首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of estrogens and estrogen-like molecules, including isoflavones, in regulating bone cell activities is essential in understanding the etiology and treatment of post-menopausal osteoporosis. Although estrogen replacement (HRT) has been the main therapy used to prevent and treat osteoporosis, there are concerns about its safety. Isoflavones have attracted attention to their potential roles in osteoporosis prevention and treatment. We have compared the effects of the isoflavone daidzein (1 nM), which has no effect on tyrosine kinases, and 17beta-estradiol (1 nM) on the development and function of cultured osteoblasts isolated from long bones of young female piglets. Daidzein increased ALP activity, osteocalcin secretion, and mineralization, while E2 increased only ALP activity. The content of ERbeta and osteoprotegerin secretion by control cells gradually increased during osteoblast differentiation, whereas the ERalpha and RANK-L content decreased. Daidzein enhanced only the nuclear ERbeta whereas estradiol increased both ERalpha and ERbeta. Daidzein and estradiol increased osteoprotegerin and RANK-L secretion. Daidzein had a more pronounced effect than did estradiol. Daidzein and estradiol increased the membrane content of RANK-L and the nuclear content of runx2/Cbfa1. Daidzein enhanced the nuclear content of progesterone and vitamin D receptors but not as much as did estradiol. All the effects of daidzein were blocked by ICI 182,780. We conclude that a low concentration of daidzein may exert its anti-resorptive action by increasing the activity of porcine mature osteoblasts via ERbeta, by regulating runx2/Cbfa1 production, and by stimulating the secretion of key proteins involved in osteoclastogenesis, such as osteoprotegerin and RANK-ligand.  相似文献   

2.
Oestrogen deficiency enhances bone osteoclastogenesis and bone resorption. Evidence of cooperation between stromal cells and osteoclast precursors in mice suggests that oestradiol acts by regulating cytokine release from stromal cells. Bone marrow stroma contains multipotent progenitors that give rise to many mesenchymal lineages, including osteoblasts that may regulate osteoclast differentiation. We immortalized and characterized six human bone marrow stromal cell lines (presence of Stro1, secretion of alkaline phosphatase, osteocalcin, formation of lipid droplets, and presence of alpha and beta oestrogen receptors). The response of cytokines to oestradiol was then evaluated in vitro, as were the phorbol myristate acetate (PMA)-stimulated cytokine levels. Cells had the characteristics of undifferentiated stromal cells (Stro1+, RANK-L+), and expressed alpha-oestrogen receptors. The osteoblast phenotype (amounts of alkaline phosphatase and osteocalcin) was weak and there was a poor capacity to differentiate into adipocytes. These cell lines did not respond to oestradiol by producing interleukin 6 (IL-6), IL-1 or tumour necrosis factor alpha (TNF-alpha) either constitutively or after stimulation with PMA. Moreover, RANK-L and osteoprotegerin expressions were not regulated by oestradiol in vitro. Thus, modulation of these cytokines by stromal cells do not appear to be the mechanism by which oestradiol regulates bone resorption in humans.  相似文献   

3.
Soybean meal is rich in soybean isoflavones, which exhibit antioxidant, anti-inflammatory, antiviral and anticancer functions in humans and animals. This study was conducted to investigate the effects of soybean isoflavones on the growth performance, intestinal morphology and antioxidative properties in pigs. A total of 72 weaned piglets (7.45 ± 0.13 kg; 36 males and 36 females) were allocated into three treatments and fed corn-soybean meal (C-SBM), corn-soy protein concentrate (C-SPC) or C-SPC supplemented with equal levels of the isoflavones found in the C-SBM diet (C-SPC + ISF) for a 72-day trial. Each treatment had six replicates and four piglets per replicate, half male and half female. On day 42, one male pig from each replicate was selected and euthanized to collect intestinal samples. The results showed that compared to pigs fed the C-SPC diet, pigs fed the C-SBM and C-SPC + ISF diets had higher BW on day 72 (P < 0.05); pigs fed the C-SBM diet had significantly higher average daily gain (ADG) during days 14 to 28 (P < 0.05), with C-SPC + ISF being intermediate; pigs fed the C-SBM diet tended to have higher ADG during days 42 to 72 (P = 0.063), while pigs fed the C-SPC + ISF diet had significantly higher ADG during days 42 to 72 (P < 0.05). Moreover, compared to pigs fed the C-SPC diet, pigs fed the C-SBM diet tended to have greater villus height (P = 0.092), while pigs fed the C-SPC + ISF diet had significantly greater villus height (P < 0.05); pigs fed the C-SBM and C-SPC + ISF diets had significantly increased villus height-to-crypt depth ratio (P < 0.05). Compared with the C-SPC diet, dietary C-SPC + ISF tended to increase plasma superoxide dismutase activity on days 28 (P = 0.085) and 42 (P = 0.075) and reduce plasma malondialdehyde (MDA) content on day 42 (P = 0.089), as well as significantly decreased jejunal mucosa MDA content on day 42 (P < 0.05). However, no significant difference in the expression of tight junction genes among the three groups was found (P > 0.05). In conclusion, our results suggest that a long-term exposure to soybean isoflavones enhances the growth performance, protects the intestinal morphology and improves the antioxidative properties in pigs.  相似文献   

4.
Osteoclasts are highly differentiated terminal cells formed by fusion of hematopoietic stem cells. Previously, osteoprotegerin (OPG) inhibit osteoclast differentiation and bone resorption by blocking receptor activator of nuclear factor-κB ligand (RANKL) binding to RANK indirect mechanism. Furthermore, autophagy plays an important role during osteoclast differentiation and function. However, whether autophagy is involved in OPG-inhibited osteoclast formation and bone resorption is not known. To elucidate the role of autophagy in OPG-inhibited osteoclast differentiation and bone resorption, we used primary osteoclast derived from mice bone marrow monocytes/macrophages (BMM) by induced M-CSF and RANKL. The results showed that autophagy-related proteins expression were upregulated; tartrate-resistant acid phosphatase-positive osteoclast number and bone resorption activity were decreased; LC3 puncta and autophagosomes number were increased and activated AMPK/mTOR/p70S6K signaling pathway. In addition, chloroquine (as the autophagy/lysosome inhibitor, CQ) or rapamycin (as the autophagy/lysosome inhibitor, Rap) attenuated osteoclast differentiation and bone resorption activity by OPG treatment via AMPK/mTOR/p70S6K signaling pathway. Our data demonstrated that autophagy plays a critical role in OPG inhibiting osteoclast differentiation and bone resorption via AMPK/mTOR/p70S6K signaling pathway in vitro.  相似文献   

5.
Osteoclasts differentiate from cells that share some phenotypes with mature macrophages and monocytes, but early precursors for osteoclasts still remain obscure. To characterize osteoclast precursors, using monoclonal anti-c-Fms and anti-c-Kit antibodies, bone marrow cells were separated and the frequency of clonogenic progenitors were measured. Osteoclast precursors in the bone marrow mainly expressed c-Kit and diminished in frequency when they expressed c-Fms. In contrast to bone marrow, the precursors in the peritoneal cavity were enriched with a population of c-Fms+. Injection of these antibodies into mice demonstrated that peritoneal osteoclast precursors were sensitive to anti-c-Fms but not to anti-c-Kit antibodies, whereas those in bone marrow only declined in the presence of both antibodies. Meanwhile, c-Fms as opposed to c-Kit played an essential role in the generation of osteoclasts in cultures. We also compared osteoclast precursors with colony forming cells (CFU-M) by a macrophage colony stimulating factor. CFU-M in bone marrow decreased when anti-c-Kit antibody was administered and no CFU-M was detected in peritoneum. In this study, we show differences between proliferative potential osteoclast precursors maintained in bone marrow and peritoneum and between CFU-M and osteoclast precursors. J. Cell. Physiol. 170:241–247, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
The receptor activator of NF-kappaB (RANK) belongs to the neuregulin/tumor necrosis factor (TNF) receptor superfamily and is activated by RANK ligand (RANK-L), a homotrimeric, TNF-like cytokine. RANK is present on the surface of osteoclast cell precursors, where its interaction with RANK-L induces their terminal differentiation into osteoclasts, thus increasing bone breakdown. The secreted, soluble receptor osteoprotegerin (OPG) interrupts this activation by binding directly to RANK-L. Therefore, osteoclast maturation (and bone homeostasis) is regulated in vivo by OPG levels of expression. We have studied the assembly state and affinity of OPG for RANK-L by sedimentation analyses and surface plasmon resonance (Biacore). Full-length, homodimeric OPG binds to RANK-L with a KD of 10 nM. OPG is also a member of the TNF receptor superfamily and contains four disulfide-rich ligand-binding domains, yet lacks a transmembrane region separating the ligand-binding region from the two death domains, as observed for other receptor family members. We showed that dimerization of OPG results from noncovalent interactions mediated by the death domains and to a lesser extent by a C-terminal heparin-binding region. In contrast, a C-terminal intermolecular disulfide bond does not contribute to the formation or stability of OPG dimers. A truncate of osteoprotegerin, containing the ligand-binding domains but lacking the dimerization domains, bound RANK-L with a KD of approximately 3 microM, indicating that monomer oligomerization for the OPG provides an increase of 3 orders of magnitude in the affinity for RANK-L. Therefore, OPG dimer formation is required for the mechanism of inhibition of the RANK-L/RANK receptor interaction.  相似文献   

7.
Summary A “sequential culture step” system was devised to study osteoclast differentiation from newborn porcine bone marrow cells. Nonadherent cells were collected from cultures of bone marrow cells, and subsequently precultured at a low cell density in low-serum medium supplemented with L929-conditioned medium (L9-CM) derived M-CSF/CSF-1. After 4 d, adherent cells mainly composed of M-CSF-dependent macrophage/osteoclast progenitors, but devoid of stromal-like cells, were further cultured in medium supplemented with L9-CM and CM derived from serum-free cultures of fetal rat calvarial bones. This phase was characterized by a rapid induction of mono- and multinucleated (pre)osteoclast-like cells, positive for cytochemical TRAP activity, but negative for nonspecific esterase (NSE) staining. The presence of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] stimulated osteoclast generation, whereas calcitonin treatment significantly inhibited this process. The osteoclastic nature of the cells was confirmed by the occurrence of extensive, characteristic bone resorption on dentin slices, which was associated with release of type I collagen N-telopeptides from the bone matrix into the culture medium. The presence of a DNA synthesis inhibitor (HU) during the first 3 d of culture completely inhibited osteoclast formation, whereas HU treatment during the last phase did not affect production of multinucleated osteoclast-like cells. Likewise, a specific antibody directed against M-CSF during the first preculture period, completely abolished osteoclast formation. Adding the antibody during the last phase of the culture, however, strongly inhibited multinucleated osteoclast formation, accompanied by a significant increase in a mononuclear TRAP-positive, NSE-positive (osteoclast precursor) cell fraction. These results indicate that M-CSF is essential for progenitor proliferation as well as for (pre)osteoclast maturation and/or fusion into multinucleated cells, but also suggest that additional soluble (bone-derived) factors are involved as cofactors in the differentiation process to committed mononuclear osteoclast precursors. The porcine marrow culture approach provides a suitable model system to investigate specific soluble osteoclast-inducing factors affecting different stages of osteoclast development.  相似文献   

8.
Hemopoietic stem and progenitor cells from different sources differ in radiosensitivity. Recently, we have demonstrated that the multinucleated cell responsible for bone resorption and marrow cavity formation, the osteoclast, is in fact of hemopoietic lineage. In this investigation we have studied the radiosensitivity of osteoclast formation from two different hemopoietic tissues: fetal liver and adult bone marrow. Development of osteoclasts from hemopoietic progenitors was induced by coculture of hemopoietic cell populations with fetal mouse long bones depleted of their own osteoclast precursor pool. During culture, osteoclasts developed from the exogenous cell population and invaded the calcified hypertrophic cartilage of the long bone model, thereby giving rise to the formation of a primitive marrow cavity. To analyze the radiosensitivity of osteoclast formation, either the hemopoietic cells or the bone rudiments were irradiated before coculture. Fetal liver cells were found to be less radiosensitive than bone marrow cells. The D0, Dq values and extrapolation numbers were 1.69 Gy, 5.30 Gy, and 24.40 for fetal liver cells and 1.01 Gy, 1.85 Gy, and 6.02 for bone marrow cells. Irradiation of the (pre)osteoclast-free long bone rudiments instead of the hemopoietic sources resulted in a significant inhibition of osteoclast formation at doses of 4 Gy or more. This indirect effect appeared to be more prominent in the cocultures with fetal than with adult hemopoietic cells. Furthermore, radiation doses of 8.0-10.0 Gy indirectly affected the appearance of other cell types (e.g., granulocytes) in the newly formed but underdeveloped marrow cavity. The results indicate that osteoclast progenitors from different hemopoietic sources exhibit a distinct sensitivity to ionizing irradiation. Radiation injury to long bone rudiments disturbs the osteoclast-forming capacity as well as the hemopoietic microenvironment.  相似文献   

9.
Osteoblasts are mononucleated cells that are derived from mesenchymal stem cells and that are responsible for the synthesis and mineralization of bone during initial bone formation and later bone remodelling. Osteoblasts also have a role in the regulation of osteoclast activity through the receptor activator of nuclear factor κ-B ligand and osteoprotegerin. Abnormalities in osteoblast differentiation and activity occur in some common human diseases such as osteoporosis and osteoarthritis. Recent studies also suggest that osteoblast functions are compromised at sites of focal bone erosion in rheumatoid arthritis.  相似文献   

10.
Macrophage colony-stimulating factor suppresses osteoblast formation.   总被引:2,自引:0,他引:2  
We provide the first evidence that the bone marrow-derived cytokine, macrophage colony-stimulating factor (M-CSF), inhibits the formation of bone-forming osteoblasts. We examined both osteoclast and osteoblast formation in primary rat bone marrow cultures. As expected, M-CSF together with osteoprotegerin ligand (OPGL) markedly accelerated osteoclastogenesis. In contrast, treatment with M-CSF alone yielded no osteoclasts at any time. The most striking and novel observation was that M-CSF with or without OPGL dramatically suppressed osteoblast formation. In separate experiments, estradiol markedly suppressed osteoclast formation in the M-CSF/OPGL-treated cultures independently of osteoblasts. Consistent with this was the expression of estrogen receptor-alpha (ERalpha) and ERbeta mRNA in osteoclast precursors. We therefore conclude that in addition to the well-known action of M-CSF to modulate osteoclastogenesis, this cytokine may also regulate osteoblast formation.  相似文献   

11.
Amylin is a member of the calcitonin family of hormones cosecreted with insulin by pancreatic beta cells. Cell culture assays suggest that amylin could affect bone formation and bone resorption, this latter function after its binding to the calcitonin receptor (CALCR). Here we show that Amylin inactivation leads to a low bone mass due to an increase in bone resorption, whereas bone formation is unaffected. In vitro, amylin inhibits fusion of mononucleated osteoclast precursors into multinucleated osteoclasts in an ERK1/2-dependent manner. Although Amylin +/- mice like Amylin-deficient mice display a low bone mass phenotype and increased bone resorption, Calcr +/- mice display a high bone mass due to an increase in bone formation. Moreover, compound heterozygote mice for Calcr and Amylin inactivation displayed bone abnormalities observed in both Calcr +/- and Amylin +/- mice, thereby ruling out that amylin uses CALCR to inhibit osteoclastogenesis in vivo. Thus, amylin is a physiological regulator of bone resorption that acts through an unidentified receptor.  相似文献   

12.
We tested the ability of normal osteoclast progenitors found in neonatal liver and bone marrow to develop into functional osteoclasts when co-cultured with metatarsals from newborn osteopetrotic rabbits; the latter inherit an osteoclast incompetence resistant to cure by bone marrow transplantation. This system, developed by Burger and colleagues, has been shown to produce normal, functional osteoclasts when used with normal metatarsals. Our study tested the competence of the mutant skeletal microenvironment for differentiation of normal osteoclasts. Mutant and normal metatarsals were cultured alone or with normal liver, spleen, or bone marrow for up to 14 days. All normal cultures possessed a marrow cavity and contained numerous osteoclasts with cytochemical characteristics (tartrate-resistant acid phosphatase) of active cells. Mutant metatarsals co-cultured with normal spleen, liver, or bone marrow failed to develop a marrow cavity (evidence in itself of reduced bone resorption) and had osteoclasts reduced in both numbers and cytochemically detectable activity. Similar metatarsal cultures of an osteopetrotic rat mutation (incisors--absent) curable by bone-marrow transplantation exhibited marrow cavity development in mutant metatarsals co-cultured with normal spleen. These data suggest that the skeletal environment of osteopetrotic rabbits contains an inhibitor or lacks a promoter of osteoclast differentiation and function.  相似文献   

13.
大豆异黄酮对去卵巢大鼠骨密度及骨代谢影响的实验研究   总被引:16,自引:2,他引:14  
目的 探讨大豆异黄酮对去卵巢大鼠骨丢失的防治作用及其作用机理。方法 选用卵巢切除大鼠所诱发的骨质疏松模型,给与大豆异黄酮治疗。三个月后测定大鼠骨密度及骨代谢相关生化指标。结果 大豆异黄酮可提高卵巢切除大鼠的骨密度及血清雌激素水平,降低尿钙(Ca),尿磷(P)及尿羟脯氨酸(HOP)的排泄,同时降低血清总碱性磷酸酶(ALP),骨碱性磷酸酶(BALP),及抗酒石酸酸性磷酸酶(TRACP)的活性,还可使血清骨钙素(BGP)的浓度降低,促使卵巢切除大鼠子宫的相对重量增加,其作用与剂量相关。结论 小剂量大豆异黄酮有类似雌激素样作用,可有效防治卵巢切除大鼠的骨量丢失,其作用机制可能是通过降低骨转换率实现的。  相似文献   

14.
Macrophage colony-stimulating factor (MCSF) and osteoprotegerin ligand (OPGL), both produced by osteoblasts/stromal cells, are essential factors for osteoclastogenesis. Whether local MCSF levels regulate the amount of osteoclast formation is unclear. Two culture systems, ST-2 and Chinese hamster ovary-membrane-bound MCSF (CHO-mMCSF)-Tet-OFF cells, were used to study the role of mMCSF in osteoclast formation. Cells from bone marrow (BMM) or spleen were cultured with soluble OPGL on glutaraldehyde-fixed cell layers; osteoclasts formed after 7 days. Osteoclast number was proportional to the amount of soluble OPGL added. In contrast, varying mMCSF levels in the ST-2 or CHO-mMCSF-Tet-OFF cell layers, respectively by variable plating or by addition of doxycycline, did not affect BMM osteoclastogenesis: 20-450 U of mMCSF per well generated similar osteoclast numbers. In contrast, spleen cells were resistant to mMCSF: osteoclastogenesis required > or = 250 U per well and further increased as mMCSF rose higher. Our results demonstrate that osteoclast formation in the local bone environment is dominated by OPGL. Increasing mMCSF above basal levels does not further enhance osteoclast formation from BMMs, indicating that mMCSF does not play a dominant regulatory role in the bone marrow.  相似文献   

15.
p38 mitogen-activated protein kinase (MAPK) acts downstream in the signaling pathway that includes receptor activator of NF-κB (RANK), a powerful inducer of osteoclast formation and activation. We investigated the role of p38 MAPK in parathyroid hormone related protein (PTHrP)-induced osteoclastogenesis in vitro and PTHrP-induced bone resorption in vivo. The ability of FR167653 to inhibit osteoclast formation was evaluated by counting the number of tartrate-resistant acid phosphatase positive multinucleated cells (TRAP-positive MNCs) in in vitro osteoclastgenesis assays. Its mechanisms were evaluated by detecting the expression level of c-Fos and nuclear factor of activated T cells c1 (NFATc1) in bone marrow macrophages (BMMs) stimulated with sRANKL and M-CSF, and by detecting the expression level of osteoprotegerin (OPG) and RANKL in bone marrow stromal cells stimulated with PTHrP in the presence of FR167653. The function of FR167653 on bone resorption was assessed by measuring the bone resorption area radiographically and by counting osteoclast number per unit bone tissue area in calvaria in a mouse model of bone resorption by injecting PTHrP subcutaneously onto calvaria. Whole blood ionized calcium levels were also recorded. FR167653 inhibited PTHrP-induced osteoclast formation and PTHrP-induced c-Fos and NFATc1 expression in bone marrow macrophages, but not the expression levels of RANKL and OPG in primary bone marrow stromal cells treated by PTHrP. Furthermore, bone resorption area and osteoclast number in vivo were significantly decreased by the treatment of FR167653. Systemic hypercalcemia was also partially inhibited. Inhibition of p38 MAPK by FR167653 blocks PTHrP-induced osteoclastogenesis in vitro and PTHrP-induced bone resorption in vivo, suggesting that the p38 MAPK signaling pathway plays a fundamental role in PTHrP-induced osteoclastic bone resorption.  相似文献   

16.
To provide basic data about bone resorbing cells in the skeleton during the life cycle of Danio rerio, larvae, juveniles, and adults (divided into six age groups) were studied by histological procedures and by demonstration of the osteoclast marker enzyme tartrate-resistant acid phosphatase (TRAP). Special attention was paid to the lower jaw, which is a standard element for fish bone studies. The presence of osteoclasts at endosteal surfaces of growing bones of all animals older than 20 days reveals that resorption is an important part of zebrafish skeletal development. The first bone-resorbing cells to form are mononucleated. They appear in 20-day-old animals concurrently in the craniofacial skeleton and vertebral column. Mononucleated osteoclasts are predominant in juveniles. Regional differences characterize the appearance of osteoclasts; at thin skeletal elements (neural arches, nasal) mononucleated osteoclasts are predominant even in adults. Multinucleated bone-resorbing cells were first observed in 40-day-old animals and are the predominant osteoclast type of adults. Both mono- and multinucleated osteoclasts contribute to allometric bone growth but multinucleated osteoclasts are also involved in lacunar bone resorption and repeated bone remodeling. Resorption of the dentary follows the pattern described above (mononucleated osteoclasts precede multinucleated cells) and includes the partial removal of Meckel's cartilage. Bone marrow spaces created by resorption are usually filled with adipose tissue. In conclusion, bone resorption is primarily subjected to the demands of growth, the appearance of mono- and multinucleated osteoclasts is site- and age-related, and bone remodeling occurs. The results are discussed in relation to findings in other teleosts and in mammals.  相似文献   

17.
Mouse marrow, which contains osteoblast and osteoclast precursors, was grown in the presence of calcitriol and/or basic fibroblast growth factor (FGF-2). RAW 264.7 cells were differentiated into osteoclast-like cells in the presence of receptor activator of NF-kappaB-Ligand (RANK-L) and/or FGF-2. FGF-2 alone supported osteoclastogenesis in mouse marrow cultures, but not by RAW 264.7 cells alone. Although FGF-2 supported low levels of osteoclastogenesis in mouse marrow cultures, it strongly inhibited the high levels of osteoclastogenesis triggered by calcitriol. Adding excess recombinant-RANK-L to the cultures did not relieve this inhibition. After mouse marrow osteoclasts were differentiated, FGF-2 dose-dependently inhibited bone resorptive activity. FGF-2 increased the tendency of RAW 264.7 osteoclast-like cells to fuse into very large giant cells and induced reorganizations of the actin cytoskeleton in mature, RANK-L-induced RAW 264.7 osteoclast-like cells. These results suggest that FGF-2 has both direct and indirect effects on osteoclast formation and bone resorption.  相似文献   

18.
Recombinant human interleukin-10 (hIL-10) inhibited the formation of osteoclast-like multinucleated cells in rat whole bone marrow cultures. The effect of hIL-10 on the process of osteoclast formation was further examined, since the process of osteoclast formation includes the proliferation and the differentiation of osteoclast progenitors into mononuclear preosteoclasts and the fusion of preosteoclasts into multinucleated osteoclasts. In the nonadherent bone marrow cell culture system, which was free of stromal cells and formed preosteoclast-like cells, hIL-10 significantly inhibited the formation of preosteoclast-like cells even at a very low concentration (0.5 U/ml). The strong inhibition appeared even after treatment with hIL-10 for only the first 24 h of the culture. However, hIL-10 did not affect the fusion process of preosteoclast-like cells to form osteoclast-like multinucleated cells in the rat coculture system of preosteoclast-like cells with primary osteo-blasts. Furthermore, hIL-10 completely inhibited the colony formation induced by granulocyte macrophage colony-stimulating factor (GM-CSF). These findings suggest that the inhibition of osteoclastogenesis by hIL-10 started at the early stage of the differentiation of osteoclast progenitors to preosteoclasts. © 1995 Wiley-Liss Inc.  相似文献   

19.
The role of vascularization in the process of bone resorption has not been clarified. The interactions between vascular endothelium and osteoclast progenitors were analyzed using clonal cell lines of bone-derived endothelial and preosteoclastic cells. Insulin-like growth factor I is a major chemotactic stimulator of preosteoclastic cell migration mediated by bone endothelial cells. Osteoclast precursors rapidly adhered to bone endothelial monolayers. This phenomenon appeared to be cell-specific and mediated through the binding of vitronectin and fibronection receptors to fibronectin. In addition, direct contact with bone endothelial cells induced osteoclast progenitors to differentiate into more mature elements, with the tendency to cluster together to form large multinucleated cells. These findings demonstrated specific in vitro interactions between bone endothelial cells and osteoclast progenitors, offering a new model for understanding the molecular mechanisms which direct the processes of osteoclast recruitment and ontogeny. © 1995 Wiley-Liss, Inc.  相似文献   

20.
A 21-day study was conducted to determine whether isoleucine might limit the performance of piglets fed low-crude protein (CP), amino acid (AA)-supplemented diets and to investigate the potential benefits of low-CP diets on gastrointestinal health in weaned pigs. Ninety-six piglets (initial BW = 6.44 ± 0.14 kg), housed four per pen, were randomly assigned to one of four diets, resulting in six replicate pens per diet. Dietary treatments were as follows: (1) 210 g/kg CP diet, (2) 190 g/kg CP diet deficient in isoleucine, (3) 190 g/kg CP diet supplemented with crystalline isoleucine up to the level in the 210 g/kg CP diet and (4) 170 g/kg CP diet supplemented with isoleucine and valine on the ideal protein ratio basis (60% and 70% relative to lysine, respectively). Pigs were allowed to adapt to the new environment for 4 days before the experiment commenced. Overall, pigs fed the 210 g/kg CP diet had higher (P < 0.05) average daily gain and lower (P < 0.05) feed : gain ratio compared with those fed the other diets. The faecal consistency score of pigs fed the 210 g/kg CP diet was higher (P < 0.05) than those fed the other diets. Pigs fed the 170 g/kg diet had lower (P=0.02) small intestine weight than those fed the 210 g/kg CP diet. Pigs fed the 210 g/kg CP diet had deeper (P < 0.05) crypt in the duodenum and ileum and higher (P < 0.05) ammonia N concentration in caecal digesta than those fed the other diets. There were no effects of diet on microbial population and volatile fatty acid concentration in the caecal digesta except for propionic acid whose concentration was higher (P < 0.05) for pigs fed the 170 g/kg diet than those fed the 190+isoleucine and the 210 g/kg CP diets. The results indicate that the low-CP, AA-supplemented diet reduced crypt hypertrophy, ammonia N concentration in the caecal digesta, small intestine weight and the performance of piglets. Also, the results of the current study were inconclusive with respect to whether isoleucine may limit the performance of pigs fed a low-CP, AA-supplemented diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号