首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LNCaP prostate tumor cells contain an abnormal androgen receptor system. Progestagens, estradiol and anti-androgens can compete with androgens for binding to the androgen receptor and can stimulate both cell growth and excretion of prostate specific acid phosphatase. We have discovered in the LNCaP androgen receptor a single point mutation changing the sense of codon 868 (Thr to Ala) in the ligand binding domain. Expression vectors containing the normal or mutated androgen receptor sequence were transfected into COS or Hela cells. Androgens, progestagens, estrogens and anti-androgens bind the mutated androgen receptor protein and activate the expression of an androgen-regulated reporter gene construct (GRE-tk-CAT). The mutation therefore influences both binding and the induction of gene expression by different steroids and antisteroids.  相似文献   

2.
3.
4.
The mitogenic activity of several growth factors on androgen responsive LNCaP human prostate tumor cells was studied. A two-fold stimulation of cell proliferation was observed after a culture period of 6 days in 1 ng EGF/ml, 10 ng TGF-alpha/ml or 20 ng basic FGF/ml. TGF-beta (0.02 ng/ml), which did not affect cell proliferation when added alone to the culture medium, inhibited the EGF- and TGF-alpha-induced growth. The synthetic androgen R1881 (0.1 nM) stimulated cell proliferation three-fold and increased the number of EGF receptors from 11500 to 28500 sites/cell. One of the mechanisms involved in androgen action on these cells is therefore an increased EGF receptor expression and increased sensitivity to EGF. TGF-beta did not directly affect androgen-responsive growth but inhibited the synergistic effect of EGF. A considerable expression of TGF alpha (precursors) could be demonstrated on the cells by immunohistochemical staining. However the staining intensity was not affected by androgens. These results make it less likely that androgen-responsive growth is mediated by regulation of secretion of an EGF- or TGF alpha-like activity, which in turn acts in an autocrine manner to stimulate growth. Estrogens, progestagens and antiandrogens do not inhibit androgen responsive growth of LNCaP cells but have striking growth stimulatory effects, increase EGF receptor level and increase acid phosphatase secretion. LNCaP cells contain a modified androgen receptor system with respect to both steroid specificity and antiandrogen sensitivity. It has recently been shown that the stimulatory effects are due to a mutated amino acid in the steroid binding domain of the androgen receptor.  相似文献   

5.
6.
7.
8.
LNCaP cells (derived from a lymph node carcinoma of the human prostate) show androgen responsive growth. Progestagens, estradiol and antiandrogens competed with androgens for binding to the androgen receptor in the cells to a higher extent than in other androgen-sensitive systems. Optimal growth (3–4 fold increase in DNA content of 6 day cell cultures vs controls) was observed after addition of the synthetic androgen R1881 (0.1 nM). Both steroidal and non-steroidal antiandrogens did not suppress the androgen responsive growth. At a concentration of 10 nM cyproterone acetate or 100 nM RU 23908, growth was even stimulated to an extent comparable to that observed after addition of androgen. Cyproterone acetate and RU 23908 also increased the number of epidermal growth factor receptors expressed at the cell surface to a comparable level as did the androgen. Like androgens, cyproterone acetate, RU 23908 or estradiol stimulated the secretion per cell of prostate specific acid phosphatase in the culture fluid. In conclusion, antiandrogens can exert striking stimulatory effects on the proliferation of LNCaP cells probably due to a defective androgen receptor system. It is discussed that comparable changes in the specificity of the androgen receptor in prostate cancer cells may give these cells an advantage in growth rate and may contribute to development of tumors characterized as hormone independent.  相似文献   

9.
10.
Skeletal muscle has long been thought to be a target tissue for androgens, eliciting their effect through the androgen receptor. In order to better understand androgen receptor action, a series of mutated androgen receptors were developed and their degree of specificity and cellular responses determined. Specificity, as measured by a reporter assay using HeLa cells, indicated that mutation of the ligand-binding domain or the AR (mutation H865Y), in combination with the p65 transactivating domain, resulted in an increased response to androgens as well as decreased specificity. Transfection of the mutant AR into mouse and rat myoblast cell lines resulted in an increase in expression of the reporter gene consistent with the data from HeLa cells. Overexpression of the wild type or mutant AR into myoblasts and treatment with testosterone induced both greater proliferation and faster differentiation of the cells compared to those expressing endogenous AR. Additionally, when treated with estrogen, these cells were able to proliferate and differentiate to similar levels as cells treated with testosterone. The ability of the mutated AR to act as an artificial coactivator to up-regulate androgen responsive genes is a useful tool for understanding the interaction of androgens and muscle growth.  相似文献   

11.
12.
13.
14.
The -198 T----C mutation in the promoter of the A gamma-globin gene increases 20-30 fold the expression of this gene in adult erythroid cells of patients (Hereditary Persistence of Fetal Hemoglobin, HPFH). We show here that this mutation creates a strong binding site, resembling a CACCC box, for two ubiquitous nuclear proteins, one of which is Sp1. The mutated promoter is four to five-fold more efficient than a normal gamma-globin promoter in driving expression of a CAT reporter plasmid when transfected into erythroid cells. The overexpression of the mutant is abolished by the introduction of an additional mutation disrupting the new binding site. No overexpression of the mutant is observed in non-erythroid cells, indicating that the ubiquitous factors bound on the mutated sequence must cooperate with erythroid specific factors.  相似文献   

15.
Discrete functions have been attributed to precise regions of the human androgen receptor (hAR) by expression of deletion mutants in COS and HeLa cells. A large C-terminal domain constitutes the hormone-binding region and a central basis, cysteine-rich domain is responsible for DNA binding. In addition, separate domains responsible for transactivation and nuclear translocation have been identified. In LNCaP cells (a prostate tumor cell line) the hAR is a heterogeneous protein which is synthesized as a single 110 kDa protein, but becomes rapidly phosphorylated to a 112 kDa protein. Metabolic labeling experiments using radioactive orthophosphate also indicated that the hAR is a phosphoprotein. Structural analysis of the AR gene in LNCaP cells and in 46, XY-individuals displaying androgen insensitivity (AIS) has revealed several different point mutations. In LNCaP cells the mutation affects both binding specificity and transactivation by different steroids. In a person with complete AIS a point mutation was identified in the splice donor site of intron 4, which prevents normal splicing and activates a cryptic splice donor site in exon 4. The consequence is a functionally inactive AR protein due to an in-frame deletion in the steroid-binding domain. In two unrelated individuals with complete AIS, two different single nucleotide alterations in codon 686 (Asp) were found. Both mutations resulted in functionally inactive ARs due to rapidly dissociating hormone-AR complexes. It is concluded that the hAR is a heterogeneous phosphoprotein in which functional errors have a dramatic impact on phenotype and fertility of 46, XY-individuals.  相似文献   

16.
Estrogens, primarily 17beta-estradiol (E(2)), may play important roles in male physiology via the androgen receptor (AR). It has already been shown that E(2) modulates AR function in LNCaP prostate cancer cells and xenograft CWR22 prostate cancer tissues. Using a molecular model of E(2) bound-AR-ligand binding domain (LBD) and employing site-directed mutagenesis strategies, we screened several AR mutants that were mutated at E(2)-AR contact sites. We found a mutation at amino acid 749, AR(M749L), which confers AR hypersensitivity to E(2). The reporter assays demonstrate that E(2) can function, like androgen, to induce AR(M749L) transactivation. This E(2)-induced AR mutant transactivation is a direct effect of the AR(M749L), because the transactivation was blocked by antiandrogens. The hypersensitivity of AR(M749L) to E(2) is not due to increased affinity of AR(M749L) for E(2), rather it may be due to the existence of the proper conformation necessary to maintain E(2) binding to the AR-LBD long enough to result in E(2)-induced transactivation. AR(M749L) transactivation can be further enhanced in the presence of AR coregulators, such as ARA70 and SRC-1. Therefore, amino acid 749 may represent an important site within the AR-LBD that is involved in interaction with E(2) that, when mutated, allows E(2) induction of AR transactivation.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号