological ageing caused changes in the crystallinity and in the crystal structure. The mean values (±SD) were determined from the data measured between September and January (30 samples). The lattice constants a=18.4±0.06 and c=10.4±0.04 Å, the crystallinity of starch 24±2% and the crystallite size 118±10 Å were obtained. The lamellar distance was 97±3 Å and the thickness of lamella stacks 513±6 Å. The structural parameters did not vary significantly between Satu, Saturna and Lady Rosetta. For comparison, two cultivars grown in the Netherlands were studied in December. The Dutch cultivars showed the same structural parameters as the Finnish cultivars.  相似文献   

16.
The molecular structure of the title complexes [Fe(H2O)4][Fe(Hedta)(H2O)]2 · 4H2O (I) and [Fe(H[2edta)(H2O)] · 2H2O (II) have been determined by single-crystal X-ray analyses. The crystal data are as follows: I: monoclinic, P21/n, A = 11.794(2), B = 15.990(2), C = 9.206(2) Å, β = 90.33(1)°, V = 1736.1(5) Å3, Z = 2 and R = 0.030; II: monoclinic, C2/c, A = 11.074(2), B = 9.856(2), C = 14.399(2) Å, β = 95.86(1)°, V = 1563.3(4) Å3, Z = 4 and R = 0.025. I is found to be isomorphous with the MnII analog reported earlier and to contain a seven-coordinate and approximately pentagonal-bipyramidal (PB) [FeII(Hedta)(H2O] unit in which Hedta acts as a hexadentate ligand. The [FeII(H2edta)(H2O)] unit in II has also a seven-coordinate PB structure with the two protonated equatorial glycine arms both remaining coordinated, and thus bears a structural resemblance to the seven-coordinate [CoII(H2edta)(H2O)] reported previously.  相似文献   

17.
Human estrogenic 17β-hydroxysteroid dehydrogenase (17β-HSD1, EC1.1.1.62) is an important enzyme that catalyses the last step of active estrogen formation. 17β-HSD1 plays a key role in the proliferation of breast cancer cells. The three-dimensional structures of this enzyme and of the enzyme-estradiol complex have been solved (Zhu et al., 1993, J. Mol. Biol. 234:242; Ghosh et al., 1995, Structure 3:503; Azzi et al., 1996, Nature Struct. Biol. 3:665). The determination of the non-reactive ternary complex structure, which could mimic the transition state, constitutes a further critical step toward the rational design of inhibitors for this enzyme (Ghosh et al. 1995, Structure 3:503; Penning, 1996, Endocrine-Related Cancer, 3:41).

To further study the transition state, two non-reactive ternary complexes, 17β-HSD1–EM519-NADP+ and 17β-HSD1–EM553-NADP+ were crystallized using combined methods of soaking and co-crystallization. Although they belong to the same C2 space group, they have different unit cells, with a=155.59 Å, b=42.82 Å, c=121.15 Å, β=128.5° for 17β-HSD1–EM519-NADP+, and a=124.01 Å, b=45.16 Å, c=61.40 Å, β=99.2° for 17β-HSD1–EM553-NADP+, respectively. Our preliminary results revealed that the inhibitors interact differently with the enzyme than do the natural substrates.  相似文献   


18.
The complex [Mn(L)(NO3)2(H2O)2] (1) (L=2H-5-hydroxy-1,2,5-oxadiazo[3,4-f]1,10-phenanthroline) was synthesized and characterized by elemental analysis, IR and UV. The crystal and molecular structure of 1 was determined by single-crystal X-ray diffraction; crystal data: light yellow, monoclinic, space group P21/n, Z=4, a=7.432(2) Å, b=9.582(3) Å, c=23.445(7) Å, β=90.519(5)°. The Mn atom in 1 is hexa-coordinated in a distorted octahedral arrangement by two N atoms of the ligand L and four O atoms of two water molecules and two nitrate anions. Biological tests in vitro showed that 1 has significant antitumor activity against HL-60, KB, Hela and BGC-823 cells. The interaction of 1 with calf thymus DNA was investigated by absorption titration, thermal denaturation and viscosity measurements. The results suggest that 1 binds with DNA by intercalating via the ligand L.  相似文献   

19.
The hydrothermal reactions of (Ph4P)[VO2Cl2] and H2C2O4 at 150 and 125°C yield (Ph4P)2[V2O2(H2O)2(C2O4)3]·4H2O (1) and (Ph4P)[VOCl(C2O4)] (2), respectively. The structure of the molecular anion of 1 consists of a binuclear unit of oxovanadium(IV) octahedra bridged by a bisbidentate oxalate group. The VO6 coordination geometry at each vanadium site is defined by a terminal oxo group, an aquo ligand, and four oxygen donors — two from the bisbidentate bridging oxalate and two from the terminal bidentate oxalate. The structure of 2 consists of discrete Ph4P+ cations occupying regions between [VOCl(C2O4)] spiral chains. The structure of the one-dimensional anionic chain exhibits V(IV) octahedra bridged by bisbidentate oxalate groups. Crystal data: 1·4H2O, monoclinic P21/n, A = 12.694(3), B = 12.531(3), C = 17.17(3) Å, β = 106.32(2)°, V = 2621.3(13) Å3, Z = 2, Dcalc = 1.501 g cm−3, structure solution and refinement converged at a conventional residual of 0.0518; 2, tetragonal P43, A = 12.145(2), C = 15.991(3) Å, V = 2358.7(12) Å3, Z = 4, R = 0.0452.  相似文献   

20.
The structure of porin from Rhodobacter capsulatus at 1.8 Å resolution   总被引:9,自引:0,他引:9  
The structure of the porin from Rhodobacter capsulanus was determined at a resolution of 1.8 Å. The analysis started from a closely related crystal structure that had been solved at a medium resolution of 3 Å using multiple isomorphous replacement and solvent flattening. The new structure contains the complete sequence of 301 amino acid residues. Refinement of the model is under way: the present R-factor is 22% with good geometry. Except for the lengths of several loops, the resulting chain fold corresponds to the medium resolution model. The membrane channel is lined by a large number of ionogenic side chains with characteristic segregation of differently charged groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号