首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chickweed (Stellaria media L.) pro-SmAMP2 gene encodes the hevein-like peptides that have in vitro antimicrobial activity against certain harmful microorganisms. These peptides play an important role in protecting the chickweed plants from infection, and the pro-SmAMP2 gene was previously used to protect transgenic tobacco and Arabidopsis plants from phytopathogens. In this study, the pro-SmAMP2 gene under control of viral CaMV35S promoter or under control of its own pro-SmAMP2 promoter was transformed into cultivated potato plants of two cultivars, differing in the resistance to Alternaria: Yubiley Zhukova (resistant) and Skoroplodny (susceptible). With the help of quantitative real-time PCR, it was demonstrated that transgenic potato plants expressed the pro-SmAMP2 gene under control of both promoters at the level comparable to or exceeding the level of the potato actin gene. Assessment of the immune status of the transformants demonstrated that expression of antimicrobial peptide pro-SmAMP2 gene was able to increase the resistance to a complex of Alternaria sp. and Fusarium sp. phytopathogens only in potato plants of the Yubiley Zhukova cultivar. The possible role of the pro-SmAMP2 products in protecting potatoes from Alternaria sp. and Fusarium sp. is discussed.  相似文献   

2.
Comparative results of the studied effectiveness of two new promoters, pro-SmAMP1 and pro- SmAMP2, from chickweed (Stellaria media L.) in various types of cultivated plants with transient expression and in stable transformants are given. The effectiveness of the promoters was evaluated through the expression of the reporter uidA gene by measuring the activity of its GUS protein product. It was found that the deletion variant (442 bp) of the pro-SmAMP1 promoter was significantly stronger in plants of Nicotiana benthamiana (Domin) with transient expression than the deletion variant (455 bp) of the pro-SmAMP2 promoter. The effectiveness of these short deletion variants of both promoters under transient expression in the plants of rapeseed (Brassica napus L.) and sugar beet (Beta vulgaris L.) was comparable with that of the viral CaMV35S promoter. The functionality of the pro-SmAMP2 promoter in the calluses of common flax plants (Linum usitatissimum L.) was shown. In the homozygous lines of transgenic tobacco plants (Nicotiana tabacum L.), all deletion variants of the pro-SmAMP1 promoter and the shortest version of pro-SmAMP2 were twice as strong as the CaMV35S viral promoter. The effectiveness of short variants of both promoters from the chickweed in controlling the gene encoding neomycin phosphotransferase II in the transgenic plants of tobacco and arabidopsis (Arabidopsis thaliana L.) growing on media supplemented with recommended concentrations of kanamycin are not inferior to the duplicated 2хCaMV35S viral promoter. The obtained experimental data show that short deletion variants of pro-SmAMP1 (442 bp) and pro-SmAMP2 (455 bp) promoters may be recommended as strong constitutive promoters for use in the biotechnology of crop plants.  相似文献   

3.
The nucleotide sequence of a fragment of the promoter region of pro-SmAMP1 gene, having a length of 1257 bp and encoding antifungal peptides, was determined in chickweed (Stellaria media (L.) Vill.). Computer analysis of the nucleotide sequence revealed a number of cis-elements that are typical strong plant promoters. Five 5′-deletion variants were created taking into account the distribution of cis-elements:–1235,–771,–714,–603, and–481 bp of pro-SmAMP1 gene promoter, which were fused to the coding region of the uidA reporter gene in pCambia1381Z plant expression vector. The efficacy of pro-SmAMP1 promoter deletion variants was determined by transient expression in plants of Nicotiana benthamiana and using sequential generations of transgenic Nicotiana tabacum plants. It was found that the levels of GUS reporter protein activity in the extracts from transgenic and agroinfiltrated plants using all deletion variants of pro-SmAMP1 gene promoter were 3–5 times higher than those of 35S CaMV viral promoter. The highest activity of GUS protein was observed in the leaves of transgenic tobacco plants and closely correlated with the mRNA level of encoding gene. The levels of GUS activity did not differ significantly among 11 independent homozygous lines of T2 generation of N. tabacum plants with different deletion variants of pro-SmAMP1 promoter. The results give reason to assume that all deletion variants of pro-SmAMP1 promoter provide stable and high level of expression of controlled genes. The shortest deletion variant–481 bp of pro-SmAMP1 promoter should be viewed as a potentially strong plant promoter for the genetic engineering of plants.  相似文献   

4.
Plant defensins are group of small, cysteine stabilized antimicrobial peptides rich in basic amino acids which inhibit growth of a multitude of phytopathogens. These defensins have been explored widely to generate transgenic crop plants resistant to varied fungal and bacterial diseases. In the present study, gene sequence coding for a seed defensin (Sm-AMP-D1) of common chickweed Stellaria media was synthesized artificially and cloned downstream of a strong constitutive promoter in pCAMBIA-1301 plant expression vector. Transgenic banana plants expressing the Sm-AMP-D1 gene were subsequently generated via Agrobacterium-mediated genetic transformation. Transgenic nature of the regenerated banana plants was confirmed by genomic DNA PCR and Southern blotting analysis. Northern blots demonstrated efficient expression of Sm-AMP-D1 mRNA in transgenic banana plants. Further, two selected transgenic lines challenged with a pathogenic isolate of Fusarium oxysporum f. sp. cubense race 1 showed improved resistance as compared to untransformed control banana plants. These transgenic lines continued to show resistance against Foc race 1 6 months post-infection. This study demonstrates that overexpression of potent plant defensins such as Sm-AMP-D1 in important food crops like banana can lead to development of durable resistance against fungal pathogens.  相似文献   

5.
Plant defense against disease is a complex multistage system involving initial recognition of the invading pathogen, signal transduction and activation of specialized genes. An important role in pathogen deterrence belongs to so-called plant defense peptides, small polypeptide molecules that present antimicrobial properties. Using multidimensional liquid chromatography, we isolated a novel antifungal peptide named Sm-AMP-X (33 residues) from the common chickweed (Stellaria media) seeds. The peptide sequence shows no homology to any previously described proteins. The peculiar cysteine arrangement (C1X3C2XnC3X3C4), however, allocates Sm-AMP-X to the recently acknowledged α-hairpinin family of plant defense peptides that share the helix-loop-helix fold stabilized by two disulfide bridges C1–C4 and C2–C3. Sm-AMP-X exhibits high broad-spectrum activity against fungal phytopathogens. We further showed that the N- and C-terminal “tail” regions of the peptide are important for both its structure and activity. The truncated variants Sm-AMP-X1 with both disulfide bonds preserved and Sm-AMP-X2 with only the internal S–S-bond left were progressively less active against fungi and presented largely disordered structure as opposed to the predominantly helical conformation of the full-length antifungal peptide. cDNA and gene cloning revealed that Sm-AMP-X is processed from a unique multimodular precursor protein that contains as many as 12 tandem repeats of α-hairpinin-like peptides. Structure of the sm-amp-x gene and two related pseudogenes sm-amp-x-ψ1 and sm-amp-x-ψ2 allows tracing the evolutionary scenario that led to generation of such a sophisticated precursor protein. Sm-AMP-X is a new promising candidate for engineering disease resistance in plants.  相似文献   

6.
7.
8.
Lectins are proteins with ability to bind reversibly and non-enzymatically to a specific carbohydrate. They are involved in numerous biological processes and show enormous biotechnological potential. Among plant lectins, the hevein domain is extremely common, being observed in several kinds of lectins. Moreover, this domain is also observed in an important class of antimicrobial peptides named hevein-like peptides. Due to higher cysteine residues conservation, hevein-like peptides could be mined among the sequence databases. By using the pattern CX(4,5)CC[GS]X(2)GXCGX[GST]X(2,3)[FWY]C[GS]X[AGS] novel hevein-like peptide precursors were found from three different plants: Oryza sativa, Vitis vinifera and Selaginella moellendorffii. In addition, an hevein-like peptide precursor from the phytopathogenic fungus Phaeosphaeria nodorum was also identified. The molecular models indicate that they have the same scaffold as others, composed of an antiparallel β-sheet and short helices. Nonetheless, the fungal hevein-like peptide probably has a different disulfide bond pattern. Despite this difference, the complexes between peptide and N,N,N-triacetylglucosamine are stable, according to molecular dynamics simulations. This is the first report of an hevein-like peptide from an organism outside the plant kingdom. The exact role of an hevein-like peptide in the fungal biology must be clarified, while in plants they are clearly involved in plant defense. In summary, data here reported clear shows that an in silico strategy could lead to the identification of novel hevein-like peptides that could be used as biotechnological tools in the fields of health and agribusiness.  相似文献   

9.
Cymbidium Mosaic Virus (CymMV) and Erwinia carotovora have been reported to cause severe damage to orchid plants. To enhance the resistance of orchids to both viral and bacterial phytopathogens, gene stacking was applied on Phalaenopsis orchid by double transformation. PLBs originally transformed with CymMV coat protein cDNA (CP) were then re-transformed with sweet pepper ferredoxin-like protein cDNA (Pflp) by Agrobacterium tumefaciens, to enable expression of dual (viral and bacterial) disease resistant traits. A non-antibiotic selection procedure in the second transformation minimized the potential rate of ‘stacking’ antibiotic genes in the orchid gene pool. Transgene integration in transgenic Phalaenopsis lines was confirmed by Southern blot analysis for both CP and pflp genes. Expression of transgenes was detected by northern blot analysis, and disease resistant assays revealed that transgenic lines exhibited enhanced resistance to CymMV and E. carotovora. This is the first report describing a transgenic Phalaenopsis orchid with dual resistance to phytopathogens.  相似文献   

10.
Antimicrobial cationic peptides provide a promising means of engineering plant resistance to a range of plant pathogens, including viruses. PV5 is a synthetic structural variant of polyphemusin, a cationic peptide derived from the horseshoe crab-Limulus polyphemus. PV5 has been shown to be benign toward eukaryotic membranes but with enhanced antimicrobial activity against animal pathogens. In this work, the cytotoxicity of PV5 toward tobacco protoplasts and leaf discs was assessed using TTC (2,3,5-triphenyltetrazolium chloride) and Evans blue colorimetric assays. PV5 showed no measurable cytotoxic effects even at levels as high as 60 μg. As a possible approach to enhancing plant resistance, a gene encoding PV5 was fused to the signal sequence encoding the C-terminus portion of the BiP protein from Pseudotsuga menziesii, under the control of 2 × 35S CaMV promoter. When introduced into Nicotiana tabacum var Xanthi gene integration and expression was confirmed by both Southern and northern analyses. When transgenic plants were subsequently challenged with bacterial and fungal phytopathogens enhanced resistance was observed. Moreover, transgenic plants also displayed antiviral properties against Tobacco Mosaic Virus making PV5 an excellent candidate for conferring unusually broad spectrum resistance to plants and the first anti-plant virus antimicrobial peptide.  相似文献   

11.
In this article, we describe the presence of genes encoding close homologues of an endogenous plant peptide, rapid alkalinization factor (RALF), within the genomes of 26 species of phytopathogenic fungi. Members of the RALF family are key growth factors in plants, and the sequence of the RALF active region is well conserved between plant and fungal proteins. RALF1‐like sequences were observed in most cases; however, RALF27‐like sequences were present in the Sphaerulina musiva and Septoria populicola genomes. These two species are pathogens of poplar and, interestingly, the closest relative to their respective RALF genes is a poplar RALF27‐like sequence. RALF peptides control cellular expansion during plant development, but were originally defined on the basis of their ability to induce rapid alkalinization in tobacco cell cultures. To test whether the fungal RALF peptides were biologically active in plants, we synthesized RALF peptides corresponding to those encoded by two sequenced genomes of the tomato pathogen Fusarium oxysporum f. sp. lycopersici. One of these peptides inhibited the growth of tomato seedlings and elicited responses in tomato and Nicotiana benthamiana typical of endogenous plant RALF peptides (reactive oxygen species burst, induced alkalinization and mitogen‐activated protein kinase activation). Gene expression analysis confirmed that a RALF‐encoding gene in F. oxysporum f. sp. lycopersici was expressed during infection on tomato. However, a subsequent reverse genetics approach revealed that the RALF peptide was not required by F. oxysporum f. sp. lycopersici for infection on tomato roots. This study has demonstrated the presence of functionally active RALF peptides encoded within phytopathogens that harbour an as yet undetermined role in plant–pathogen interactions.  相似文献   

12.
Cationic antimicrobial peptides (CAPs) have shown potential against broad spectrum of phytopathogens. Synthetic versions with desirable properties have been modeled on these natural peptides. MsrA1 is a synthetic chimera of cecropin A and melittin CAPs with antimicrobial properties. We generated transgenic Brassica juncea plants expressing the msrA1 gene aimed at conferring fungal resistance. Five independent transgenic lines were evaluated for resistance to Alternaria brassicae and Sclerotinia sclerotiorum, two of the most devastating pathogens of B. juncea crops. In vitro assays showed inhibition by MsrA1 of Alternaria hyphae growth by 44–62 %. As assessed by the number and size of lesions and time taken for complete leaf necrosis, the Alternaria infection was delayed and restricted in the transgenic plants with the protection varying from 69 to 85 % in different transgenic lines. In case of S. sclerotiorum infection, the lesions were more severe and spread profusely in untransformed control compared with transgenic plants. The sclerotia formed in the stem of untransformed control plants were significantly more in number and larger in size than those present in the transgenic plants where disease protection of 56–71.5 % was obtained. We discuss the potential of engineering broad spectrum biotic stress tolerance by transgenic expression of CAPs in crop plants.  相似文献   

13.
A small proportion (1–4%) of the seeds of Stellaria media extracted from fallow soil from three widely separated areas contained cucumber mosaic virus (CMV). S. media seeds buried for 21 months produced 5 % infected seedlings. S. media plants from Britain, N. America and Australia were least severely affected by the CMV strain obtained from their country of origin and showed more severe reactions when infected with two alien strains. Several weed species were experimentally infected with lettuce mosaic, turnip mosaic and cauliflower mosaic viruses but, although virus was detected in the seeds of some species, it was not transmitted to any of their seedlings.  相似文献   

14.
The entry of 14C-labelled ioxynil octanoate into leaves of Stellaria media has been measured for plants grown in dry or moist soil. Of the total herbicide applied, 1–3% entered the leaf by 24 h and 2–5% by 72 h after treatment. Entry into moist-grown plants proceeded at about twice the rate of that into drought-stressed plants. Despite the limited rate of entry, the inhibitory action of ioxynil octanoate on photosynthetic carbon dioxide exchange was rapid, inhibition within 24 h reaching 70–90% in moist-grown plants, and 30–70% in dry-grown plants. Plants grown under moisture stress contained greater concentrations of the pigments chlorophyll a, carotene and lutein (a xanthophyll) than did moist-grown plants, and ioxynil-induced breakdown of these pigments was more rapid in moist-grown plants. It is suggested that these factors contribute to the greater tolerance of drought-stressed S. media to applications of ioxynil octanoate. The importance of continuous measurements of herbicide action is discussed in relation to the value and interpretation of 14C uptake data.  相似文献   

15.
Earlier, in the wheat Triticum kiharae Dorof. et Migusch., a new family of genes coding for the hevein-like antimicrobial peptides WAMPs, involved in the protection of wheat plants against pathogens, was discovered. In the present study, we examined the wamp homologs in plants belonging to ten di-, tetra-, and hexaploid species of the genus Aegilops L., among which there are donors of polyploid wheat genomes, as well as of the resistance genes to the most important wheat pathogens. Using PCR amplification with genomic DNA as a template and primers specific to the sequences of the wheat wamp genes, for the first time, nucleotide sequences of the protein-coding regions of wamp homologs were determined in the species of the genus Aegilops L. The wamp homologs were found in all species studied. It was demonstrated that the WAMP peptide precursors encoded by them differed in single nucleotide substitutions, as well as deletions/insertions of amino acid sequences. The most conserved region of the precursor is the mature peptide region, where, in addition to the variable position 34, deletions of amino acid sequences were found in a number of peptides. To elucidate the role of deletions in the antimicrobial activity of WAMPs, a recombinant WAMP-3 peptide with a deletion in the N-terminal region was produced by expression in E. coli cells, and it was shown that antimicrobial activity of the peptide was preserved. It was demonstrated that all the discovered wamp genes were expressed in seedlings of the studied Aegilops species. The results shed new light on the structural diversity of genes encoding the hevein-like antimicrobial peptides WAMPs.  相似文献   

16.
17.
18.
The bacterial community compositions in Chenopodium album and Stellaria media seeds recovered from soil (soil weed seedbank), from bulk soil, and from seeds harvested from plants grown in the same soils were compared. It was hypothesized that bacterial communities in soil weed seedbanks are distinct from the ones present in bulk soils. For that purpose, bacterial polymerase chain reaction denaturing gradient gel electrophoresis (PCR–DGGE) fingerprints, made from DNA extracts of different soils and seed fractions, were analyzed by principal component analysis. Bacterial fingerprints from C. album and S. media seeds differed from each other and from soil. Further, it revealed that bacterial fingerprints from soil-recovered and plant-harvested seeds from the same species clustered together. Hence, it was concluded that microbial communities associated with seeds in soil mostly originated from the mother plant and not from soil. In addition, the results indicated that the presence of a weed seedbank in arable soils can increase soil microbial diversity. Thus, a change in species composition or size of the soil weed seedbank, for instance, as a result of a change in crop management, could affect soil microbial diversity. The consequence of increased diversity is yet unknown, but by virtue of identification of dominant bands in PCR–DGGE fingerprints as Lysobacter oryzae (among four other species), it became clear that bacteria potentially antagonizing phytopathogens dominate in C. album seeds in soil. The role of these potential antagonists on weed and crop plant growth was discussed.  相似文献   

19.
20.
Effects of colonization of micropropagated potato (Solanum tuberosum L.) and strawberry (Fragaria L.) plants by the rhizosphere bacterium Pseudomonas aureofaciens strain BS1393 (VKM B-2188 D) on plant growth and resistance to bacterial and fungal phytopathogens were studied. Pseudomonad colonization improved the physiological characteristics of plants and enhanced their adaptation to in vivo conditions. The presence of P. aureofaciens cells in various plant tissues (leaves, stems, and roots) in vitro was demonstrated on the background of plant cocolonization by two associative strains—P. aureofaciens strain BS1393 (VKM-B-2188 D) and Methylovorus mays (VKM-B-2221). The colonized plants displayed an increased resistance to the phytopathogens Erwinia carotovora, Sclerotinia sclerotiorum, and Phytophthora infestans. These results demonstrate that pseudomonades are promising for practical application in the microbial protection of plants against phytopathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号