首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The bacterial flagellum is important for motility and adaptation to environmental niches. The sequence of events required for the synthesis of the flagellar apparatus has been extensively studied, yet the events that dictate where the flagellum is placed at the onset of flagellar biosynthesis remain largely unknown. We addressed this question for alphaproteobacteria by using the polarly flagellated alphaproteobacterium Caulobacter crescentus as an experimental model system. To identify candidates for a role in flagellar placement, we searched all available alphaproteobacterial genomes for genes of unknown function that cluster with early flagellar genes and that are present in polarly flagellated alphaproteobacteria while being absent in alphaproteobacteria with other flagellation patterns. From this in silico screen, we identified pflI. Loss of PflI function in C. crescentus results in an abnormally high frequency of cells with a randomly placed flagellum, while other aspects of cell polarization remain normal. In a wild-type background, a fusion of green fluorescent protein (GFP) and PflI localizes to the pole where the flagellum develops. This polar localization is independent of the flagellar protein FliF, whose oligomerization into the MS ring is thought to define the site of flagellar synthesis, suggesting that PflI acts before or independently of this event. Overproduction of PflI-GFP often leads to ectopic localization at the wrong, stalked pole. This is accompanied by a high frequency of flagellum formation at this ectopic site, suggesting that the location of PflI is a sufficient marker for a site for flagellar assembly.  相似文献   

3.
4.
5.
6.
7.
A Caulobacter gene involved in polar morphogenesis.   总被引:3,自引:4,他引:3       下载免费PDF全文
At specific times in the cell cycle, the bacterium Caulobacter crescentus assembles two major polar organelles, the flagellum and the stalk. Previous studies have shown that flbT mutants overproduce flagellins and are unable to form chemotaxis swarm rings. In this paper, we report alterations in both the stalk and the flagellar structure that result from a mutation in the flagellar gene flbT. Mutant strains produce some stalks that have a flagellum, produce some stalks that have an extra lobe protruding from their sides, have filaments lacking the 29-kilodalton flagellin, and produce several unusual cell types, including filamentous cells as well as predivisional cells with two stalks and predivisional cells with no stalk at all. We propose that flagellated stalks arise as a consequence of a failure to eject the flagellum at the correct time in the cell cycle and that the extra stalk lobe is due to a second site for the initiation of stalk biogenesis. Thus, a step in the pathway that establishes the characteristic asymmetry of the C. crescentus cell appears to be disrupted in flbT mutants. We have also identified a new structural feature at the flagellated pole and the tip of the stalk: the 10-nm polar particle. The polar particles appear as a cluster of approximately 1 to 10 stain-excluding rings, visible in electron micrographs of negatively stained wild-type cells. This structure is absent at the flagellar pole but not in the stalks of flbT mutant predivisional cells.  相似文献   

8.
9.
10.
The organization of the Caulobacter crescentus flagellar filament   总被引:10,自引:0,他引:10  
The structural organization of the flagellar filament of Caulobacter crescentus, as revealed by immunoelectron microscopy, shows five antigenically distinct regions within the hook-filament complex. The first region is the hook. The second region is adjacent to the hook and is approximately 10 nm in length. On the basis of its location in the hook-filament complex, this region may contain hook-associated proteins. Next to this is the third region, which is approximately 60 nm in length. Antibody decoration experiments using mutant strains with deletions of the structural gene for the 29 x 10(3) Mr flagellin (flgJ) showed that the presence of this region is correlated with the expression of the 29 x 10(3) Mr flagellin gene. The next region (region IV), of length approximately 1 to 2 microns, appears to contain the 27.5 x 10(3) Mr flagellin, but at its distal end includes, in gradually increasing amounts, the 25 x 10(3) Mr flagellin. The rest of the filament (region V) is made up predominantly, if not completely, of the 25 x 10(3) Mr flagellin. Except for the hook, there are no morphological features that would otherwise distinguish these regions. A functional flagellum, having the wild-type length and morphology, is assembled by mutant strains deficient in the 29 x 10(3) Mr flagellin and 27.5 x 10(3) Mr flagellin.  相似文献   

11.
Caulobacter crescentus flagellar filament has a right-handed helical form   总被引:6,自引:0,他引:6  
Caulobacter crescentus flagellar filaments were examined for their shape and handedness. Contour length, wavelength and height of the helical filaments were 1.34 +/- 0.14 micron, 1.08 +/- 0.05 micron and 0.27 +/- 0.04 micron, respectively. Together with the value of the filament diameter, 14 +/- 1.5 nm, the parameters of the curvature (alpha) and twist (phi) were calculated as 3.9(%) for alpha and 0.026 (rad) for phi, which are similar to those of the curly I filament of Salmonella typhimurium. Dark-field light microscopic analysis revealed that the C. crescentus wild-type filament possesses a right-handed helical form. Given the result that C. crescentus cells normally swim forward, in the opposite direction to a polar flagellum, it is likely that C. crescentus swims by rotation of a right-handed curly shaped flagellum in a clockwise sense, whereas S. typhimurium and Escherichia coli swim by rotation of left-handed normal type flagella in a counterclockwise sense.  相似文献   

12.
13.
14.
In this study, we identified a transposon insertion in a novel gene, designated disA, that restored swarming motility to a putrescine-deficient speA mutant of Proteus mirabilis. A null allele in disA also increased swarming in a wild-type background. The DisA gene product was homologous to amino acid decarboxylases, and its role in regulating swarming was investigated by examining the expression of genes in the flagellar cascade. In a disA mutant background, we observed a 1.4-fold increase in the expression of flhDC, which encodes FlhD(2)C(2), the master regulator of the flagellar gene cascade. However, the expressions of class 2 (fliA, flgM) and class 3 (flaA) genes were at least 16-fold higher in the disA background during swarmer cell differentiation. Overexpression of DisA on a high-copy-number plasmid did not significantly decrease flhDC mRNA accumulation but resulted in a complete block in mRNA accumulation for both fliA and flaA. DisA overexpression also blocked swarmer cell differentiation. The disA gene was regulated during the swarming cycle, and a single-copy disA::lacZ fusion exhibited a threefold increase in expression in swarmer cells. Given that DisA was similar to amino acid decarboxylases, a panel of decarboxylated amino acids was tested for effects similar to DisA overexpression, and phenethylamine, the product of phenylalanine decarboxylation, was capable of inhibiting both swarming and the expression of class 2 and class 3 genes in the flagellar regulon. A DisA-dependent decarboxylated amino acid may inhibit the formation of active FlhD(2)C(2) heterotetramers or inhibit FlhD(2)C(2) binding to DNA.  相似文献   

15.
16.
The structure of the bacterial flagellar hook produced by a mutant of Caulobacter crescentus was studied by electron microscopy, optical diffraction, and digital image processing techniques. The helical surface lattice of the hook is defined by a single, right-handed genetic helix having a pitch of about 23 Å, an axial rise per subunit of 4 Å and an azimuthal angle between subunits of 64·5 °. The lattice is also characterized by intersecting families of 5-start, 6-start and long-pitch 11-start helices. These helical parameters are remarkably similar to those determined for the flagellar filaments from several strains of gram-negative bacteria. The technique of three-dimensional image reconstruction (DeRosier & Klug, 1968) was applied to nine of the better preserved specimens and the diffraction data from five of these were correlated and averaged and used to generate an average three-dimensional model of the hook. The pattern of density modulations in the three-dimensional model is suggestive of an elongated, curved shape for the hook subunit (100 Å × 25 Å × 25 Å). The subunits are situated in the lattice of the polyhook such that their long axes are tilted about 45 ° with respect to the hook axis. The subunits appear to make contact with each other along the 6-start helices at a radius of 80 Å and also along the 11-start helices at a radius of 65 Å. Few structural features are revealed at radii between 15 å and 45 Å and, therefore, we are unable to decide to what extent the hook subunits extend into this region. The most striking characteristic of the model is the presence of deep, broad, continuous 6-start helical grooves extending from an inner radius of about 50 Å to the perimeter of the particle at 105 Å radius. Normal hooks usually appear curved in electron micrographs and sometimes so are the mutant hooks; the prominent 6-start grooves appear to allow for bending with minimal distortion of matter in the outer regions of the hook. A round stain-filled channel about 25 Å in diameter runs down the center of the polyhook. Such a channel supports a model for flagellar assembly in which flagellin subunits travel through the interior of the flagellum to the growing distal end of the filament.  相似文献   

17.
18.
19.
The basal hook structure of the flagellar organelle Caulobacter crescentus was isolated from release flagella. Hook preparations contained a single major proteins species of 73,000 molecular weight and proteins in smaller amounts that may be minor hook components. Hooks isolated from C. crescents CB13B1a and CB15 were immunologically cross-reactive.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号