首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Coral reef islands are among the most vulnerable environments on Earth to climate change because they are low lying and largely constructed from unconsolidated sediments that can be readily reworked by waves and currents. These sediments derive entirely from surrounding coral reef and reef flat environments and are thus highly sensitive to ecological transitions that may modify reef community composition and productivity. How such modifications – driven by anthropogenic disturbances and on‐going and projected climatic and environmental change – will impact reef island sediment supply and geomorphic stability remains a critical but poorly resolved question. Here, we review the unique ecological–geomorphological linkages that underpin this question and, using different scenarios of environmental change for which reef sediment production responses can be projected, explore the likely resilience of different island types. In general, sand‐dominated islands are likely to be less resilient than those dominated by rubble grade material. However, because different islands typically have different dominant sediment constituents (usually either coral, benthic foraminifera or Halimeda) and because these respond differently to individual ecological disturbances, island resilience is likely to be highly variable. Islands composed of coral sands are likely to undergo major morphological change under most near‐future ecological change scenarios, while those dominated by Halimeda may be more resilient. Islands composed predominantly of benthic foraminifera (a common state through the Pacific region) are likely to exhibit varying degrees of resilience depending upon the precise combination of ecological disturbances faced. The study demonstrates the critical need for further research bridging the ecological–geomorphological divide to understand: (1) sediment production responses to different ecological and environmental change scenarios; and (2) dependant landform vulnerability.  相似文献   

2.
Herbivory is a primary factor in determining the structure of coral reef communities. Spatial variation among reef habitats in the intensity of herbivory has been documented, but underlying variation in species composition and abundance within the herbivore guild has received little attention. The distribution and relative abundances of herbivorous fishes and sea urchins across several habitats were studied on the Belizean barrier reef off the Caribbean coast of Central America. Marked variation in total herbivore density as well as major changes in the composition of the herbivore guild were found across reef habitats. Acanthurids (surgeonfishes) predominated in shallow areas (< 5 m) while scarids (parrotfishes) were dominant in deeper habitats. Significant differences among habitats in an experimental assay of grazing intensity were strongly correlated with herbivore abundance. The spatial distribution of herbivorous fishes across reef habitats does not appear to be simply explained by differences in reef topography, but may depend on complex interactions among proximity to nearby shelter, predator abundance, density of territorial competitors, and local availability of food resources.  相似文献   

3.
Sediments are a ubiquitous feature of all coral reefs, yet our understanding of how they affect complex ecological processes on coral reefs is limited. Sediment in algal turfs has been shown to suppress herbivory by coral reef fishes on high-sediment, low-herbivory reef flats. Here, we investigate the role of sediment in suppressing herbivory across a depth gradient (reef base, crest and flat) by observing fish feeding following benthic sediment reductions. We found that sediment suppresses herbivory across all reef zones. Even slight reductions on the reef crest, which has 35 times less sediment than the reef flat, resulted in over 1800 more herbivore bites (h−1 m−2). The Acanthuridae (surgeonfishes) were responsible for over 80 per cent of all bites observed, and on the reef crest and flat took over 1500 more bites (h−1 m−2) when sediment load was reduced. These findings highlight the role of natural sediment loads in shaping coral reef herbivory and suggest that changes in benthic sediment loads could directly impair reef resilience.  相似文献   

4.
Although the global decline in coral reef health is likely to have profound effects on reef associated fishes, these effects are poorly understood. While declining coral cover can reduce the abundance of reef fishes through direct effects on recruitment and/or mortality, recent evidence suggests that individuals may survive in disturbed habitats, but may experience sublethal reductions in their condition. This study examined the response of 2 coral associated damselfishes (Pomacentridae), Chrysiptera parasema and Dascyllus melanurus, to varying levels of live coral cover. Growth, persistence, and the condition of individuals were quantified on replicate coral colonies in 3 coral treatments: 100% live coral (control), 50% live coral (partial) and 0% live coral (dead). The growth rates of both species were directly related to the percentage live coral cover, with individuals associated with dead corals exhibiting the slowest growth, and highest growth on control corals. Such differences in individual growth between treatments were apparent after 29 d. There was no significant difference in the numbers of fishes persisting or the physiological condition of individuals between different treatments on this time-scale. Slower growth in disturbed habitats will delay the onset of maturity, reduce lifetime fecundity and increase individual's vulnerability to gape-limited predation. Hence, immediate effects on recruitment and survival may underestimate the longer-term impacts of declining coral on the structure and diversity of coral-associated reef fish communities.  相似文献   

5.
  1. Novel hard substratum, introduced through offshore developments, can provide habitat for marine species and thereby function as an artificial reef. To predict the ecological consequences of deploying offshore infrastructure, and sustainably manage the installation of new structures, interactions between artificial reefs and marine ecosystem functions and services must be understood. This requires quantitative data on the relationships between secondary productivity and artificial reef design, across all trophic levels. Benthic secondary productivity is, however, one of the least studied processes on artificial reefs.
  2. In this study, we show that productivity rates of a common suspension feeder, Flustra foliacea (Linnaeus 1758), were 2.4 times higher on artificial reefs constructed from “complex” blocks than on reefs constructed from “simple” blocks, which had a smaller surface area.
  3. Productivity rates were highest on external areas of reefs. Productivity rates decreased by 1.56%, per cm distance into the reef on complex reefs and 2.93% per cm into the reef on simple block reefs. The differences in productivity rates between reefs constructed from simple and complex blocks are assumed to reflect different current regimes and food supply between the external and internal reef areas, according to reef type.
  4. Synthesis and applications. Our results show that artificial reef design can affect secondary productivity at low trophic levels. We demonstrate that the incorporation of voids into reef blocks can lead to a greater proportion of the structure serving as functional habitat for benthic species. By including such modifications into the design of artificial reefs, it may be possible to increase the overall productivity capacity of artificial structures.
  相似文献   

6.
Experimental biology of coral reef ecosystems   总被引:1,自引:0,他引:1  
Coral reef ecosystems are at the crossroads. While significant gaps still exist in our understanding of how “normal” reefs work, unprecedented changes in coral reef systems have forced the research community to change its focus from basic research to understand how one of the most diverse ecosystems in the world works to basic research with strong applied implications to alleviate damage, save, or restore coral reef ecosystems. A wide range of stressors on local, regional, and global spatial scales including over fishing, diseases, large-scale disturbance events, global climate change (e.g., ozone depletion, global warming), and over population have all contributed to declines in coral cover or phase shifts in community structure on time scales never observed before. Many of these changes are directly or indirectly related to anthropogenically induced changes in the global support network that affects all ecosystems. This review focuses on some recent advances in the experimental biology of coral reef ecosystems, and in particular scleractinian corals, at all levels of biological organization. Many of the areas of interest and techniques discussed reflect a progression of technological advances in biology and ecology but have found unique and timely application in the field of experimental coral reef biology. The review, by nature, will not be exhaustive and reflects the author's interests to a large degree. Because of the voluminous literature available, an attempt has been made to capture the essential elements and references for each topic discussed.  相似文献   

7.
Human activity is changing environmental conditions on a global scale. Among the ecosystems that are affected by human activities, coral reefs are among the most prominent. In Brazil, the coral reefs of the Corumbau Marine Extractive Reserve (CMER) and Abrolhos National Marine Park (ANMP) in Bahia state have some of the highest coral cover in the South Atlantic Ocean. Hard coral cover, algal cover, and foraminiferal population distribution patterns were used to assess the coral reef benthic environments, and define a background that can be used in worldwide comparisons in future studies. To compare these two monitoring approaches in different coral reef environments, relative frequency data for occurrence of hard coral and algal cover, using point-intercept transects as proposed by the Reef Check protocol, and foraminiferal samples were collected from Corumbau (nearshore) and Abrolhos (offshore) in April 2005. The foraminiferal assemblage was evaluated using the FORAM index (FI — Foraminifera in Reef Assessment and Monitoring), which provides a numeric diagnosis of suitability of benthic habitat to support calcifying organisms that host algal symbionts, originally developed for Caribbean reef areas. Coral cover in the surveyed areas, both in Corumbau and in Abrolhos, ranged from 13% to 37%, while high foraminiferal diversities (H') were found in all stations. Dominance of symbiont-bearing taxa of Amphistegina lessonii and Archaias angulatus only occurred at two shallow stations, Mato Verde and Siriba, both in Abrolhos, where FI > 4.00. Stations located in Corumbau and Abrolhos had FI values < 4.00. Q-mode cluster analysis showed that foraminifers have specific preferences for physical conditions, especially hydrodynamics and light availability, which influence the FI index. Although coral cover in these areas can be considered good by regional standards, foraminifer analysis showed that the benthic system was unfavorable for symbiont-bearing foraminiferal species at most stations. This discrepancy reveals that the FI must be used with caution in areas other than the northwestern Atlantic and Caribbean where it was developed, and that some coral species can thrive in muddier conditions than can most symbiont-bearing foraminifers.  相似文献   

8.
Functional traits have been fundamental to the evolution and diversification of entire fish lineages on coral reefs. Yet their relationship with the processes promoting speciation, extinction and the filtering of local species pools remains unclear. We review the current literature exploring the evolution of diet, body size, water column use and geographic range size in reef‐associated fishes. Using published and new data, we mapped functional traits on to published phylogenetic trees to uncover evolutionary patterns that have led to the current functional diversity of fishes on coral reefs. When examining reconstructed patterns for diet and feeding mode, we found examples of independent transitions to planktivory across different reef fish families. Such transitions and associated morphological alterations may represent cases in which ecological opportunity for the exploitation of different resources drives speciation and adaptation. In terms of body size, reconstructions showed that both large and small sizes appear multiple times within clades of mid‐sized fishes and that extreme body sizes have arisen mostly in the last 10 million years (Myr). The reconstruction of range size revealed many cases of disparate range sizes among sister species. Such range size disparity highlights potential vicariant processes through isolation in peripheral locations. When accounting for peripheral speciation processes in sister pairs, we found a significant relationship between labrid range size and lineage age. The diversity and evolution of traits within lineages is influenced by trait–environment interactions as well as by species and trait–trait interactions, where the presence of a given trait may trigger the development of related traits or behaviours. Our effort to assess the evolution of functional diversity across reef fish clades adds to the burgeoning research focusing on the evolutionary and ecological roles of functional traits. We argue that the combination of a phylogenetic and a functional approach will improve the understanding of the mechanisms of species assembly in extraordinarily rich coral reef communities.  相似文献   

9.
A 9-year study of the structure of assemblages of fish on 20 coral patch reefs, based on 20 non-manipulative censuses, revealed a total of 141 species from 34 families, although 40 species accounted for over 95% of sightings of fish. The average patch reef was 8.5 m2 in surface area, and supported 125 fish of 20 species at a census. All reefs showed at least a two-fold variation among censuses in total numbers of fish present, and 12 showed ten-fold variations. There was also substantial variation in the composition and relative abundances of species present on each patch reef, such that censuses of a single patch reef were on average about 50% different from each other in percent similarity of species composition (Czekanowski's index). Species differed substantially in the degree to which their numbers varied from census to census, and in the degree to which their dispersion among patch reefs was modified from census to census. We characterize the 40 most common species with respect to these attributes. The variations in assemblage structure cannot be attributed to responses of fish to a changing physical structure of patch reefs, nor to the comings and goings of numerous rare species. Our results support and extend earlier reports on this study, which have stressed the lack of persistant structure for assemblages on these patch reefs. While reef fishes clearly have microhabitat preferences which are expressed at settlement, the variations in microhabitat offered by the patch reefs are insufficient to segregate many species of fish by patch reef. Instead, at the scale of single patch reefs, and, to a degree, at the larger scale of the 20 patch reefs, most of the 141 species of fish are distributed without regard to differences in habitat structure among reefs, and patterns of distribution change over time. Implications for general understanding of assemblage dynamics for fish over more extensive patches of reef habitat are considered.  相似文献   

10.
珊瑚礁生态保护与管理研究   总被引:6,自引:2,他引:4  
珊瑚礁以其极高的生物多样性和生物生产力以及优美的自然景观 ,为人们提供了生活需要和游乐的资源 ,但同时也受到过度利用的破坏 ,尤其是近年来显得更为严重 ,因而珊瑚礁的生态保护与管理成为近 2 0年来倍受关注的问题。本文回顾了国内外珊瑚礁生态保护和管理的一些研究成果 ,通过自然和社会经济调查 ,并根据保护、研究和可持续利用的原则 ,将雷州半岛灯楼角珊瑚礁保护区划分为野生区 ,保护区、季节性封闭区和一般使用区 ,并强调公众参与、社区组织和领导组成、教育和培训、资源管理等为保护和管理中的措施  相似文献   

11.
Xisha Islands, located in the northern part of South China Sea, consist of more than 20 islands and atolls. The coral reef of Xisha Islands belongs to the typical ocean distribution of world’s coral reefs, its ecosystem is the most typical in our country and hermatypic coral species are about three-quarters of the total coral species in China. It is addressed with the oldest coral reef community which of the most original and valuable in China. The previous research shows that the islands studded in South China Sea such as Xisha Islands have important influence on the formation of coral reefs along the mainland coast by multiplying and migrating from south to the north. It is supplementary sources of coastal coral larvae in Hainan and Guangdong. Therefore, carrying out the monitoring of coral reef community ecosystem is of great significance to the ecological protection. By the Manta tow and the Line Intercept Transect method, five stations (Xisha Yong xing dao, Shi dao, Xisha zhou, Zhao Shu dao and Bei dao) on Xisha ecological monitoring area were monitored continually from 2005 to 2009. We compared the index changes of Hermatypic coral’s species, coverage and recruitment, and combining with Condition Index, Succession Index, and the variation trend of hard coral in Xisha were analyzed.
The results show that, from 2005 to 2009, the coverage of living hermatypic corals in ecological monitoring area is sharply reduced from 68.19% to 7.93%, while the dead coral coverage is sharply increased from 4.70% to 72.90%. Coral recruitment is reduced from 1.18 ind/100 m2 to 0.07 ind/100 m2, hermatypic coral species decreased from 87 to 35. In 2005, the health of coral reefs was very good, and the Condition Index was 1.097. However, the Condition Index cut down to a very low degree in 2009. It was only ?0.880. The Succession Index belonged to “very low degree” from 2005 to 2009, and the numerical value was gradually reduce from ?0.984 to ?1.876.
As a whole, hermatypic corals are serious degrade regionally and caused great change to the coral structure and biodiversity, this will lead to a continuous degradation of coral reefs.  相似文献   

12.
Wang D R  Wu Z J  Li Y C  Chen J R  Chen M 《农业工程》2011,31(5):254-258
Xisha Islands, located in the northern part of South China Sea, consist of more than 20 islands and atolls. The coral reef of Xisha Islands belongs to the typical ocean distribution of world’s coral reefs, its ecosystem is the most typical in our country and hermatypic coral species are about three-quarters of the total coral species in China. It is addressed with the oldest coral reef community which of the most original and valuable in China. The previous research shows that the islands studded in South China Sea such as Xisha Islands have important influence on the formation of coral reefs along the mainland coast by multiplying and migrating from south to the north. It is supplementary sources of coastal coral larvae in Hainan and Guangdong. Therefore, carrying out the monitoring of coral reef community ecosystem is of great significance to the ecological protection. By the Manta tow and the Line Intercept Transect method, five stations (Xisha Yong xing dao, Shi dao, Xisha zhou, Zhao Shu dao and Bei dao) on Xisha ecological monitoring area were monitored continually from 2005 to 2009. We compared the index changes of Hermatypic coral’s species, coverage and recruitment, and combining with Condition Index, Succession Index, and the variation trend of hard coral in Xisha were analyzed.
The results show that, from 2005 to 2009, the coverage of living hermatypic corals in ecological monitoring area is sharply reduced from 68.19% to 7.93%, while the dead coral coverage is sharply increased from 4.70% to 72.90%. Coral recruitment is reduced from 1.18 ind/100 m2 to 0.07 ind/100 m2, hermatypic coral species decreased from 87 to 35. In 2005, the health of coral reefs was very good, and the Condition Index was 1.097. However, the Condition Index cut down to a very low degree in 2009. It was only ?0.880. The Succession Index belonged to “very low degree” from 2005 to 2009, and the numerical value was gradually reduce from ?0.984 to ?1.876.
As a whole, hermatypic corals are serious degrade regionally and caused great change to the coral structure and biodiversity, this will lead to a continuous degradation of coral reefs.  相似文献   

13.
The reef flat is one of the largest and most distinctive habitats on coral reefs, yet its role in reef trophodynamics is poorly understood. Evolutionary evidence suggests that reef flat colonization by grazing fishes was a major innovation that permitted the exploitation of new space and trophic resources. However, the reef flat is hydrodynamically challenging, subject to high predation risks and covered with sediments that inhibit feeding by grazers. To explore these opposing influences, we examine the Great Barrier Reef (GBR) as a model system. We focus on grazing herbivores that directly access algal primary productivity in the epilithic algal matrix (EAM). By assessing abundance, biomass, and potential fish productivity, we explore the potential of the reef flat to support key ecosystem processes and its ability to maintain fisheries yields. On the GBR, the reef flat is, by far, the most important habitat for turf‐grazing fishes, supporting an estimated 79% of individuals and 58% of the total biomass of grazing surgeonfishes, parrotfishes, and rabbitfishes. Approximately 59% of all (reef‐wide) turf algal productivity is removed by reef flat grazers. The flat also supports approximately 75% of all grazer biomass growth. Our results highlight the evolutionary and ecological benefits of occupying shallow‐water habitats (permitting a ninefold population increase). The acquisition of key locomotor and feeding traits has enabled fishes to access the trophic benefits of the reef flat, outweighing the costs imposed by water movement, predation, and sediments. Benthic assemblages on reefs in the future may increasingly resemble those seen on reef flats today, with low coral cover, limited topographic complexity, and extensive EAM. Reef flat grazing fishes may therefore play an increasingly important role in key ecosystem processes and in sustaining future fisheries yields.  相似文献   

14.
A new technique called the reef resource inventory (RRI) was developed to map the distribution and abundance of benthos and substratum on reefs. The rapid field sampling technique uses divers to visually estimate the percentage cover of categories of benthos and substratum along 2×20 m plotless strip-transects positioned randomly over the tops, and systematically along the edge of reefs. The purpose of this study was to compare the relative sampling accuracy of the RRI against the line intercept transect technique (LIT), an international standard for sampling reef benthos and substratum. Analysis of paired sampling with LIT and RRI at 51 sites indicated sampling accuracy was not different (P>0.05) for 8 of the 12 benthos and substratum categories used in the study. Significant differences were attributed to small-scale patchiness and cryptic coloration of some benthos; effects associated with sampling a sparsely distributed animal along a line versus an area; difficulties in discriminating some of the benthos and substratum categories; and differences due to visual acuity since LIT measurements were taken by divers close to the seabed whereas RRI measurements were taken by divers higher in the water column. The relative cost efficiency of the RRI technique was at least three times that of LIT for all benthos and substratum categories and as much as 10 times higher for two categories. These results suggest that the RRI can be used to obtain reliable and accurate estimates of relative abundance of broad categories of reef benthos and substratum.
Brian G. LongEmail: Phone: +62-21-56999104
  相似文献   

15.
大亚湾人工鱼礁附着生物的初步研究   总被引:8,自引:0,他引:8  
1988年8月至1989年7月在大亚湾鱼礁区进行附着生物调查研究,记录79种生物,大约有82.7%的生物种类是鱼礁区鱼虾的饵料生物(包括35种不带壳和32种带壳的饵料生物),有17.3%的生物种类为非饵料生物。礁区附着生物种类多,附着量大,生长迅速,投礁半年后100%被生物覆盖,附着厚度30mm,附着量达17.487kg/m~2。礁区生物一年四季都能繁殖附着,主要附着期4—10月,高峰期7、8、9三个月,是投礁的最佳时间。  相似文献   

16.
R. M. Nzioka 《Hydrobiologia》1990,208(1-2):81-84
The fish yield on Kilifi reef which is about 4 km2 was estimated for three years: 1982–1984. It was found that the yield on the reef ranged from 5.07 t km–2 to 12.9 t km–2 with a mean of 8.8 t km–2 year–1. The major groups of fish caught were mostly Siganidae, Scaridae, Plectorhychidae, Scombridae, Lutjanidae, Serranidae, Carangidae, Sphyreanidae and Ceasiodidae. There were more fish caught during the northeast monsoon when the sea was calm than during the southeast monsoon when the sea was rough.  相似文献   

17.
Seven coral reef communities were defined on Shiraho fringing reef, Ishigaki Island, Japan. Net photosynthesis and calcification rates were measured by in situ incubations at 10 sites that included six of the defined communities, and which occupied most of the area on the reef flat and slope. Net photosynthesis on the reef flat was positive overall, but the reef flat acts as a source for atmospheric CO2, because the measured calcification/photosynthesis ratio of 2.5 is greater than the critical ratio of 1.67. Net photosynthesis on the reef slope was negative. Almost all excess organic production from the reef flat is expected to be effused to the outer reef and consumed by the communities there. Therefore, the total net organic production of the whole reef system is probably almost zero and the whole reef system also acts as a source for atmospheric CO2. Net calcification rates of the reef slope corals were much lower than those of the branching corals. The accumulation rate of the former was approximately 0.5 m kyr−1 and of the latter was ~0.7–5 m kyr−1. Consequently, reef slope corals could not grow fast enough to keep up with or catch up to rising sea levels during the Holocene. On the other hand, the branching corals grow fast enough to keep up with this rising sea level. Therefore, a transition between early Holocene and present-day reef communities is expected. Branching coral communities would have dominated while reef growth kept pace with sea level rise, and the reef was constructed with a branching coral framework. Then, the outside of this framework was covered and built up by reef slope corals and present-day reefs were constructed.  相似文献   

18.
Juvenile and adult reef fishes often undergo migration, ontogenic habitat shifts, and nocturnal foraging movements. The orientation cues used for these behaviours are largely unknown. In this study, the use of sound as an orientation cue guiding the nocturnal movements of adult and juvenile reef fishes at Lizard Island, Great Barrier Reef was examined. The first experiment compared the movements of fishes to small patch reefs where reef noise was broadcast, with those to silent reefs. No significant responses were found in the 79 adults that were collected, but the 166 juveniles collected showed an increased diversity each morning on the reefs with broadcast noise, and significantly greater numbers of juveniles from three taxa (Apogonidae, Gobiidae and Pinguipedidae) were collected from reefs with broadcast noise. The second experiment compared the movement of adult and juvenile fishes to reefs broadcasting high (>570 Hz), or low (<570 Hz) frequency reef noise, or to silent reefs. Of the 122 adults collected, the highest diversity was seen at the low frequency reefs; and adults from two families (Gobiidae and Blenniidae) preferred these reefs. A similar trend was observed in the 372 juveniles collected, with higher diversity at the reefs with low frequency noises. This preference was seen in the juvenile apogonids; however, juvenile gobiids were attracted to both high and low sound treatments equally, and juvenile stage Acanthuridae preferred the high frequency noises. This evidence that juvenile and adult reef fishes orientate with respect to the soundscape raises important issues for management, conservation and the protection of sound cues used in natural behaviour.  相似文献   

19.
珊瑚礁白化研究进展   总被引:22,自引:2,他引:22  
李淑  余克服 《生态学报》2007,27(5):2059-2069
珊瑚礁白化是由于珊瑚失去体内共生的虫黄藻和(或)共生的虫黄藻失去体内色素而导致五彩缤纷的珊瑚礁变白的生态现象。近年来,频繁发生的珊瑚礁白化导致了珊瑚礁生态系统严重退化,并已经影响到全球珊瑚礁生态系统的平衡,受到了人们的高度重视。研究认为:(1)大范围珊瑚礁白化主要是全球环境变化引起的,尤其是全球变暖和紫外辐射增强;(2)导致珊瑚礁白化的机制主要在于细胞机制和光抑制机制;(3)珊瑚礁白化后的恢复与白化程度有关,大范围白化的珊瑚礁完全恢复需要几年到几十年;(4)珊瑚礁白化的后果在于降低珊瑚繁殖能力、减缓珊瑚礁生长、改变礁栖生物的群落结构,导致大面积珊瑚死亡和改变珊瑚礁生态类型,如变为海藻型等;(5)与珊瑚共生的D系群虫黄藻更适应高温环境,珊瑚礁有可能通过D系群逐渐取代C系群的方式适应全球环境变化。  相似文献   

20.
D. Ross Robertson 《Oecologia》1995,103(2):180-190
Stegastes diencaeus and S. dorsopunicans are mutually territorial Caribbean damselfishes. S. diencaeus is larger, grows faster and lives longer than S. dorsopunicans. S. diencaeus is a habitat specialist that shares its primary habitat mainly with S. dorsopunicans. Field manipulations show that both S. diencaeus and S. dorsopunicans readily take over living space from smaller, but not larger, heterospecific neighbors. Natural changes in the use of living space by both species occur frequently and adult S. diencaeus often aggressively usurp the living areas of smaller S. dorsopunicans. Lunar and seasonal patterns of juvenile recruitment by S. diencaeus and S. dorsopunicans are similar. Large size bestows competitive superiority on S. diencaeus by giving its adults a superior ability to aggressively acquire living space, and by enabling its juveniles to quickly escape the period when they lack a size advantage. Hence they spend much of their lives as competitive dominants. There is no evidence that competitive advantages arising from large size are offset either by other adult attributes or by differences in temporal patterns of recruitment that affect priority of access to space. The lottery hypothesis for species coexistence relies on patterns of abundance being determined by patterns of recruitment to vacant space because different species have equal space-holding abilities. These data show that the existence of such a mechanism is doubtful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号