首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract.  Two-day-old male cowpea weevils, Callosobruchus maculatus, fly upwind to a point source of female sex pheromone at three wind speeds. All beetles initiating flight along the pheromone plume make contact with the pheromone source. Analysis of digitized flight tracks indicates that C. maculatus males respond similarly to moths tested at several wind speeds. Beetles' mean net upwind speeds and speeds along their track are similar ( P  > 0.05) across wind speeds, whereas airspeeds increase ( P <  0.01) with increasing wind speed. Beetles adjust their course angles to fly more directly upwind in higher wind speeds, whereas track angles are almost identical at each wind speed. The zigzag flight paths are generally narrow compared with most moth flight tracks and interturn distances are similar ( P  > 0.05) at the wind speeds employed. The frequency of these counterturns across the wind line is almost constant regardless of wind speed, and there is little variation between individuals. The upwind flight tracks are more directly upwind than those typically seen for male moths flying upwind toward sex pheromone sources. Male moths typically produce a bimodal distribution of track angles to the left and right of the windline, whereas C. maculatus males' track angles are centred about 0°. Preliminary examination of two other beetle species indicates that they fly upwind in a similar fashion.  相似文献   

2.
Odor-modulated upwind flight of the sphinx moth,Manduca sexta L.   总被引:1,自引:0,他引:1  
1. Male and female Manduca sexta flew upwind in response to the odor of female sex-pheromone gland extract or fresh tobacco leaf respectively, and generated very similar zigzagging tracks along the odor plume. 2. After loss of odor during flight, males and females alike: (1) first flew slower and steered their flight more across the wind, then (2) stopped moving upwind, and finally (3) regressed downwind. 3. Males flying upwind in a pheromone plume in wind of different velocities maintained their ground speed near a relatively constant 'preferred' value by increasing their air speed as the velocity of the wind increased, and also maintained the average angle of their resultant flight tracks with respect to the wind at a preferred value by steering a course more precisely due upwind. 4. The inter-turn duration and turn rate, two measures of the temporal aspects of the flight track, were maintained, on average, with remarkable consistency across all wind velocities and in both sexes. The inter-turn durations also decreased significantly as moths approached the odor source, suggesting modulation of the temporal pattern of turning by some feature of the odor plume. This temporal regularity of turning appears to be one of the most stereotyped features of odor-modulated flight in M. sexta.  相似文献   

3.
Male Cadra cautella were presented with five heterogeneous pheromone clouds (created from source doses of 0, 0.01, 1, 100, and 10 000 ng) with and without superimposed plumes of either clean air or sex pheromone in a wind tunnel. Moths provided with the lowest doses of background clouds without a superimposed plume did not fly upwind. Moths provided with higher doses of background clouds, with or without superimposed air plumes, increased their track, course, and drift angles (i.e., their zigzags headed more towards crosswind) with increased dose, but slowed their velocity. No differences in flight track parameters were observed for moths provided with a superimposed pheromone plume, regardless of the background cloud dose. Moreover, moths were able to locate the source of superimposed air plumes in the highest background dose, and of superimposed pheromone plumes in any background dose. The significance of these results is discussed in the context of mating disruption.  相似文献   

4.
Abstract Lymantria dispar L. males flying upwind in a pheromone plume in a forest were video-recorded at 2.5, 10 and 20 m from the source of pheromone. Males flew slower and steered more across the wind as they approached the source. In concert, their ground speed decreased and track angles increased. In contrast to these changes, their drift angles were fairly constant and the transverse component of image flow, above and/or below the moths eyes, showed almost no change. The inter-turn duration (time between sequential turns), a temporal aspect of the male flight manoeuvres, showed a consistent but relatively small increase as the distance from the source increased. The flight tracks narrowed as the males approached close (2.5 m) to the source. Because of unpredicted correlations between physical variables (i.e. temperature, wind velocity) and the distance from the source, we used principal components analysis to generate a set of completely independent variables. Greater than 90% of the variability in the data could be explained by four principal factors which corresponded well with known relationships in the flight manoeuvres. All four of these factors showed a significant regression against distance to the source. Although uncontrolled factors such as temperature and wind velocity may have contributed to changes in flight behaviour, recent data indicate that, in addition to concentration, certain temporal and spatial characteristics (i.e. burst period, burst return period) of plumes in wind vary systematically with distance from the source. We propose that L.dispar males might adjust their flight manoeuvres in response to these changes.  相似文献   

5.
ABSTRACT. Flying male spruce budworm ( Choristoneura fumiferana [Clem.]) moths responding to virgin females and to synthetic pheromone in a wind tunnel maintained a constant rate of upwind progress when held by moving optomotor cues at a constant distance from the pheromone source. When allowed to progress upwind to the source, however, they slowed their upwind speed progressively as they approached it. They also adjusted their flight speed to maintain similar rates of upwind progress at different wind speeds.  相似文献   

6.
ABSTRACT. The zigzagging behaviour of male Plodia interpunctella flying up a plume of sex pheromone was investigated in a horizontal wind tunnel by detailed analysis of the moths' ground tracks, groundspeeds, orientations and airspeeds. The moths ‘homed in’ on the source of the pheromone plume by progressively reducing airspeed and turning more into wind, thereby reducing groundspeed and the distance between track reversals and so narrowing down their zigzags (Fig. 16). Track angles and times between reversals were unaffected. Removing the wind-borne pheromone plume while a moth was flying along it confirmed that zigzagging can be an anemotactic response to losing the scent rather than a chemotactic response to the plume. For the first 1–2 s after the moth entered pheromone-free air the zigzagging was indistinguishable from that shown when the plume remained; thereafter it widened progressively until the moths were flying to and fro at c. 90° to the wind. The after-effect of odour stimulation persisted for many zigs and zags and many seconds (Figs. 4 and 5). Moths flying along pheromone plumes compensated efficiently for differences of wind speed, showing similar distributions of track angles to wind, and of ground-speeds, in winds of 0.1, 0.2 and 0.3 ms-1 (Figs. 12 and 13). Groundspeed varied with track angle to wind and this relationship was also similar in the three wind speeds (Fig. 14). This constancy of track angles and groundspeeds was due to the moths both increasing their airspeeds and turning more into wind at the higher wind speeds (Fig. 17). Thus the direction of the apparent movement of the ground pattern beneath the moths varied with wind speed. It is inferred that the moths, although unable to sense the wind directly, are able to compensate for changes in wind speed by integrating the wind-dependent optomotor input with information about their own airspeed, or with information about their own turning movements. Maintaining some ‘preferred’ relationship between these inputs by adjustments of orientation and airspeed, would then serve to maintain a given combination of track angle and groundspeed independently of wind speed. The preferred relationship is repeatedly re-set by the changing olfactory input from the pheromone plume, which also controls the switching between left and right of the upwind direction.  相似文献   

7.
The interception of a pheromone filament induces flying moths to surge briefly nearly straight upwind; in the absence of pheromone moths cease upwind progress and zigzag crosswind. We tested males of the almond moth, Cadra cautella (Lepidoptera, Pyralidae), in a low-turbulence wind tunnel in wind velocities of 20, 40 and 80 cm s−1. A mechanical pulse generator was set to produce plumes either with same pheromone pulse frequency (pulse generation frequency of 2.9 Hz, interpulse distances from 7 cm to 28 cm) or plumes with same interpulse distance across the three wind velocities (interpulse distance of 14 ± 2 cm, pulse generation frequency of 1.7–5.0 Hz). In plumes of similar pulse frequency, the faster the speed of the wind the slower the ground speed of flight. However, in plumes of similar interpulse distance, ground speed remained relatively constant independent of the wind speed. A `realized' frequency of pulse interception for males flying along the various combinations of pulse frequencies and wind velocities was calculated using the males' average airspeed and the spatial distribution of pheromone pulses in the plume. Realized frequency of pulse interception ranged from 1.3- to 3.0-fold higher than the frequency of pulse generation. The flight tracks of males reflected the regime of realized pulse interception. These results suggest that upwind flight orientation of male C. cautella to pheromone in different wind velocities is determined by the flux of filament encounter. Accepted: 3 September 1997  相似文献   

8.
Insects flying in a horizontal pheromone plume must attend to visual cues to ensure that they make upwind progress. Moreover, it is suggested that flying insects will also modulate their flight speed to maintain a constant retinal angular velocity of terrestrial contrast elements. Evidence from flies and honeybees supports such a hypothesis, although tests with male moths and beetles flying in pheromone plumes are not conclusive. These insects typically fly faster at higher elevations above a high‐contrast ground pattern, as predicted by the hypothesis, although the increase in speed is not sufficient to demonstrate quantitatively that they maintain constant visual angular velocity of the ground pattern. To test this hypothesis more rigorously, the flight speed of male oriental fruit moths (OFM) Grapholita molesta Busck (Lepidoptera: Tortricidae) flying in a sex pheromone plume in a laboratory wind tunnel is measured at various heights (5–40 cm) above patterns of different spatial wavelength (1.8–90°) in the direction of flight. The OFM modulate their flight speed three‐fold over different patterns. They fly fastest when there is no pattern in the tunnel or the contrast elements are too narrow to resolve. When the spatial wavelength of the pattern is sufficiently wide to resolve, moths fly at a speed that tends to maintain a visual contrast frequency of 3.5 ± 3.2 Hz rather than a constant angular velocity, which varies from 57 to 611° s?1. In addition, for the first time, it is also demonstrated that the width of a contrast pattern perpendicular to the flight direction modulates flight speed.  相似文献   

9.
ABSTRACT. Male oriental fruit moths, Grapholitha molesta (Busck) (Tortricidae), flew at lower overall and net ground velocities when they flew toward higher concentration pheromone sources. Turning frequency was greater with increased pheromone concentration, while the distance of turns from the plume axis back towards the axis decreased. Turning magnitude and inter-reversal track angles remained constant at all concentrations tested. Concomitant with the changes in ground velocity but constant inter-reversal angles, were decreases in airspeed, decreases in the moths' course angles and increases in their drift angles. The significance of these changes is discussed in relation to their possible role in a longitudinal chemoklinotactic programme of turning operating in conjunction with anemotaxis to allow location of a pheromone source in wind.  相似文献   

10.
ABSTRACT. Male oriental fruit moths, Grapholitha molesta (Busck) (Tortricidae), continue to zigzag along a pheromone plume to the source in zero wind, if they have started flight with wind on. If the pheromone source is removed and the plume is hence truncated, moths flying in zero wind out of the end of the plume into clean air increase the width of their reversals and the angles of the straight legs of the tracks so they are more directly across the former wind line. Such moths reach the source less often than do those flying along a continuous plume. The males continue to zigzag up a plume in zero wind, apparently by a combination of sequential sampling of concentration along their path and the performance of an internal, self-steered programme of track reversals (zigzags) whose frequency increases with concentration. Visual feedback may aid in the still-air performance of the zigzags. We propose that both the sequential sampling (longitudinal klinotaxis) and self-steered counter-turning programme also are used in wind as well; anemotaxis apparently polarizes the direction of the zigzags to result in upwind displacement, and the narrow zigzags caused by the higher concentration in the plume keep the male 'locked on' to the odour.  相似文献   

11.
Abstract. . Adult Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) steering anemotactically upwind to a pheromone source in a wind tunnel, respond normally to, and alter their ground speed according to the direction and speed of, the movement of ground patterns beneath them. By manipulating this optomotor reaction component of their behaviour, studies were conducted on their flight duration. The results show a great deal of individual variation in flight duration, and the general data on single flights were skewed towards short flights. Pre-reproductive and inter-reproductive male and female beetles flew significantly longer than older beetles that had passed their peak of reproduction. There was no significant difference in the flight duration of male and female beetles at any age. The overall results suggest mat younger P. truncatus are capable of long-distance flights, and support the proposition that flight could be important in the spread of the beetle.  相似文献   

12.
Abstract. Turbulence and chemical noise are two factors which may influence pheromone-mediated flight manoeuvres of a moth in natural habitats. In this study, the effects of turbulence and the behavioural antagonist (Z)-7-dodecenol on flight manoeuvres of male Trichoplusia ni (Hübner) were evaluated in a wind tunnel. Male moths increase airspeed and course angles when turbulence is increased. This leads to significant increases in the length of flight tracks, but significant reductions in the time taken to reach a pheromone source. In less disturbed pheromone plumes, distributions of course angles and track angles of male T.ni show a prominent peak centred about 0° relative to the upwind direction, indicating that moths can temporarily steer directly upwind toward a pheromone source.
When (Z)-7-dodecenol is released 10 cm upwind of a pheromone source to form an overlapping plume downwind, course angles, airspeeds and ground-speeds of male T.ni are reduced significantly compared with those in uncon-taminated pheromone plumes. This results in a longer flight time to reach a pheromone source. The decrease in flight speed would decrease the rate of contact with filaments, and thereby perhaps allow the moth to detect uncon-taminated pheromone filaments independently from filaments containing the behavioural antagonist.  相似文献   

13.
ABSTRACT. Males of two species of moths ( Grapholitha molesta (Busck) and Heliothis virescens (F.)) were flown in a sustained-flight tunnel in horizontal pheromone plumes. The up-tunnel velocity of the moths increased with increasing height of flight and for G.molesta was independent of tunnel wind velocities. Use of moving ground patterns verified that the height of flight above the ground was the factor related to the changes in up-tunnel velocity. Even though up-tunnel velocity increased with increased flight height, angular velocity of image motion did not. Males appeared to use visual cues from the ground pattern and from other sources to determine their up-tunnel velocities. The relationship of preferred retinal velocities to optomotor anemotaxis is discussed.  相似文献   

14.
Abstract. In the field over short grass, pheromone-stimulated oriental fruit moth males, Grapholita molesta (Busck), flying under high windspeeds tended to steer courses more into the wind and to increase their airspeeds compared with those flying in low windspeeds.Thus, optomotor anemotaxis enabled the males to steer relatively consistent upwind track angles and to maintain an upwind progress of between c. 50–100 cm/s despite variable wind velocities.Zigzagging flight tracks were observed at both 10 m and 3 m from the source, as were tracks with no apparent zigzags.Transitions from casting to upwind flight or vice-versa were observed.The durations of the intervals between reversals during both upwind zigzagging flight and casting were consistent with those observed in previous wind-tunnel experiments.The control of altitude was more precise during upwind zigzagging flight than during casting.In general, the side-to-side deviations in the tracks were greater than the up-and-down deviations, with both the side-to-side and vertical distances and their ratios being consistent with previous wind-tunnel studies of pheromone-mediated flight.One difference between the field and laboratory flight tracks was that males in the field exhibited much higher airspeeds than in the wind tunnel.Males occasionally were observed to progress downwind faster than the wind itself, and further analysis showed that they were steering a downwind course in pheromone-free air following exposure to pheromone, which is the first time this has been recorded in moths.We propose that such downwind flight may aid in the relocation of a pheromone plume that has been lost due to a wind-shift, by enabling the moth to catch up to the pheromone as it recedes straight downwind away from the source.  相似文献   

15.
ABSTRACT. When male oriental fruit moths, Grapholita molesta (Busck) (Tortricidae), casting in clean air entered an airstream permeated with pheromone their flight tracks changed immediately on initial contact with pheromone, but after a few seconds returned to casting as if in clean air. The degree of change in the flight track was directly related to the concentration of pheromone. Although little net uptunnel movement occurred in response to the continuous stimulation provided by a uniformly permeated airstream, when an intermittent stimulus provided by a point-source plume was superimposed onto the permeated airstream moths were able to 'lock on' and zigzag uptunnel in the plume. The percentage of moths doing so corresponded to the difference between the peak concentration within the plume and the background concentration of pheromone permeating the airstream. Moths also locked onto, and flew upwind along the pheromone-clean-air boundary formed along a pheromone-permeated side corridor. Because a similar response was observed along a horizontal edge between a pheromone-permeated floor corridor and clean air, we conclude that the intermittent stimulation at the edge perpetuated the narrow zigzagging response to pheromone.  相似文献   

16.
The effect of wind speed and distance from the source on the male response of the aphid parasitoid, Aphidius ervi (Hymenoptera: Aphidiidae), to a pheromone source was studied in a wind tunnel. The number of males taking flight, entering the plume and successfully reaching the source, decreased at wind speeds >50 cm/s. Furthermore, the proportion of those attempting upwind flight that fell to the ground increased with increasing wind speed. In contrast, distance from the source had no significant effect on any of the parameters examined. While male flight behavior was significantly reduced at 70 cm/s, some males walked to the source when there was a bridge connecting the pheromone source and the release platform. This suggests that ambulatory behavior could be a significant component of male mate searching in A. ervi when wind conditions are too strong for upwind flight. The possible effects of variation in atmospheric pressure on male flight behavior to the long distance pheromone, as well as to the short distance one, were also investigated. No significant effects of atmospheric pressure were observed. These findings differ significantly from those previously reported for another aphid parasitoid, A. nigripes, and the reasons for such differences are discussed.  相似文献   

17.
Male Oriental Fruit Moths (Grapholita molesta) flew faster toward a pheromone source as they flew higher above striped and dotted floor patterns. The moths significantly (P?<?0.05) increased their ground speed over floor patterns of transverse stripes or pseudo randomly placed dots. The moths’ track angles (flight path angle off the windline) decreased significantly (P?<?0.05) when they flew 40 cm above the floor patterns vs. flight at 10 cm up, and they tended to steer more upwind flight (smaller course angles) at the upper, 40 cm, height compared to 10 cm up. Turn frequencies and reversal distances across the wind line were also affected by dot density. However, the interaction of small changes in flight speed, course angle, turn widths and turn frequencies are difficult to assess; I have subsumed all their affects into a simple measure of “total distance” flown by the moths by summing the length of all flight vectors analyzed for the other metrics, but no differences were found. By far, the largest change in flight was the positive orthokinetic response to increased flight height above both striped and dotted floor patterns (Fig. 2; P?<?0.05), and nearly all other changes appear to be entirely due to faster moth flight with little or no changes in steering or turning patterns.  相似文献   

18.
Male moths locate conspecific females by pheromone‐induced upwind flight maintained by detecting a visual flow, termed optomotor anemotaxis. Their behavioural pattern is characterized by an upwind surge in response to a pheromone stimulus and crosswind casting after odour loss, which is considered to be reset and restarted on receipt of another pheromone pulse. However, pheromone‐stimulated males of the potato tuberworm moth Phthorimaea operculella exhibit a series of short and straight intermittent flights, or hops, when moving upwind. It is unclear whether they navigate by employing the same behavioural pattern and wind detection mechanism as that used by flying moths. To analyze odour‐modulated anemotaxis in male potato tuberworm moths, a flat wind tunnel is constructed to give regular odour stimuli to an insect regardless of its location. Moths are subjected to pheromone pulses of different frequencies to test whether they show a behavioural pattern that is reset and restarted by a pheromone pulse. Moths on the ground are also subjected to crosswind shear to examine their detection of wind direction. Path analyses reveal that males surge upwind when they receive a pheromone pulse and exhibit casting by successive hops when they lose odour. This behavioural pattern appears to be similar to that of flying moths. When the direction of the airflow is switched orthogonally, males adjust their course angle accordingly when they are on the ground. It is suggested that, instead of optomotor anemotaxis, this ‘aim‐then‐shoot’ system aids the detection of wind direction, possibly by mechanosensory means.  相似文献   

19.
Body miniaturization in insects is predicted to result in decreased flight speed and therefore limited ability of these insects to fly upwind. Therefore, tiny insects are often regarded as relying on passive dispersal by winds. We tested this assumption in a wind tunnel by measuring the burst speed of Eretmocerus mundus (Mercet), a beneficial parasitoid wasp with body length <1 mm. Insects were filmed flying upwind towards a UV light source in a range of wind speed 0–0.5 m/s. The Insects flew towards the UV light in the absence and presence of wind but increased their flight speed in the presence of wind. They also changed flight direction to be directly upwind and maintained this body orientation even while drifted backwards relative to the ground by stronger winds. Field measurements showed that the average flight speed observed in the wind tunnel (0.3 m/s) is sufficient to allow flying between plants even when the wind speed above the vegetation was 3–5 folds higher. A simulation of the ability of the insects to control their flight trajectory towards a visual target (sticky traps) in winds show that the insects can manipulate their progress relative to the ground even when the wind speed exceeds their flight speed. The main factors determining the ability of the insects to reach the trap were trap diameter and the difference between insect flight speed and wind speed. The simulation also predicts the direction of arrival to the sticky target showing that many of the insects reach the target from the leeward side (i.e. by flight upwind). In light of these results, the notion that miniature insects passively disperse by winds is misleading because it disregards the ability of the insects to control their drift relative to the ground in winds that are faster than their flight speed.  相似文献   

20.
ABSTRACT. The calling posture of Spilosoma congrua Walker (Lepidoptera: Arctiidae) affects local airflow in ways that may impact on the release of chemical signals. Dried specimens of S. congrua imitating resting moths, calling moths, and moths with intermediate postures were placed in a wind tunnel. The wind speed was measured near the abdomenal tip where sex pheromone emission occurs. The calling posture, wings-up, gave significantly greater mean wind speeds near the surface of the sex pheromone gland, effectively eliminating the dead air space that surrounds a non-calling moth. The calling posture also decreased the relative intensity of turbulence near the pheromone gland surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号