首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W W Minuth  P Gilbert 《Histochemistry》1988,88(3-6):435-441
It is still uncertain whether cell cultures attain the functional maturity of corresponding in vivo cells. The degree of differentiation of cultured collecting-duct (CD) epithelium cells was therefore examined using immunohistochemical procedures. Three monoclonal antibodies (mabs CD1, CD2, and CD3) were raised against proteins (PCD) isolated from the renal papilla. At Western-blot analysis, each of these antibodies reacted with a specific protein that was distinguishable according to its molecular weight [PCD1, 190 kilodaltons (kDa); PCD2, 210 kDa; PCD3, 50 kDa]. Using immunofluorescence, these proteins were found to be localized exclusively in the renal CD system. Other renal structures, such as the proximal or distal tubular portions, the glomeruli and the interstitial network, were not reactive. The mabs, CD2 and CD3, labeled both the cortical and medullary CD in a uniform way, whereas mab CD1 produced heterogeneous immunolabeling along the length of the cortical, medullary, and papillary CD. As revealed by immunohistochemistry, the mabs revealed differences with respect to the expression of the specific renal proteins in cultured CD cells. In polar-differentiated epithelium cultured for 5 days on a specific renal support, mab CD1 was unreactive, whereas mabs CD2 and CD3 were positive. This demonstrated the biochemical immaturity of this cultured epithelium with respect to CD1 reactivity. In morphologically dedifferentiated CD monolayer cells grown on the bottom of a culture dish, only a weak reaction for mab CD3 was observed. The loss of epithelial polarization in CD monolayer cells obviously coincides with the absence of the renal proteins PCD1 and PCD2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Summary It is still uncertain whether cell cultures attain the functional maturity of corresponding in vivo cells. The degree of differentiation of cultured collecting-duct (CD) epithelium cells was therefore examined using immunohistochemical procedures. Three monoclonal antibodies (mabs CD 1, CD 2, and CD 3) were raised against proteins (PCD) isolated from the renal papilla. At Western-blot analysis, each of these antibodies reacted with a specific protein that was distinguishable according to its molecular weight [PCD1, 190 kilodaltons (kDa); PCD2, 210 kDa; PCD3, 50 kDa]. Using immunofluorescence, these proteins were found to be localized exclusively in the renal CD system. Other renal structures, such as the proximal or distal tubular portions, the glomeruli and the interstitial network, were not reactive. The mabs, CD 2 and CD 3, labeled both the cortical and medullary CD in a uniform way, whereas mab CD 1 produced heterogeneous immunolabeling along the length of the cortical, medullary, and papillary CD. As revealed by immunohistochemistry, the mabs revealed differences with respect to the expression of the specific renal proteins in cultured CD cells. In polar-differentiated epithelium cultured for 5 days on a specific renal support, mab CD 1 was unreactive, whereas mabs CD 2 and CD 3 were positive. This demonstrated the biochemical immaturity of this cultured epithelium with respect to CD 1 reactivity. In morphologically dedifferentiated CD monolayer cells grown on the bottom of a culture dish, only a weak reaction for mab CD 3 was observed. The loss of epithelial polarization in CD monolayer cells obviously coincides with the absence of the renal proteins PCD1 and PCD2. Thus, our mabs proved to be valuable tools for the investigation of the differentiation and dedifferentiation of renal CD cells in culture.Dedicated to Professor Dr. T.H. Schiebler on the occasion of his 65th birthday  相似文献   

3.
In the renal collecting duct (CD) the major physiological role of aldosterone is to promote Na+ reabsorption. In addition, aldosterone may also influence CD water permeability elicited by vasopressin (AVP). We have previously shown that endogenous expression of the aquaporin-2 (AQP2) water channel in immortalized mouse cortical CD principal cells (mpkCCDC14) grown on filters is dramatically increased by administration of physiological concentrations of AVP. In the present study, we investigated the influence of aldosterone on AQP2 expression in mpkCCDC14 cells by RNase protection assay and Western blot analysis. Aldosterone reduced AQP2 mRNA and protein expression when administered together with AVP for short periods of time (< or =24 h). For longer periods of time, however, aldosterone increased AQP2 protein expression despite sustained low expression levels of AQP2 mRNA. Both events were dependent on mineralocorticoid receptor occupancy because they were both induced by a low concentration of aldosterone (10-9 m) and were abolished by the mineralocorticoid receptor antagonist canrenoate. Inhibition of lysosomal AQP2 protein degradation increased AQP2 protein expression in AVP-treated cells, an effect that was potentiated by aldosterone. Finally, both aldosterone and actinomycin D delayed AQP2 protein decay following AVP washout, but in a non-cumulative manner. Taken together, our data suggest that aldosterone tightly modulates AQP2 protein expression in cultured mpkCCDC14 cells by increasing AQP2 protein turnover while maintaining low levels of AQP2 mRNA expression.  相似文献   

4.
Cultured renal collecting duct cells from neonatal rabbit kidney were used to examine the influence of aldosterone on enzymatic activity of citrate synthase during increase in Na+ transport. Control epithelia showed citrate synthase activity of 71 +/- 3 mU/mg protein (n = 28), while after aldosterone treatment citrate synthase activity was significantly increased to 79 +/- 6 mU/mg at 1 h (n = 5), to 88 +/- 6 mU/mg at 2 h (n = 6) and to 93 +/- 8 mU/mg protein at 3 h (n = 5). Citrate synthase activity subsequently decreased to basal values. Spironolactone fully blocked the aldosterone-induced increase in citrate synthase activity. The time course of enzyme stimulation after aldosterone administration indicates that the hormone activates citrate synthase during the physiological early response phase.  相似文献   

5.
Summary The present experiments report the existence of an apico-basal plasma membrane shuttle in cultured renal collecting duct principal cell epithelium. Apical and basal perfusion under isotonic conditions, 290 mosm phosphate-buffered saline (PBS), has no effect on the shape of the epithelium. In contrast, gradient perfusion bf the epithelium with 75 mosm PBS on the apical side and 290 mosm PBS on the basal side for 10 min alters the morphology of the epithelium by causing the originally columnar epithelial cells to become lower, the intercellular spaces to dilate, and the intracellular vesicles to enlarge. Perfusion of the epithelium with isotonic PBS in the presence of electron-dense cellular markers such as gold-coupled GPCDI antibody, recognizing a glycoprotein in the plasma membrane of collecting duct cells (W.W. Minuth, G. Lauer, S. Bachman and W. Kriz,Histochemistry 80:171–182, 1984), cationized ferritin (CF), horseradish peroxidase (HRP) and native ferritin (NF) for 10 min reveals their binding at the apical plasma membrane. Little endocytosis is observable. However, after labeling the luminal side by the cellular markers and following exposure to apical hypotonicity, 75 mosm PBS for 10 min, endocytosis of all markers is enhanced to a high degree. Furthermore, the gold-coupled GPCDI antibody and cationized ferritin are transported within vesicles unidirectionally through the epithelium and are exocytosed at the basolateral aspect, indicating the retrieval and possible translocation of apical plasma membrane. In contrast, volume markers such as NF and HRP are also endocytosed under osmotic gradient exposure, but are not seen to be transcytosed. Therefore, the function of this membrane pathway seems not to be related to water reabsorption, but may be part of a cellular response as protection against the osmotic gradient.  相似文献   

6.
Summary The biochemical and morphological extent of glycoprotein synthesis inhibition of cellular and extracellular proteins was studied on cultured renal collecting duct (CD) epithelium. We found that tunicamycin (4 g/ml) inhibits the glycosylation of a 150,000 d glycoprotein (gpCDI). A 85,000 d glycoprotein (gpCDII) was not affected. The inhibition by tunicamycin demonstrates that gpCDI has characteristics of a N-glycan, whereas gpCDII seems to be an O-glycan. 6-diazo-5-oxo-norleucine (4×10–5M) which was used as glutamine analogue, did not show a comparable inhibitory effect as seen with tunicamycin. The lack of effect of norleucine demonstrates that glutamine is not the locus of glycosylation in both proteins. However, because of the tunicamycin inhibition it points to asparagine as the site of glycosylation in the gpCDI. Long term cultures of the tissue up to 15 days in the presence of tunicamycin and norleucine and of substances usually used as basement membrane inhibitors, such as hydroxy-d-proline (1 mM), l-azetidine-2-carboxylic acid (1 mM) and o- and p-nitrophenyl-xylopyranoside (1 mM), revealed that it is possible to eliminate completely the fibroblasts beneath the cultured epithelium and within the degenerating corematerial. Experiments with hydroxy-d-proline showed the most striking effect. Experiments with l-azetidine-2-carboxylic acid and nitrophenyl-xylopyranoside resulted in the elimination of fibroblasts and dedifferentiation of the collecting duct epithelium.  相似文献   

7.
W W Minuth  E Essig 《Histochemistry》1984,80(5):475-482
The biochemical and morphological extent of glycoprotein synthesis inhibition of cellular and extracellular proteins was studied on cultured renal collecting duct (CD) epithelium. We found that tunicamycin (4 micrograms/ml) inhibits the glycosylation of a 150,000 d glycoprotein (gpCDI). A 85,000 d glycoprotein (gpCDII) was not affected. The inhibition by tunicamycin demonstrates that gpCDI has characteristics of a N-glycan, whereas gpCDII seems to be an O-glycan. 6-diazo-5-oxo-norleucine (4 X 10(-5) M) which was used as glutamine analogue, did not show a comparable inhibitory effect as seen with tunicamycin. The lack of effect of norleucine demonstrates that glutamine is not the locus of glycosylation in both proteins. However, because of the tunicamycin inhibition it points to asparagine as the site of glycosylation in the gpCDI. Long term cultures of the tissue up to 15 days in the presence of tunicamycin and norleucine and of substances usually used as basement membrane inhibitors, such as hydroxy-D-proline (1 mM), L-azetidine-2-carboxylic acid (1 mM) and o- and p-nitrophenyl-xylopyranoside 1 mM), revealed that it is possible to eliminate completely the fibroblasts beneath the cultured epithelium and within the degenerating corematerial. Experiments with hydroxy-D-proline showed the most striking effect. Experiments with L-azetidine-2-carboxylic acid and nitrophenyl-xylopyranoside resulted in the elimination of fibroblasts and dedifferentiation of the collecting duct epithelium.  相似文献   

8.
The present experiments report the existence of an apico-basal plasma membrane shuttle in cultured renal collecting duct principal cell epithelium. Apical and basal perfusion under isotonic conditions, 290 mosm phosphate-buffered saline (PBS), has no effect on the shape of the epithelium. In contrast, gradient perfusion of the epithelium with 75 mosm PBS on the apical side and 290 mosm PBS on the basal side for 10 min alters the morphology of the epithelium by causing the originally columnar epithelial cells to become lower, the intercellular spaces to dilate, and the intracellular vesicles to enlarge. Perfusion of the epithelium with isotonic PBS in the presence of electron-dense cellular markers such as gold-coupled GPCDI antibody, recognizing a glycoprotein in the plasma membrane of collecting duct cells (W.W. Minuth, G. Lauer, S. Bachman and W. Kriz, Histochemistry 80:171-182, 1984), cationized ferritin (CF), horseradish peroxidase (HRP) and native ferritin (NF) for 10 min reveals their binding at the apical plasma membrane. Little endocytosis is observable. However, after labeling the luminal side by the cellular markers and following exposure to apical hypotonicity, 75 mosm PBS for 10 min, endocytosis of all markers is enhanced to a high degree. Furthermore, the gold-coupled GPCDI antibody and cationized ferritin are transported within vesicles unidirectionally through the epithelium and are exocytosed at the basolateral aspect, indicating the retrieval and possible translocation of apical plasma membrane. In contrast, volume markers such as NF and HRP are also endocytosed under osmotic gradient exposure, but are not seen to be transcytosed. Therefore, the function of this membrane pathway seems not to be related to water reabsorption, but may be part of a cellular response as protection against the osmotic gradient.  相似文献   

9.
The effects of aldosterone on protein synthesis in the latent period were investigated on cultured renal collecting duct cells from neonatal rabbit kidneys. Tissue was incubated with radioactively labelled uridine and amino acids and then precipitated with trichloroacetic acid in order to determine the intracellular precursor pool and identify new synthesis of RNA and protein. During the latent period, aldosterone increased the intracellular radioactive uridine pool and total radioactive RNA content already 20 and 60 min after its application; conversely 40 min after aldosterone introduction, no stimulation was found. Further experiments revealed that the intracellular radioactive amino acid pool was generally increased by aldosterone after 20, 40 and 60 min, while a distinct increased radioactive protein content was found to be induced by aldosterone only after 40 min. This indicates that aldosterone increases the uptake of RNA and protein precursors and the new synthesis of RNA and proteins. These events seem to to be regulated not continuously but intermittently. The induced proteins possibly take part in the mediation of the early hormone response. Experiments with the aldosterone antagonist, spironolactone, provide evidence for the specificity of the described hormone effects. The results after application of the Na+ channel blocker, amiloride, and the Na+/K(+)-ATPase inhibitor, G-strophanthin, indicate that the aldosterone effects are controlled by Na+ channels and Na+ pumps and therefore by the intracellular Na+ content. The inhibitory effect of cycloheximide on the aldosterone-induced protein synthesis indicates the role of these proteins on the hormone-stimulated Na+ transport.  相似文献   

10.
It has been reported that vasopressin (AVP)-sensitive renal epithelial cell line (MDCK) forms morphologically polarized monolayers when cultured on plates. We studied whether the AVP-responsive cAMP production system would be located solely on the basolateral surface of these cells as has already been shown on the renal tubules. We used two methods to overcome the inaccessibility to the basolateral surface of the cultured cell layer and to study the apical and basolateral surfaces separately. One was culture on collagen sheet and the other was on Millipore filters. Our experiments showed that MDCK cell increased adenosine 3':5'-cyclic monophosphate (cAMP) content prominently only when vasopressin was accessible to the basolateral surface. Accordingly, MDCK cells were shown to have the AVP-responsive cAMP production system predominantly on the basolateral surface of the cell membrane.  相似文献   

11.
The common model of aldosterone-dependent sodium transport is that the hormone increases sodium transport during the "early" and "late" response phases by inducing specific proteins (AIPs). However, in actual biochemical studies, AIPs were mostly detected 6-24 h after aldosterone application. Regarding the physiological early response phase, this implies temporal dissociation of the physiological and biochemical events. The discrepancy raises the question as to whether other biochemical events, such as protein modifications, may be involved in addition to the novo protein synthesis. Labelling of cultured renal collecting duct epithelia for 1-5 h with a radioactive methylgroup donor, S-adenosyl methionine (SAM), following tissue fractionation, resulted in progressive methylations of specific cytosolic proteins. Aldosterone-dependent methylations increased consistently with time, and accounted for a 60% increase in total cytosolic protein content as compared to controls after 5 h labelling. The different methylated proteins showed a molecular weight of 220, 97 and 75 kd and comprised groups of proteins with an isoelectric point of 5.1-5.7 and 6.0-7.5. Methylation of identical proteins was obtained by incubation of the epithelia with unlabelled SAM instead of aldosterone. SAM-induced as well as aldosterone-induced methylation of proteins with an isoelectric point of 6.0-7.5 could be inhibited by the methylation inhibitor S-adenosylhomocysteine. The results indicate that aldosterone may influence the SAM cycle in cultured collecting-duct epithelia during increase of the Na+-transport.  相似文献   

12.
In the kidney, the fine control of NaCl absorption takes place in the distal nephron and is controlled by aldosterone and vasopressin. This review summarizes the effects of vasopressin on Na+ transport mediated by the amiloride-sensitive epithelial sodium channel (ENaC) and the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel in immortalized or primary cultured cortical collecting duct cells, expressing either the wild-type ENaC subunits, or mutations, or deletions of the PY domain of the beta- or gamma-ENaC subunits responsible for Liddle's syndrome, an inherited form of hypertension due to excessive salt absorption.  相似文献   

13.
14.
15.
Although extensive phosphoproteomic information is available for renal epithelial cells, previous emphasis has been on phosphorylation of serines and threonines with little focus on tyrosine phosphorylation. Here we have carried out large-scale identification of phosphotyrosine sites in pervanadate-treated native inner medullary collecting ducts of rat, with a view towards identification of physiological processes in epithelial cells that are potentially regulated by tyrosine phosphorylation. The method combined antibody-based affinity purification of tyrosine phosphorylated peptides coupled with immobilized metal ion chromatography to enrich tyrosine phosphopeptides, which were identified by LC-MS/MS. A total of 418 unique tyrosine phosphorylation sites in 273 proteins were identified. A large fraction of these sites have not been previously reported on standard phosphoproteomic databases. All results are accessible via an online database: http://helixweb.nih.gov/ESBL/Database/iPY/. Analysis of surrounding sequences revealed four overrepresented motifs: [D/E]xxY*, Y*xxP, DY*, and Y*E, where the asterisk symbol indicates the site of phosphorylation. These motifs plus contextual information, integrated using the NetworKIN tool, suggest that the protein tyrosine kinases involved include members of the insulin- and ephrin-receptor kinase families. Analysis of the gene ontology (GO) terms and KEGG pathways whose protein elements are overrepresented in our data set point to structures involved in epithelial cell-cell and cell-matrix interactions ("adherens junction," "tight junction," and "focal adhesion") and to components of the actin cytoskeleton as major sites of tyrosine phosphorylation in these cells. In general, these findings mesh well with evidence that tyrosine phosphorylation plays a key role in epithelial polarity determination.  相似文献   

16.
Binding of arginine-vasopressin (AVP) to its V2 receptor (V2R) in the basolateral membrane of principal cells induces Aquaporin-2-mediated water reabsorption in the kidney. To study the regulation of the V2R by dDAVP in a proper model, a polarized renal cell line stably-expressing V2R-GFP was generated. Labeled AVP-binding studies revealed an equal basolateral vs. apical membrane distribution for V2R-GFP and endogenous V2R. In these cells, GFP-V2R was expressed in its mature form and localized for 75% in the basolateral membrane and for 25% to late endosomes/lysosomes. dDAVP caused a dose- and time-dependent internalization of V2R-GFP, which was completed within 1 h with 100 nM dDAVP, was prevented by coincubation with a V2R antagonist, and which reduced its half-life from 11.5 to 2.8 h. Semiquantification of the V2R-GFP colocalization with E-cadherin (basolateral membrane), early endosomal antigen-1 (EEA-1) and lysosome-associated membrane protein-2 (LAMP-2) in time revealed that most dDAVP-bound V2R was internalized via early endosomes to late endosomes/lysosomes, where it was degraded. The dDAVP-internalized V2R did not recycle to the basolateral membrane. In conclusion, we established the itinerary of the V2R in a polarized cell model that likely resembles the in vivo V2R localization and regulation by AVP to a great extent.  相似文献   

17.
We used biotinylation and streptavidin affinity chromatography to label and enrich proteins from apical and basolateral membranes of rat kidney inner medullary collecting ducts (IMCDs) prior to LC-MS/MS protein identification. To enrich apical membrane proteins and bound peripheral membrane proteins, IMCDs were perfusion-labeled with primary amine-reactive biotinylation reagents at 2 degrees C using a double barreled pipette. The perfusion-biotinylated proteins and proteins bound to them were isolated with CaptAvidin-agarose beads, separated with SDS-PAGE, and sliced into continuous gel pieces for LC-MS/MS protein identification (LTQ, Thermo Electron Corp.). 17 integral and glycosylphosphatidylinositol (GPI)-linked membrane proteins and 44 non-integral membrane proteins were identified. Immunofluorescence confocal microscopy confirmed ACVRL1, H(+)/K(+)-ATPase alpha1, NHE2, and TauT expression in the IMCDs. Basement membrane and basolateral membrane proteins were biotinylated via incubation of IMCD suspensions with biotinylation reagents on ice. 23 integral and GPI-linked membrane proteins and 134 non-integral membrane proteins were identified. Analyses of non-integral membrane proteins preferentially identified in the perfusion-biotinylated and not in the incubation-biotinylated IMCDs revealed protein kinases, scaffold proteins, SNARE proteins, motor proteins, small GTP-binding proteins, and related proteins that may be involved in vasopressin-stimulated AQP2, UT-A1, and ENaC regulation. A World Wide Web-accessible database was constructed of 222 membrane proteins (integral and GPI-linked) from this study and prior studies.  相似文献   

18.
Renal epithelial cells release ATP constitutively under basal conditions and release higher quantities of purine nucleotide in response to stimuli. ATP filtered at the glomerulus, secreted by epithelial cells along the nephron, and released serosally by macula densa cells for feedback signaling to afferent arterioles within the glomerulus has important physiological signaling roles within kidneys. In autosomal recessive polycystic kidney disease (ARPKD) mice and humans, collecting duct epithelial cells lack an apical central cilium or express dysfunctional proteins within that monocilium. Collecting duct principal cells derived from an Oak Ridge polycystic kidney (orpk ( Tg737 ) ) mouse model of ARPKD lack a well-formed apical central cilium, thought to be a sensory organelle. We compared these cells grown as polarized cell monolayers on permeable supports to the same cells where the apical monocilium was genetically rescued with the wild-type Tg737 gene that encodes Polaris, a protein essential to cilia formation. Constitutive ATP release under basal conditions was low and not different in mutant versus rescued monolayers. However, genetically rescued principal cell monolayers released ATP three- to fivefold more robustly in response to ionomycin. Principal cell monolayers with fully formed apical monocilia responded three- to fivefold greater to hypotonicity than mutant monolayers lacking monocilia. In support of the idea that monocilia are sensory organelles, intentionally harsh pipetting of medium directly onto the center of the monolayer induced ATP release in genetically rescued monolayers that possessed apical monocilia. Mechanical stimulation was much less effective, however, on mutant orpk collecting duct principal cell monolayers that lacked apical central monocilia. Our data also show that an increase in cytosolic free Ca(2+) primes the ATP pool that is released in response to mechanical stimuli. It also appears that hypotonic cell swelling and mechanical pipetting stimuli trigger release of a common ATP pool. Cilium-competent monolayers responded to flow with an increase in cell Ca(2+) derived from both extracellular and intracellular stores. This flow-induced Ca(2+) signal was less robust in cilium-deficient monolayers. Flow-induced Ca(2+) signals in both preparations were attenuated by extracellular gadolinium and by extracellular apyrase, an ATPase/ADPase. Taken together, these data suggest that apical monocilia are sensory organelles and that their presence in the apical membrane facilitates the formation of a mature ATP secretion apparatus responsive to chemical, osmotic, and mechanical stimuli. The cilium and autocrine ATP signaling appear to work in concert to control cell Ca(2+). Loss of a cilium-dedicated autocrine purinergic signaling system may be a critical underlying etiology for ARPKD and may lead to disinhibition and/or upregulation of multiple sodium (Na(+)) absorptive mechanisms and a resultant severe hypertensive phenotype in ARPKD and, possibly, other diseases.  相似文献   

19.
20.
BackgroundCollecting duct carcinoma (CDC) is biologically more aggressive than clear cell renal cell carcinoma (ccRCC). We tested for differences in cancer specific mortality (CSM) rates according to CDC vs. ISUP (International Society of Urological Pathology) 4 ccRCC histological subtype. We hypothesized that the survival disadvantage still applies, even after most detailed adjustments.MethodsWithin Surveillance, Epidemiology, and End Results database (2004–2018), we identified 380 CDC vs. 6273 ISUP 4 ccRCC patients of all stages. Propensity score matching (age, sex, race/ethnicity, T, N, and M stages, nephrectomy, and systemic therapy status), Kaplan-Meier plots and multivariable Cox regression models were used.ResultsAll 380 CDC were matched (1:2) with 760 ISUP4 ccRCC patients. Prior to matching CDC patients exhibited higher rates of lymph node invasion (37.6 % vs. 14.7 %, p < 0.001), and of distant metastases (40.8 % vs. 30.4 %, p < 0.001). Systemic therapy rates were higher in CDC (29.5 % vs. 20.5 %, p < 0.001). However, nephrectomy rates were higher in ISUP4 ccRCC patients (97.5 % vs. 84.7 %, p < 0.001). After matching, in multivariable Cox regression models addressing CSM, CDC was associated with a HR of 1.5 (p < 0.001) in the overall population vs. 1.9 (p = 0.014) in stage I-II vs. 1.4 (p = 0.022) in stage III vs. 1.6 in stage IV (p < 0.001), relative to ISUP4 ccRCC.ConclusionCDC patients exhibited 40–90 % higher CSM than their ISUP4 ccRCC counterparts in the overall analysis, as well as in stage specific analyses. The CSM disadvantage applies despite higher rates of systemic therapy in CDC patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号