首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ramjeesingh M  Li C  Huan LJ  Garami E  Wang Y  Bear CE 《Biochemistry》2000,39(45):13838-13847
The chloride channel ClC-2 is thought to be essential for chloride homeostasis in neurons and critical for chloride secretion by the developing respiratory tract. In the present work, we investigated the quaternary structure of ClC-2 required to mediate chloride conduction. We found using chemical cross-linking and a novel PAGE system that tagged ClC-2 expressed in Sf9 cells exists as oligomers. Fusion of membranes from Sf9 cells expressing this protein confers double-barreled channel activity, with each pore exhibiting a unitary conductance of 32 pS. Polyhistidine-tagged ClC-2 from Sf9 cells can be purified as monomers, dimers, and tetramers. Purified, reconstituted ClC-2 monomers do not possess channel function whereas both purified ClC-2 dimers and tetramers do mediate chloride flux. In planar bilayers, reconstitution of dimeric ClC-2 leads to the appearance of a single, anion selective 32 pS pore, and tetrameric ClC-2 confers double-barreled channel activity similar to that observed in Sf9 membranes. These reconstitution studies suggest that a ClC-2 dimer is the minimum functional structure and that ClC-2 tetramers likely mediate double-barreled channel function.  相似文献   

3.
4.
Zhang XD  Zang YM  Zhou SS  Zang WJ  Yu XJ  Wang YM 《生理学报》2002,54(3):196-200
为探讨C1C-1通道的门控机制,实验应用爪蟾母细胞异源性表达大鼠野生型C1C-1(WT RC1C-1)通道基因,并使用双电极电压钳法记录通道电流。通过改变细胞外氯离子浓度,采用双指数拟合的方法分析通道去激活电流,对其去激活门控动力学特性进行了研究。结果表明,降低细胞外氯离子浓度可增加快速去激活电流成分,减少慢速去激活成分;同时,慢速去激活和快速去激活电流的时间常数都显著减小,说明细胞外氯离子浓度的改变可影响通道去激活动力学参数,从而改变通道的门控过程。  相似文献   

5.
The voltage-dependent ClC-2 chloride channel has been implicated in a variety of physiological functions, including fluid transport across specific epithelia. ClC-2 is activated by hyperpolarization, weakly acidic external pH, intracellular Cl, and cell swelling. To add more insight into the mechanisms involved in ClC-2 regulation, we searched for associated proteins that may influence ClC-2 activity. With the use of immunoprecipitation of ClC-2 from human embryonic kidney-293 cells stably expressing the channel, followed by electrophoretic separation of coimmunoprecipitated proteins and mass spectrometry identification, Hsp70 and Hsp90 were unmasked as possible ClC-2 interacting partners. Association of Hsp90 with ClC-2 was confirmed in mouse brain. Inhibition of Hsp90 by two specific inhibitors, geldanamycin or radicicol, did not affect total amounts of ClC-2 but did reduce plasma membrane channel abundance. Functional experiments using the whole cell configuration of the patch-clamp technique showed that inhibition of Hsp90 reduced ClC-2 current amplitude and impaired the intracellular Cl concentration [Cl]-dependent rightward shift of the fractional conductance. Geldanamycin and radicicol increased both the slow and fast activation time constants in a chloride-dependent manner. Heat shock treatment had the opposite effect. These results indicate that association of Hsp90 with ClC-2 results in greater channel activity due to increased cell surface channel expression, facilitation of channel opening, and enhanced channel sensitivity to intracellular [Cl]. This association may have important pathophysiological consequences, enabling increased ClC-2 activity in response to cellular stresses such as elevated temperature, ischemia, or oxidative reagents. heat shock; geldanamycin; cellular stress; channel trafficking; transepithelial chloride transport  相似文献   

6.
Molecular dissection of gating in the ClC-2 chloride channel.   总被引:17,自引:0,他引:17       下载免费PDF全文
The ClC-2 chloride channel is probably involved in the regulation of cell volume and of neuronal excitability. Site-directed mutagenesis was used to understand ClC-2 activation in response to cell swelling, hyperpolarization and acidic extracellular pH. Similar to equivalent mutations in ClC-0, neutralizing Lys566 at the end of the transmembrane domains results in outward rectification and a shift in voltage dependence, but leaves the basic gating mechanism, including swelling activation, intact. In contrast, mutations in the cytoplasmic loop between transmembrane domains D7 and D8 abolish all three modes of activation by constitutively opening the channel without changing its pore properties. These effects resemble those observed with deletions of an amino-terminal inactivation domain, and suggest that it may act as its receptor. Such a 'ball-and-chain' type mechanism may act as a final pathway in the activation of ClC-2 elicited by several stimuli.  相似文献   

7.
The ClC-2 epithelial cell chloride channel is a voltage-, tonicity- and pH-regulated member of the ClC super family. We have previously shown that rat lung ClC-2 (rClC-2) is down-regulated at birth, and molecular diversity is generated by alternative splicing [Murray et al. (1995) Am. J. Respir. Cell Mol. Biol. 12, 597-604; Murray et al. (1996) Am. J. Physiol. 271, L829-L837; Chu et al . (1996) Nucleic Acids Res. 24, 3453-3457]. To investigate other possible mRNA splice variations, we sequenced the entire rClC-2 gene and found that ClC-2Sa (formerly ClC-2S) results from the deletion of exon 20. The preceding intron 19 has an unusually high CT content and a rare AAG acceptor site. Because both features were also found in intron 13, we next tested the hypothesis that intron 13 would be involved in alternative splicing. As predicted, a second splice product, ClC-2Sb, was found by RT-PCR, but only in lung. When we compared the genomic maps of rClC-2 and human ClC-1 (hClC-1), striking similarities were found in each exon except for rClC-2 exon 20, which is absent in hClC-1. These observations suggest that ClC-1 and ClC-2 may have evolved by gene duplication, mutation and DNA rearrangement.  相似文献   

8.
ClC-5 is the Cl- channel that is mutated in Dent's disease, an X-chromosome-linked disease characterized by low molecular weight proteinuria, hypercalciuria, and kidney stones. It is predominantly expressed in endocytically active renal proximal cells. We investigated whether this Cl- channel could also be expressed in intestinal tissues that have endocytotic machinery. ClC-5 mRNA was detected in the rat duodenum, jejunum, ileum, and colon. Western blot analyses revealed the presence of the 83-kDa ClC-5 protein in these tissues. Indirect immunofluorescence studies showed that ClC-5 was mainly concentrated in the cytoplasm above the nuclei of enterocytes and colon cells. ClC-5 partially colocalized with the transcytosed polymeric immunoglobulin receptor but was not detectable together with the brush-border-anchored sucrase isomaltase. A subfractionation of vesicles obtained by differential centrifugation showed that ClC-5 is associated with the vacuolar 70-kDa H+-ATPase and the small GTPases rab4 and rab5a, two markers of early endosomes. Thus these results indicate that ClC-5 is present in the small intestine and colon of rats and suggest that it plays a role in the endocytotic pathways of intestinal cells.  相似文献   

9.
A commercially available polyclonal antibody against a rClC-3/GST fusion protein was used in order to investigate the tissue distribution of the ClC-3 chloride channel protein. The antibody appeared to be specific to rClC-3 since no cross-reaction could be observed with rClC-4 or rClC-5 proteins when overexpressed in Xenopus oocytes. In mouse, mClC-3 was preferentially expressed in the central nervous system, intestine, and kidney. To a lower extent, mClC-3 protein was also detected in liver, lung, skeletal muscle, and heart. Surprisingly, the electrophoretic mobility of mClC-3 differed in the various tissues. After enzymatic digestion of N-linked oligosaccharide residues of membrane proteins from brain, intestine, and kidney, mClC-3 was found to migrate at its calculated molecular mass. This study provides important information regarding the specificity of the used antibody, indicates that ClC-3 is widely expressed in mouse, and that mClC-3 undergoes differential tissue-specific N-glycosylation.  相似文献   

10.
The chloride channel ClC-2 has been implicated inneonatal airway chloride secretion. To assess its role in secretion by the small intestine, we assessed its subcellular expression in ilealsegments obtained from mice and studied the chloride transport properties of this tissue. Chloride secretion across the mucosa ofmurine ileal segments was assessed in Ussing chambers as negative short-circuit current (Isc). If ClC-2contributed to chloride secretion, we predicted on the basis ofprevious studies that negative Isc would bestimulated by dilution of the mucosal bath and that this response woulddepend on chloride ion and would be blocked by the chloride channelblocker 5-nitro-2-(3-phenylpropylamino) benzoic acid but not by DIDS.In fact, mucosal hypotonicity did stimulate a chloride-dependent changein Isc that exhibited pharmacological propertiesconsistent with those of ClC-2. This secretory response is unlikely tobe mediated by the cystic fibrosis transmembrane conductance regulator(CFTR) channel because it was also observed in CFTR knockout animals.Assessment of the native expression pattern of ClC-2 protein in themurine intestinal epithelium by confocal and electron microscopy showedthat ClC-2 exhibits a novel distribution, a distribution patternsomewhat unexpected for a channel involved in chloride secretion.Immunolabeled ClC-2 was detected predominantly at the tight junctioncomplex between adjacent intestinal epithelial cells.

  相似文献   

11.
We identified two ClC-2 clones in a guinea pigintestinal epithelial cDNA library, one of which carries a 30-bpdeletion in the NH2 terminus. PCR using primersencompassing the deletion gave two products that furthermore wereamplified with specific primers confirming their authenticity. Thecorresponding genomic DNA sequence gave a structure of three exons andtwo introns. An internal donor site occurring within one of the exonsaccounts for the deletion, consistent with alternative splicing.Expression of the variants gpClC-2 and gpClC-277-86 in HEK-293cells generated inwardly rectifying chloride currents with similaractivation characteristics. Deactivation, however, occurred with fasterkinetics in gpClC-277-86. Site-directed mutagenesis suggeststhat a protein kinase C-mediated phosphorylation consensus site lost ingpClC-277-86 is not responsible for the observed change. Thedeletion-carrying variant is found in most tissues examined, and itappears more abundant in proximal colon, kidney, and testis. Thepresence of a splice variant of ClC-2 modified in itsNH2-terminal domain could have functional consequences intissues where their relative expression levels are different.

  相似文献   

12.
13.
Various ClC-type voltage-gated chloride channel isoforms display a double barrel topology, and their gating mechanisms are thought to be similar. However, we demonstrate in this work that the nearly ubiquitous ClC-2 shows significant differences in gating when compared with ClC-0 and ClC-1. To delineate the gating of ClC-2 in quantitative terms, we have determined the voltage (V(m)) and time dependence of the protopore (P(f)) and common (P(s)) gates that control the opening and closing of the double barrel. mClC-2 was cloned from mouse salivary glands, expressed in HEK 293 cells, and the resulting chloride currents (I(Cl)) were measured using whole cell patch clamp. WT channels had I(Cl) that showed inward rectification and biexponential time course. Time constants of fast and slow components were approximately 10-fold different at negative V(m) and corresponded to P(f) and P(s), respectively. P(f) and P(s) were approximately 1 at -200 mV, while at V(m) > or = 0 mV, P(f) approximately 0 and P(s) approximately 0.6. Hence, P(f) dominated open kinetics at moderately negative V(m), while at very negative V(m) both gates contributed to gating. At V(m) > or = 0 mV, mClC-2 closes by shutting off P(f). Three- and two-state models described the open-to-closed transitions of P(f) and P(s), respectively. To test these models, we mutated conserved residues that had been previously shown to eliminate or alter P(f) or P(s) in other ClC channels. Based on the time and V(m) dependence of the two gates in WT and mutant channels, we constructed a model to explain the gating of mClC-2. In this model the E213 residue contributes to P(f), the dominant regulator of gating, while the C258 residue alters the V(m) dependence of P(f), probably by interacting with residue E213. These data provide a new perspective on ClC-2 gating, suggesting that the protopore gate contributes to both fast and slow gating and that gating relies strongly on the E213 residue.  相似文献   

14.
15.
The molecular identities of functional chloride channels in hepatocytes are largely unknown. We examined the ClC-3 chloride channel in rat hepatocytes and found that mRNA for two different isoforms is present. A short form is identical to the previously reported sequence for rat ClC-3, and a long form contains a 176-bp insertion immediately upstream of the translation initiation site. This predicts a 58-amino acid NH(2) terminal insertion. Both long and short form mRNA was expressed in diverse tissues of the rat. Transient transfection of the long form in CHO-K1 cells resulted in currents with an I(-) > B(-) > Cl(-) selectivity sequence, outward rectification, and inactivation at positive voltages. Short form currents had identical ionic selectivity but displayed a more extreme outward rectification and showed no voltage-dependent inactivation. Immunofluorescence and immunoblots localized native ClC-3 preferentially but not exclusively to the canalicular membrane. We have therefore identified a new isoform of rat ClC-3 and shown that expression of both isoforms produces functional channels. In hepatocytes, ClC-3 is located in association with the canalicular membrane.  相似文献   

16.
An HEK-293 cell line stably expressing the humanrecombinant ClC-2 Cl channel was used in patch-clampstudies to study its regulation. The relative permeabilityPx/PCl calculated fromreversal potentials was I > Cl = NO3 = SCNBr. Theabsolute permeability calculated from conductance ratios wasCl = Br = NO3  SCN > I. The channel was activatedby cAMP-dependent protein kinase (PKA), reduced extracellular pH, oleicacid (C:18 cis9), elaidic acid (C:18trans9), arachidonic acid (AA; C:20cis5,8,11,14), and by inhibitors of AA metabolism,5,8,11,14-eicosatetraynoic acid (ETYA; C:20trans5,8,11,14),-methyl-4-(2-methylpropyl)benzeneacetic acid (ibuprofen), and2-phenyl-1,2-benzisoselenazol-3-[2H]-one (PZ51, ebselen). ClC-2Cl channels were activated by a combination of forskolinplus IBMX and were inhibited by the cell-permeant myristoylated PKAinhibitor (mPKI). Channel activation by reduction of bath pH wasincreased by PKA and prevented by mPKI. AA activation of the ClC-2Cl channel was not inhibited by mPKI or staurosporine andwas therefore independent of PKA or protein kinase C activation.

  相似文献   

17.
During maturation of oocytes,Cl conductance (GCl) oscillatesand intracellular pH (pHi) increases. ElevatingpHi permits the protein synthesis essential to maturation.To examine whether changes in GCl andpHi are coupled, the Cl channel ClC-0 washeterologously expressed. Overexpressing ClC-0 elevatespHi, decreases intracellular Cl concentration([Cl]i), and reduces volume. Acuteacidification with butyrate does not activate acid extrusion inClC-0-expressing or control oocytes. The ClC-0-induced pHichange increases after overnight incubation at extracellular pH 8.5 butis unaltered after incubation at extracellular pH 6.5. Membranedepolarization did not change pHi. In contrast, hyperpolarization elevates pHi. Thus neither membranedepolarization nor acute activation of acid extrusion accounts for theClC-0-dependent alkalinization. Overnight incubation in lowextracellular Cl concentration increases pHiand decreases [Cl]i in control and ClC-0expressing oocytes, with the effect greater in the latter. Incubationin hypotonic, low extracellular Cl solutions preventedpHi elevation, although the decrease in[Cl]i persisted. Taken together, ourobservations suggest that KCl loss leads to oocyte shrinkage, whichtransiently activates acid extrusion. In conclusion, expressing ClC-0in oocytes increases pHi and decreases[Cl]i. These parameters are coupled viashrinkage activation of proton extrusion. Normal, cyclical changes ofoocyte GCl may exert an effect onpHi via shrinkage, thus inducing meiotic maturation.

  相似文献   

18.
Shen B  Li X  Wang F  Yao X  Yang D 《PloS one》2012,7(4):e34694
Mutations in the gene-encoding cystic fibrosis transmembrane conductance regulator (CFTR) cause defective transepithelial transport of chloride (Cl(-)) ions and fluid, thereby becoming responsible for the onset of cystic fibrosis (CF). One strategy to reduce the pathophysiology associated with CF is to increase Cl(-) transport through alternative pathways. In this paper, we demonstrate that a small synthetic molecule which forms Cl(-) channels to mediate Cl(-) transport across lipid bilayer membranes is capable of restoring Cl(-) permeability in human CF epithelial cells; as a result, it has the potential to become a lead compound for the treatment of human diseases associated with Cl(-) channel dysfunction.  相似文献   

19.
The purpose of this study was to determine the mechanism of action of SPI-0211 (lubiprostone), a novel bicyclic fatty acid in development for the treatment of bowel dysfunction. Adult rabbit intestine was shown to contain mRNA for ClC-2 using RT-PCR, Northern blot analysis, and in situ hybridization. T84 cells grown to confluence on permeable supports were shown to express ClC-2 channel protein in the apical membrane. SPI-0211 increased electrogenic Cl- transport across the apical membrane of T84 cells, with an EC50 of approximately 18 nM measured by short-circuit current (Isc) after permeabilization of the basolateral membrane with nystatin. SPI-0211 effects on Cl- currents were also measured by whole cell patch clamp using the human embryonic kidney (HEK)-293 cell line stably transfected with either recombinant human ClC-2 or recombinant human cystic fibrosis transmembrane regulator (CFTR). In these studies, SPI-0211 activated ClC-2 Cl- currents in a concentration-dependent manner, with an EC50 of approximately 17 nM, and had no effect in nontransfected HEK-293 cells. In contrast, SPI-0211 had no effect on CFTR Cl- channel currents measured in CFTR-transfected HEK-293 cells. Activation of ClC-2 by SPI-0211 was independent of PKA. Together, these studies demonstrate that SPI-0211 is a potent activator of ClC-2 Cl- channels and suggest a physiologically relevant role for ClC-2 Cl- channels in intestinal Cl- transport after SPI-0211 administration.  相似文献   

20.
Mutations in the gene coding for the chloride channel ClC-5 cause Dent's disease, a disease associated with proteinuria and renal stones. Studies in ClC-5 knockout mice suggest that this phenotype is related to defective endocytosis of low molecular weight proteins and membrane proteins by the renal proximal tubule. In this study, confocal micrographs of proximal tubules and cultured epithelial cells revealed that the related protein ClC-4 is expressed in endosomal membranes suggesting that this channel may also contribute to the function of this organelle. In support of this hypothesis, specific disruption of endogenous ClC-4 expression by transfection of ClC-4 antisense cDNA acidified endosomal pH and altered transferrin trafficking in cultured epithelial cells to the same extent as the specific disruption of ClC-5. Both channels can be co-immunoprecipitated, arguing that they may partially contribute to endosomal function as a channel complex. These studies prompt future investigation of the role of ClC-4 in renal function in health and in Dent's disease. Future studies will assess whether the severity of Dent's disease relates not only to the impact of particular mutations on ClC-5 but also on the consequences of those mutations on the functional expression of ClC-4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号