首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Phosphoinositide-specific phospholipase C (PI-PLC) hydrolyzes the membrane lipid phosphatidylinositol 4,5-bisphosphate (PtdInsP2) to generate 1,2-diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (InsP3). Both molecules serve as second messengers to carry out various cellular functions in mammals. In the present study, we demonstrate that many organic and inorganic nutrients cause the elevation of InsP3 concentrations in cultured soybean cells. This elevation of InsP3 content is sustained for several hours following treatment with Murashige-Skoog (MS) inorganic nutrients. Phosphate and calcium are the major components in MS salts responsible for the increase in InsP3 levels. DNA synthesis, a measure of cell growth, was significantly suppressed by the PI-PLC-specific inhibitor 1-(6-{[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino}hexyl)-1H-pyrrole-2,5-dione (U-73122), whereas its near-identical analogue 1-(6-{[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino}hexyl)-2,5-pyrrolidinedione did not cause any suppression. Activation of PI-PLC by MS salts increased DNA synthesis and abolished the suppression of DNA synthesis caused by U-73122. Thus, we conclude that the higher cellular concentration of InsP3 induced by MS treatment is involved in DNA synthesis.  相似文献   

2.
3.
Earlier studies have implicated phospholipase C (PLC) in the development of myogenic tone (MT) based on pharmacological studies in larger arteries. In the present study, we further investigated the cellular effects of PLC inhibition using pharmacological and electrophysiological approaches to provide more quantitative functional evidence for the involvement of PLC in the genesis of MT in small cerebral arteries. The phosphatidylinositol-selective PLC (PI-PLC) inhibitor U-73122 decreased MT by 87% in posterior cerebral arteries from Sprague-Dawley rats with pIC(50) of 6.2 +/- 0.09 (n = 5). Similar potency (pIC(50) of 6.2 +/- 0.04, n = 5) was observed in arteries with MT that were further constricted with 30 nM serotonin. The phosphatidylcholine-specific (PC-PLC) inhibitor D609 had no effect on MT. U-73343, the inactive analog of U-73122, did not show any relaxant effect, but at higher concentrations (>1 microM) it reduced MT. In the presence of 125-500 nM U-73122, the pressure-diameter curves shifted toward that obtained in Ca-free conditions. U-73122-mediated decrease in MT was accompanied by a decrease in mean arterial wall calcium (maximum effect: 77 +/- 3% of 16 mM KCl-mediated decrease, n = 4). This was due to a simultaneous membrane potential hyperpolarization of approximately 9 mV or from -44 +/- 1 to -53 +/- 2 mV (10 microM, P < 0.001, n = 8). In summary, this study provides the first quantitative data suggesting a critical importance of PI-PLC in the genesis of pressure-induced MT in rat cerebral arteries via membrane potential depolarization and increased calcium influx.  相似文献   

4.
Phosphoinositide-specific phospholipase C (PI-PLC) has been shown to be transiently activated when plant cells were treated with elicitors. We thus investigated the activity of PI-PLC when soybean cells were infected with the bacterial pathogen Pseudomonas syringae pv. glycinea, by measuring cellular cytosolic inositol 1,4,5-trisphosphate (IP3) levels. We observed that IP3 content decreased in both compatible and incompatible interactions. In vitro phosphatase activities were similar in both water control and infected cells with slightly lower IP3 degradation observed for infected cells, indicating that the reduced IP3 content in infected cells most likely results from reduced PI-PLC activity. We hypothesize that reduced IP3 content following infection may lead to suppression of various housekeeping activities of the cells, thus diverting the cellular resources either to the synthesis of defense-related compounds against pathogens, and/or to the growth of pathogens.  相似文献   

5.
The aminosteroid U73122 has been established as potent, selective, and cell-permeable inhibitor C-type phosphatidylinositol-specific phospholipases (PI-PLCs), and has been used to define a contribution of PI-PLCs as part of exocytotic signalling pathways in rat peritoneal mast cells (RPMCs). However, doubts have been raised regarding its PI-PLC selectivity of action. Therefore, in the present study, U73122 was tested in RPMCs under experimental conditions allowing to elicit exocytosis PI-PLC independently (streptolysin O [SLO]-permeabilised cells; stimulated by GTPgammaS; in the presence of low concentrations of free Ca2+). The release of [3H]5-hydroxytryptamine ([3H]5-HT) from [3H]5-HT-loaded RPMCs served as measure of secretion. U73122 potently inhibited the exocytotic response induced by 10 microM GTPgammaS (Ca2+: 10(-6) M) in permeabilised cells (IC50: 0.6 microM, n=5) in an insurmountable manner. In intact RPMCs, with a nearly equal potency (IC50: 4 microM, n=4), U73122 also inhibited the PI-PLC-dependent exocytotic response induced by concomitant application of nerve growth factor and lyso-phosphatidylserine (NGF/lyso-PS). CONCLUSION: U73122 exerts potent PI-PLC-independent secretostatic effects, limiting its use to define PI-PLC function within exocytotic processes.  相似文献   

6.
7.
A Ca2+-dependent phosphoinositide-specific phospholipase C (PI-PLC) activity has been characterized in the microsomal fraction of Digitaria sanguinalis mesophyll cell protoplasts. Microsomal PI-PLC was found to be inhibited in vitro by a mammalian anti-PLC-delta1 antibody and by the aminosteroide U-73122, an inhibitor of PI-PLC activity in animal cells. In Western blot experiments, the antibody recognized an 85 kDa protein in both microsomal protein extracts from mesophyll protoplasts and rat brain protein extracts containing the authentic enzyme. The involvement of the microsomal PI-PLC in the light-dependent transduction pathway leading to the phosphorylation of C4 phosphoenolpyruvate carboxylase (PEPC) was investigated in D. sanguinalis protoplasts. A transient increase in the PI-PLC reaction product inositol-1,4,5-trisphosphate (Ins(1,4, 5)P3) was observed in situ during early induction of the C4 PEPC phosphorylation cascade. U-73122, but not the inactive analogue U-73343, efficiently blocked the transient accumulation of Ins(1,4, 5)P3, and both the increase in C4 PEPC kinase activity and C4 PEPC phosphorylation in illuminated and weak base-treated protoplasts. Taken together, these data suggest that PI-PLC-based signalling is a committed step in the cascade controlling the regulation of C4 PEPC phosphorylation in C4 leaves.  相似文献   

8.
9.
10.
Pan YY  Wang X  Ma LG  Sun DY 《Plant & cell physiology》2005,46(10):1657-1665
The phosphatidylinositol-specific phospholipase C (PI-PLC) activity is detected in purified Lilium pollen protoplasts. Two PI-PLC full length cDNAs, LdPLC1 and LdPLC2, were isolated from pollen of Lilium daviddi. The amino acid sequences for the two PI-PLCs deduced from the two cDNA sequences contain X, Y catalytic motifs and C2 domains. Blast analysis shows that LdPLCs have 60-65% identities to the PI-PLCs from other plant species. Both recombinant PI-PLCs proteins expressed in E. coli cells show the PIP(2)-hydrolyzing activity. The RT-PCR analysis shows that both of them are expressed in pollen grains, whereas expression level of LdPLC2 is induced in germinating pollen. The exogenous purified calmodulin (CaM) is able to stimulate the activity of the PI-PLC when it is added into the pollen protoplast medium, while anti-CaM antibody suppresses the stimulation effect caused by exogenous CaM. PI-PLC activity is enhanced by G protein agonist cholera toxin and decreased by G protein antagonist pertussis toxin. Increasing in PI-PLC activity caused by exogenous purified CaM is also inhibited by pertussis toxin. A PI-PLC inhibitor, U-73122, inhibited the stimulation of PI-PLC activity caused by cholera toxin and it also leads to the decrease of [Ca(2+)](cyt) in pollen grains. Those results suggest that the PPI-PLC signaling pathway is present in Lilium daviddi pollen, and PI-PLC activity might be regulated by a heterotrimeric G protein and extracellular CaM.  相似文献   

11.
12.
13.
A nonradioactive spectrometric assay for the evaluation of inhibitors of phosphatidylinositol-specific phospholipase C (PI-PLC) is described. l-alpha-Phosphatidylinositol from bovine liver was used as substrate in the presence of the micelle-forming detergent deoxycholic acid. PI-PLC isolated from Bacillus cereus and crude cytosol fractions from porcine brain were used as enzyme sources. PI-PLC activity was determined by measuring the release of 1-stearoyl-2-arachidonoyl-sn-glycerol with reversed-phase HPLC and UV detection at 200 nm. PI-PLC from B. cereus was not inhibited by the putative PI-PLC inhibitors U-73122 and ET-18-OCH(3) at 100 microM, whereas the isobenzofuranone derivative 5 blocked the enzyme with an IC(50) of 75 microM. PI-PLC activity present in porcine brain cytosol was decreased by all three test compounds at 100 microM to approximately 30 to 50%.  相似文献   

14.
15.
16.
17.
Plant endo-β-1,3-glucanases and chitinases inhibit the growth of some fungi and generate elicitor-active oligosaccharides while depolymerizing polysaccharides of mycelial walls. Overexpression of the endo-β-1,3-glucanases and/ or chitinases in transgenic plants provides, in some cases, increased protection against fungal pathogens. However, most of the phytopathogenic fungi that have been tested in vitro are resistant to endo-β-1,3-glucanases and chitinases. Furthermore, some phytopathogenic fungi whose growth is inhibited by these enzymes are able to overcome the effect of these enzymes over a period of hours, indicating an ability of those fungi to adapt to the enzymes. Evidence is presented indicating that fungal pathogens secrete proteins that inhibit selective plant endo-β-1,3-glucanases.A glucanase inhibitor protein (GIP-1) has been purified to homogeneity from the culture fluid of the fungal pathogen of soybeans, Phytophthora sojae f. sp. glycines (Psg), and two basic pathogenesis-related endo-β-1,3-glucanases (EnGLsoy-A and EnGLsoy-B) have been purified from soybean seedlings. GIP-1 inhibits EnGLsoy-A but not EnGLsoy-B. Moreover, GIP-1 does not inhibit endo-β-1,3-glucanases secreted by Psg itself nor does GIP-1 inhibit PR-2c, a pathogenesis-related endo-β-1,3-glucanase of tobacco. Evidence is presented that Psg secretes other GIPs that inhibit other endo-β-1,3-glucanase(s) of soybean. Furthermore, GIP-1 does not exhibit proteolytic activity but does appear to physically bind to EnGLsoy-A. The results reported herein demonstrate specific interactions between gene products of the host and pathogen and establish the need to consider fungal proteins that inhibit plant endo-β-1,3-glucanases when attempting to use the genes encoding endo-β-1,3-glucanases to engineer resistance to fungi in transgenic plants.  相似文献   

18.
Hong JK  Hwang BK 《Protoplasma》2002,219(3-4):131-139
Summary. Immunoblot analysis and immunogold labeling of PR-1 protein (pathogenesis-related protein 1) in tomato (Lycopersicon esculentum Mill.) were performed to examine the temporal and spatial expression patterns of PR-1 protein induced by Phytophthora capsici infection. Soluble proteins with molecular masses of 10, 17, 25, 27 and 75 kDa were induced and accumulated in P. capsici-infected stem tissues during the compatible and incompatible interactions. Western blot analysis revealed that expression of PR-1 protein (17 kDa), at 12 to 24 h after inoculation, occurred earlier in the incompatible than in the compatible interaction. Immunogold labeling of PR-1 proteins occurred over cell walls and cytoplasm of the host and the oomycete pathogen and at the interface between host and oomycete cell walls at 24 h after inoculation in the compatible interaction. In the incompatible interaction, numerous PR-1 proteins accumulated predominantly over oomycete cell walls and at the interface between host and oomycete cell walls. The quantity of PR-1 proteins deposited in both host and oomycete cells was much less in the compatible than the incompatible interaction. Healthy tomato stem tissue was nearly free of immunogold labeling of PR-1 proteins. Received October 9, 2001 Accepted January 18, 2002  相似文献   

19.
20.
Abstract

Expression profiles of ten genes commonly up-regulated during plant defense against microbial pathogens were compared temporally during compatible and incompatible interactions with first-instar Hessian fly larvae, in two wheat lines carrying different resistance genes. Quantitative real-time PCR revealed that while a lipoxygenase gene (WCI-2) was strongly up-regulated during the incompatible interactions, genes encoding β-1,3 endoglucanase (GNS) and an integral membrane protein (WIR1) were moderately responsive. Genes for thionin-like protein (WCI-3), PR-17-like protein (WCI-5), MAP kinase (WCK-1), phenylalanine ammonia-lyase (PAL), pathogenesis-related protein-1 (PR-1), receptor-like kinase (LRK10) and heat shock protein 70 (HSP70) were minimally responsive. The application of signaling molecules, salicylic acid (SA), methyl jasmonate (MJ) and abscisic acid (ABA), to insect-free plants demonstrated association of these genes with specific defense-response pathways. SA-induced up-regulation of a gene related to lipoxygenases that are involved in jasmonic acid (JA)-biosynthesis is suggestive of positive cross-talk between SA- and JA-mediated signaling pathways. Data suggest that alternative mechanisms may be involved since few of these classical defense-response genes are significantly up-regulated during incompatible interactions between wheat and Hessian fly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号