首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This study was undertaken to examine the role of K(+) channels on cytosolic Ca(2+) ([Ca(2+)](i)) in insulin secreting cells. [Ca(2+)](i) was measured in single glucose-responsive INS-1 cells using the fluorescent Ca(2+) indicator Fura-2. Glucose, tolbutamide and forskolin elevated [Ca(2+)](i) and induced [Ca(2+)] oscillations. Whereas the glucose effect was delayed and observed in 60% and 93% of the cells, in a poorly and a highly glucose-responsive INS-1 cell clone, respectively, tolbutamide and forskolin increased [Ca(2+)](i) in all cells tested. In the latter clone, glucose induced [Ca(2+)](i) oscillations in 77% of the cells. In 16% of the cells a sustained rise of [Ca(2+)](i) was observed. The increase in [Ca(2+)](i) was reversed by verapamil, an L-type Ca(2+) channel inhibitor. Adrenaline decreased [Ca(2+)](i) in oscillating cells in the presence of low glucose and in cells stimulated by glucose alone or in combination with tolbutamide and forskolin. Adrenaline did not lower [Ca(2+)](i) in the presence of 30mM extracellular K(+), indicating that adrenaline does not exert a direct effect on Ca(2+) channels but increases K(+) channel activity. As for primary b-cells, [Ca(2+)](i) oscillations persisted in the presence of closed K(ATP) channels; these also persisted in the presence of thapsigargin, which blocks Ca(2+) uptake into Ca(2+) stores. In contrast, in voltage-clamped cells and in the presence of diazoxide (50mM), which hyperpolarizes the cells by opening K(ATP) channels, [Ca(2+)](i) oscillations were abolished. These results support the hypothesis that [Ca(2+)](i) oscillations depend on functional voltage-dependent Ca(2+) and K(+) channels and are interrupted by a hyperpolarization in insulin-secreting cells.  相似文献   

3.
Although inhibition of the sarcolemmal (SL) Na(+)-K(+)-ATPase is known to cause an increase in the intracellular concentration of Ca(2+) ([Ca(2+)](i)) by stimulating the SL Na(+)/Ca(2+) exchanger (NCX), the involvement of other SL sites in inducing this increase in [Ca(2+)](i) is not fully understood. Isolated rat cardiomyocytes were treated with or without different agents that modify Ca(2+) movements by affecting various SL sites and were then exposed to ouabain. Ouabain was observed to increase the basal levels of both [Ca(2+)](i) and intracellular Na(+) concentration ([Na(+)](i)) as well as to augment the KCl-induced increases in both [Ca(2+)](i) and [Na(+)](i) in a concentration-dependent manner. The ouabain-induced changes in [Na(+)](i) and [Ca(2+)](i) were attenuated by treatment with inhibitors of SL Na(+)/H(+) exchanger and SL Na(+) channels. Both the ouabain-induced increase in basal [Ca(2+)](i) and augmentation of the KCl response were markedly decreased when cardiomyocytes were exposed to 0-10 mM Na(+). Inhibitors of SL NCX depressed but decreasing extracellular Na(+) from 105-35 mM augmented the ouabain-induced increase in basal [Ca(2+)](i) and the KCl response. Not only was the increase in [Ca(2+)](i) by ouabain dependent on the extracellular Ca(2+) concentration, but it was also attenuated by inhibitors of SL L-type Ca(2+) channels and store-operated Ca(2+) channels (SOC). Unlike the SL L-type Ca(2+)-channel blocker, the blockers of SL Na(+) channel and SL SOC, when used in combination with SL NCX inhibitor, showed additive effects in reducing the ouabain-induced increase in basal [Ca(2+)](i). These results support the view that in addition to SL NCX, SL L-type Ca(2+) channels and SL SOC may be involved in raising [Ca(2+)](i) on inhibition of the SL Na(+)-K(+)-ATPase by ouabain. Furthermore, both SL Na(+)/H(+) exchanger and Na(+) channels play a critical role in the ouabain-induced Ca(2+) increase in cardiomyocytes.  相似文献   

4.
In the lung, chronic hypoxia (CH) causes pulmonary arterial smooth muscle cell (PASMC) depolarization, elevated endothelin-1 (ET-1), and vasoconstriction. We determined whether, during CH, depolarization-driven activation of L-type Ca(2+) channels contributes to 1) maintenance of resting intracellular Ca(2+) concentration ([Ca(2+)](i)), 2) increased [Ca(2+)](i) in response to ET-1 (10(-8) M), and 3) ET-1-induced contraction. Using indo 1 microfluorescence, we determined that resting [Ca(2+)](i) in PASMCs from intrapulmonary arteries of rats exposed to 10% O(2) for 21 days was 293.9 +/- 25.2 nM (vs. 153.6 +/- 28.7 nM in normoxia). Resting [Ca(2+)](i) was decreased after extracellular Ca(2+) removal but not with nifedipine (10(-6) M), an L-type Ca(2+) channel antagonist. After CH, the ET-1-induced increase in [Ca(2+)](i) was reduced and was abolished after extracellular Ca(2+) removal or nifedipine. Removal of extracellular Ca(2+) reduced ET-1-induced tension; however, nifedipine had only a slight effect. These data indicate that maintenance of resting [Ca(2+)](i) in PASMCs from chronically hypoxic rats does not require activation of L-type Ca(2+) channels and suggest that ET-1-induced contraction occurs by a mechanism primarily independent of changes in [Ca(2+)](i).  相似文献   

5.
To investigate the possible cellular mechanisms of the ischemia-induced impairments of cerebral microcirculation, we investigated the effects of hypoxia/reoxygenation on the intracellular Ca(2+) concentration ([Ca(2+)](i)) in bovine brain microvascular endothelial cells (BBEC). In the cells kept in normal air, ATP elicited Ca(2+) oscillations in a concentration-dependent manner. When the cells were exposed to hypoxia for 6 h and subsequent reoxygenation for 45 min, the basal level of [Ca(2+)](i) was increased from 32.4 to 63.3 nM, and ATP did not induce Ca(2+) oscillations. Hypoxia/reoxygenation also inhibited capacitative Ca(2+) entry (CCE), which was evoked by thapsigargin (Delta[Ca(2+)](i-CCE): control, 62.3 +/- 3.1 nM; hypoxia/reoxygenation, 17.0 +/- 1.8 nM). The impairments of Ca(2+) oscillations and CCE, but not basal [Ca(2+)](i), were restored by superoxide dismutase and the inhibitors of mitochondrial electron transport, rotenone and thenoyltrifluoroacetone (TTFA). By using a superoxide anion (O(2)(-))-sensitive luciferin derivative MCLA, we confirmed that the production of O(2)(-) was induced by hypoxia/reoxygenation and was prevented by rotenone and TTFA. These results indicate that hypoxia/reoxygenation generates O(2)(-) at mitochondria and impairs some Ca(2+) mobilizing properties in BBEC.  相似文献   

6.
Using dual excitation and fixed emission fluorescence microscopy, we were able to measure changes in cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)) and mitochondrial membrane potential simultaneously in the pancreatic beta-cell. The beta-cells were exposed to a combination of the Ca(2+) indicator fura-2/AM and the indicator of mitochondrial membrane potential, rhodamine 123 (Rh123). Using simultaneous measurements of mitochondrial membrane potential and [Ca(2+)](i) during glucose stimulation, it was possible to measure the time lag between the onset of mitochondrial hyperpolarization and changes in [Ca(2+)](i). Glucose-induced oscillations in [Ca(2+)](i) were followed by transient depolarizations of mitochondrial membrane potential. These results are compatible with a model in which nadirs in [Ca(2+)](i) oscillations are generated by a transient, Ca(2+)-induced inhibition of mitochondrial metabolism resulting in a temporary fall in the cytoplasmic ATP/ADP ratio, opening of plasma membrane K(ATP) channels, repolarization of the plasma membrane, and thus transient closure of voltage-gated L-type Ca(2+) channels.  相似文献   

7.
Although the Na(+)/H(+) exchanger (NHE) is considered to be involved in regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) through the Na(+)/Ca(2+) exchanger, the exact mechanisms of its participation in Ca(2+) handling by cardiomyocytes are not fully understood. Isolated rat cardiomyocytes were treated with or without agents that are known to modify Ca(2+) movements in cardiomyocytes and exposed to an NHE inhibitor, 5-(N-methyl-N-isobutyl)amiloride (MIA). [Ca(2+)](i) in cardiomyocytes was measured spectrofluorometrically with fura 2-AM in the absence or presence of KCl, a depolarizing agent. MIA increased basal [Ca(2+)](i) and augmented the KCl-induced increase in [Ca(2+)](i) in a concentration-dependent manner. The MIA-induced increase in basal [Ca(2+)](i) was unaffected by extracellular Ca(2+), antagonists of the sarcolemmal (SL) L-type Ca(2+) channel, and inhibitors of the SL Na(+)/Ca(2+) exchanger, SL Ca(2+) pump ATPase and mitochondrial Ca(2+) uptake. However, the MIA-induced increase in basal [Ca(2+)](i) was attenuated by inhibitors of SL Na(+)-K(+)-ATPase and sarcoplasmic reticulum (SR) Ca(2+) transport. On the other hand, the MIA-mediated augmentation of the KCl response was dependent on extracellular Ca(2+) concentration and attenuated by agents that inhibit SL L-type Ca(2+) channels, the SL Na(+)/Ca(2+) exchanger, SL Na(+)-K(+)-ATPase, and SR Ca(2+) release channels and the SR Ca(2+) pump. However, the effect of MIA on the KCl-induced increase in [Ca(2+)](i) remained unaffected by treatment with inhibitors of SL Ca(2+) pump ATPase and mitochondrial Ca(2+) uptake. MIA and a decrease in extracellular pH lowered intracellular pH and increased basal [Ca(2+)](i), whereas a decrease in extracellular pH, in contrast to MIA, depressed the KCl-induced increase in [Ca(2+)](i) in cardiomyocytes. These results suggest that NHE may be involved in regulation of [Ca(2+)](i) and that MIA-induced increases in basal [Ca(2+)](i), as well as augmentation of the KCl-induced increase in [Ca(2+)](i), in cardiomyocytes are regulated differentially.  相似文献   

8.
Liu YJ  Vieira E  Gylfe E 《Cell calcium》2004,35(4):357-365
The glucagon-releasing pancreatic alpha-cells are electrically excitable cells but the signal transduction leading to depolarization and secretion is not well understood. To clarify the mechanisms we studied [Ca(2+)](i) and membrane potential in individual mouse pancreatic alpha-cells using fluorescent indicators. The physiological secretagogue l-adrenaline increased [Ca(2+)](i) causing a peak, which was often followed by maintained oscillations or sustained elevation. The early effect was due to mobilization of Ca(2+) from the endoplasmic reticulum (ER) and the late one to activation of store-operated influx of the ion resulting in depolarization and Ca(2+) influx through voltage-dependent L-type channels. Consistent with such mechanisms, the effects of adrenaline on [Ca(2+)](i) and membrane potential were mimicked by inhibitors of the sarco(endo)plasmic reticulum Ca(2+) ATPase. The alpha-cells express ATP-regulated K(+) (K(ATP)) channels, whose activation by diazoxide leads to hyperpolarization. The resulting inhibition of the voltage-dependent [Ca(2+)](i) response to adrenaline was reversed when the K(ATP) channels were inhibited by tolbutamide. However, tolbutamide alone rarely affected [Ca(2+)](i), indicating that the K(ATP) channels are normally closed in mouse alpha-cells. Glucose, which is the major physiological inhibitor of glucagon secretion, hyperpolarized the alpha-cells and inhibited the late [Ca(2+)](i) response to adrenaline. At concentrations as low as 3mM, glucose had a pronounced stimulatory effect on Ca(2+) sequestration in the ER amplifying the early [Ca(2+)](i) response to adrenaline. We propose that adrenaline stimulation and glucose inhibition of the alpha-cell involve modulation of a store-operated current, which controls a depolarizing cascade leading to opening of L-type Ca(2+) channels. Such a control mechanism may be unique among excitable cells.  相似文献   

9.
Changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) control the setting up of the neuro-muscular synapse in vitro and probably in vivo. Dissociated cultures of purified embryonic (E15) rat motoneurons were used to explore the molecular mechanisms by which endoplasmic reticulum Ca(2+) stores, via both ryanodine-sensitive and IP(3)-sensitive intracellular Ca(2+) channels control [Ca(2+)](i) homeostasis in these neurons during ontogenesis. Fura-2 microspectrofluorimetry monitorings in single neurons showed that caffeine-induced responses of [Ca(2+)](i) increased progressively from days 1-7 in culture. These responses were blocked by ryanodine and nicardipine but not by omega-conotoxin-GVIA or omega-conotoxin-MVIIC suggesting a close functional relationship between ryanodine-sensitive and L-type Ca(v)1 Ca(2+) channels. Moreover, after 6 days in vitro, neurons exhibited spontaneous or caffeine-induced Ca(2+) oscillations that were attenuated by nicardipine. In 1-day-old neurons, both thapsigargin or CPA, which deplete Ca(2+) stores from the endoplasmic reticulum, induced an increase in [Ca(2+)](i) in 75% of the neurons tested. The number of responding motoneurons declined to 25% at 5-6 days in vitro. Xestospongin-C, a membrane-permeable IP(3) receptor inhibitor blocked the CPA-induced [Ca(2+)](i) response in all stages. RT-PCR studies investigating the expression pattern of RYR and IP(3) Ca(2+) channels isoforms confirmed the presence of their different isoforms and provided evidence for a specific pattern of development for RYR channels during the first week in vitro. Taken together, present results show that the control of motoneuronal [Ca(2+)](i) homeostasis is developmentally regulated and suggest the presence of an intracellular ryanodine-sensitive Ca(2+) channel responsible for a Ca(2+)-induced Ca(2+) release in embryonic motoneurons following voltage-dependent Ca(2+) entry via L-type Ca(2+) channels.  相似文献   

10.
Altered calcium homeostasis and increased cytosolic calcium concentrations ([Ca(2+)](c)) are linked to neuronal apoptosis in epilepsy and in cerebral ischemia, respectively. Apoptotic programmed cell death is regulated by the antiapoptotic Bcl2 family of proteins. Here, we investigated the role of Bcl2 on calcium (Ca(2+)) homeostasis in PC12 cells, focusing on L-type voltage-dependent calcium channels (VDCC). Cytosolic Ca(2+) transients ([Ca(2+)](c)) and changes of mitochondrial Ca(2+) concentrations ([Ca(2+)](m)) were monitored using cytosolic and mitochondrially targeted aequorins of control PC12 cells and PC12 cells stably overexpressing Bcl2. We found that: (i) the [Ca(2+)](c) and [Ca(2+)](m) elevations elicited by K(+) pulses were markedly depressed in Bcl2 cells, with respect to control cells; (ii) such depression of [Ca(2+)](m) was not seen either in digitonin-permeabilized cells or in intact cells treated with ionomycin; (iii) the [Ca(2+)](c) transient depression seen in Bcl2 cells was reversed by shRNA transfection, as well as by the Bcl2 inhibitor HA14-1; (iv) the L-type Ca(2+) channel agonist Bay K 8644 enhanced K(+)-evoked [Ca(2+)](m) peak fourfold in Bcl2, and twofold in control cells; (v) in current-clamped cells the depolarization evoked by K(+) generated a more hyperpolarized voltage step in Bcl2, as compared to control cells. Taken together, our experiments suggest that the reduction of the [Ca(2+)](c) and [Ca(2+)](m) transients elicited by K(+), in PC12 cells overexpressing Bcl2, is related to the reduction of Ca(2+) entry through L-type Ca(2+) channels. This may be due to the fact that Bcl2 mitigates cell depolarization, thus diminishing the recruitment of L-type Ca(2+) channels, the subsequent Ca(2+) entry, and mitochondrial Ca(2+) overload.  相似文献   

11.
The multiplicity of mechanisms involved in regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in smooth muscle results in both intra- and intercellular heterogeneities in [Ca(2+)](i). Heterogeneity in [Ca(2+)](i) regulation is reflected by the presence of spontaneous, localized [Ca(2+)](i) transients (Ca(2+) sparks) representing Ca(2+) release through ryanodine receptor (RyR) channels. Ca(2+) sparks display variable spatial Ca(2+) distributions with every occurrence within and across cellular regions. Individual sparks are often grouped, and fusion of sparks produces large local elevations in [Ca(2+)](i) that occasionally trigger propagating [Ca(2+)](i) waves. Ca(2+) sparks may modulate membrane potential and thus smooth muscle contractility. Sparks may also be the target of other regulatory factors in smooth muscle. Agonists induce propagating [Ca(2+)](i) oscillations that originate from foci with high spark incidence and also represent Ca(2+) release through RyR channels. With increasing agonist concentration, the peak of regional [Ca(2+)](i) oscillations remains relatively constant, whereas both frequency and propagation velocity increase. In contrast, the global cellular response appears as a concentration-dependent increase in peak as well as mean cellular [Ca(2+)](i), representing a spatial and temporal integration of the oscillations. The significance of agonist-induced [Ca(2+)](i) oscillations lies in the establishment of a global [Ca(2+)](i) level for slower Ca(2+)-dependent physiological processes.  相似文献   

12.
The effect of the muscarinic receptors agonist carbachol (Cch) on intracellular calcium concentration ([Ca(2+)](i)) and cAMP level was studied in polarized Fischer rat thyroid (FRT) epithelial cells. Cch provoked a transient increase in [Ca(2+)](i), followed by a lower sustained phase. Thapsigargin, a specific microsomal Ca(2+)-ATPase inhibitor, caused a rapid rise in [Ca(2+)](i) and subsequent addition of Cch was without effect. Removal of extracellular Ca(2+) reduced the initial transient response and completely abolished the plateau phase. Ryanodine, an agent that depletes intracellular Ca(2+) stores through stimulation of ryanodine receptors (RyRs), had no effect on [Ca(2+)](i). However, the transitory activation of [Ca(2+)](i) was dose-dependently attenuated in cells pretreated with U73122, a specific inhibitor of phospholipase C (PLC). These data suggest that the Cch-stimulated increment of [Ca(2+)](i) required IP(3) formation and binding to its specific receptors in Ca(2+) stores. Further studies were performed to investigate whether the effect of Cch on Ca(2+) entry into FRT cells was via L-type voltage-dependent Ca(2+) channels (L-VDCCs). Nicardipine, a nonspecific L-type Ca(2+) channel blocker, decreased Cch-induced increase on [Ca(2+)](i), while Bay K-8644, an L-type Ca(2+) channel agonist, slightly increased [Ca(2+)](i) in FRT cells. These data indicate that Ca(2+) entry into these nondifferentiated thyroid cells occurs through an L-VDCC, and probably through another mechanism such as a capacitative pathway. Cch did not affect the intracellular cAMP levels, but its effects on [Ca(2+)](i) were significantly reduced when cells were pretreated with forskolin, suggesting the existence of an intracellular cross-talk between PLC and cAMP mechanisms in the regulation of intracellular Ca(2+) mobilization in neoplastic FRT cells.  相似文献   

13.
Endothelial second messenger responses may contribute to the pathology of high vascular pressure but remain poorly understood because of the lack of direct in situ quantification. In lung venular capillaries, we determined endothelial cytosolic Ca(2+) concentration [Ca(2+)](i) by the fura 2 ratioing method. Pressure elevation increased mean endothelial [Ca(2+)](i) by Ca(2+) influx through gadolinium-inhibitable channels and amplified [Ca(2+)](i) oscillations by Ca(2+) release from intracellular stores. Endothelial [Ca(2+)](i) transients were induced by pressure elevations of as little as 5 cmH(2)O and increased linearly with higher pressures. Heptanol inhibition of [Ca(2+)](i) oscillations in a subset of endothelial cells indicated that oscillations originated from pacemaker endothelial cells and were propagated to adjacent nonpacemaker cells by gap junctional communication. Our findings indicate the presence of a sensitive, active endothelial response to pressure challenge in lung venular capillaries that may be relevant in the pathogenesis of pressure-induced lung microvascular injury.  相似文献   

14.
The purpose of this study was to explore the effect of tamoxifen on cytosolic free Ca(2+) concentrations ([Ca(2+)](i)) and cell viability in OC2 human oral cancer cells. [Ca(2+)](i) and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Tamoxifen at concentrations above 2 microM increased [Ca(2+)](i) in a concentration-dependent manner. The Ca(2+) signal was reduced partly by removing extracellular Ca(2+). The tamoxifen-induced Ca(2+) influx was sensitive to blockade of L-type Ca(2+) channel blockers but insensitive to the estrogen receptor antagonist ICI 182,780 and protein kinase C modulators. In Ca(2+)-free medium, after pretreatment with 1 muM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor), tamoxifen-induced [Ca(2+)](i) rises were substantially inhibited; and conversely, tamoxifen pretreatment inhibited a part of thapsigargin-induced [Ca(2+)](i) rises. Inhibition of phospholipase C with 2 microM U73122 did not change tamoxifen-induced [Ca(2+)](i) rises. At concentrations between 10 and 50 microM tamoxifen killed cells in a concentration-dependent manner. The cytotoxic effect of 23 microM tamoxifen was not reversed by prechelating cytosolic Ca(2+) with BAPTA. Collectively, in OC2 cells, tamoxifen induced [Ca(2+)](i) rises, in a nongenomic manner, by causing Ca(2+) release from the endoplasmic reticulum, and Ca(2+) influx from L-type Ca(2+) channels. Furthermore, tamoxifen-caused cytotoxicity was not via a preceding [Ca(2+)](i) rise.  相似文献   

15.
Stimulus-secretion coupling in pancreatic beta-cells involves membrane depolarization and Ca(2+) entry through voltage-gated L-type Ca(2+) channels, which is one determinant of increases in the cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)). We investigated how the endoplasmic reticulum (ER)-associated Ca(2+) apparatus further modifies this Ca(2+) signal. When fura-2-loaded mouse beta-cells were depolarized by KCl in the presence of 3 mm glucose, [Ca(2+)](i) increased to a peak in two phases. The second phase of the [Ca(2+)](i) increase was abolished when ER Ca(2+) stores were depleted by thapsigargin. The steady-state [Ca(2+)](i) measured at 300 s of depolarization was higher in control cells compared with cells in which the ER Ca(2+) pools were depleted. The amount of Ca(2+) presented to the cytoplasm during depolarization as estimated from the integral of the increment in [Ca(2+)](i) over time (integralDelta[Ca(2+)](i).dt) was approximately 30% higher compared with that in the Ca(2+) pool-depleted cells. neo-thapsigargin, an inactive analog, did not affect [Ca(2+)](i) response. Using Sr(2+) in the extracellular medium and exploiting the differences in the fluorescence properties of Ca(2+)- and Sr(2+)-bound fluo-3, we found that the incoming Sr(2+) triggered Ca(2+) release from the ER. Depolarization-induced [Ca(2+)](i) response was not altered by, an inhibitor of phosphatidylinositol-specific phospholipase C, suggesting that stimulation of the enzyme by Ca(2+) is not essential for amplification of Ca(2+) signaling. [Ca(2+)](i) response was enhanced when cells were depolarized in the presence of 3 mm glucose, forskolin, and caffeine, suggesting involvement of ryanodine receptors in the amplification process. Pretreatment with ryanodine (100 microm) diminished the second phase of the depolarization-induced increase in [Ca(2+)](i). We conclude that Ca(2+) entry through L-type voltage-gated Ca(2+) channels triggers Ca(2+) release from the ER and that such a process amplifies depolarization-induced Ca(2+) signaling in beta-cells.  相似文献   

16.
Mice with a disrupted beta(1) (BK beta(1))-subunit of the large-conductance Ca(2+)-activated K(+) (BK) channel gene develop systemic hypertension and cardiac hypertrophy, which is likely caused by uncoupling of Ca(2+) sparks to BK channels in arterial smooth muscle cells. However, little is known about the physiological levels of global intracellular Ca(2+) concentration ([Ca(2+)](i)) and its regulation by Ca(2+) sparks and BK channel subunits. We utilized a BK beta(1) knockout C57BL/6 mouse model and studied the effects of inhibitors of ryanodine receptor and BK channels on the global [Ca(2+)](i) and diameter of small cerebral arteries pressurized to 60 mmHg. Ryanodine (10 microM) or iberiotoxin (100 nM) increased [Ca(2+)](i) by approximately 75 nM and constricted +/+ BK beta(1) wild-type arteries (pressurized to 60 mmHg) with myogenic tone by approximately 10 microm. In contrast, ryanodine (10 microM) or iberiotoxin (100 nM) had no significant effect on [Ca(2+)](i) and diameter of -/- BK beta(1)-pressurized (60 mmHg) arteries. These results are consistent with the idea that Ca(2+) sparks in arterial smooth muscle cells limit myogenic tone through activation of BK channels. The activation of BK channels by Ca(2+) sparks reduces the voltage-dependent Ca(2+) influx and [Ca(2+)](i) through tonic hyperpolarization. Deletion of BK beta(1) disrupts this negative feedback mechanism, leading to increased arterial tone through an increase in global [Ca(2+)](i).  相似文献   

17.
We investigated the role of K(+) channels in the regulation of baseline intracellular free Ca(2+) concentration ([Ca(2+)](i)), alpha-adrenoreceptor-mediated Ca(2+) signaling, and capacitative Ca(2+) entry in pulmonary artery smooth muscle cells (PASMCs). Inhibition of voltage-gated K(+) channels with 4-aminopyridine (4-AP) increased the membrane potential and the resting [Ca(2+)](i) but attenuated the amplitude and frequency of the [Ca(2+)](i) oscillations induced by the alpha-agonist phenylephrine (PE). Inhibition of Ca(2+)-activated K(+) channels (with charybdotoxin) and inhibition (with glibenclamide) or activation of ATP-sensitive K(+) channels (with lemakalim) had no effect on resting [Ca(2+)](i) or PE-induced [Ca(2+)](i) oscillations. Thapsigargin was used to deplete sarcoplasmic reticulum Ca(2+) stores in the absence of extracellular Ca(2+). Under these conditions, 4-AP attenuated the peak and sustained components of capacitative Ca(2+) entry, which was observed when extracellular Ca(2+) was restored. Capacitative Ca(2+) entry was unaffected by charybdotoxin, glibenclamide, or lemakalim. In isolated pulmonary arterial rings, 4-AP increased resting tension and caused a leftward shift in the KCl dose-response curve. In contrast, 4-AP decreased PE-induced contraction, causing a rightward shift in the PE dose-response curve. These results indicate that voltage-gated K(+) channel inhibition increases resting [Ca(2+)](i) and tone in PASMCs but attenuates the response to PE, likely via inhibition of capacitative Ca(2+) entry.  相似文献   

18.
Melittin, a peptide from bee venom, is thought to be a phospholipase A(2) activator and Ca(2+) influx inducer that can evoke cell death in different cell types. However, the effect of melittin on cytosolic free Ca(2+) concentration ([Ca(2+)](i)) and viability has not been explored in human osteoblast-like cells. This study examined whether melittin altered [Ca(2+)](i) and killed cells in MG63 human osteosarcoma cells. [Ca(2+)](i) changes and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Melittin at concentrations above 0.075 microM increased [Ca(2+)](i) in a concentration-dependent manner. The Ca(2+) signal was abolished by removing extracellular Ca(2+). Melittin-induced Ca(2+) entry was confirmed by Mn(2+) quenching of fura-2 fluorescence at 360 nm excitation wavelength which was Ca(2+)-insensitive. The melittin-induced Ca(2+) influx was unchanged by modulation of protein kinase-C activity with phorbol 12-myristate 13-acetate (PMA) and GF 109203X, or inhibition of phospholipase A(2) with AACOCF(3) and aristolochic acid; but was substantially inhibited by blocking L-type Ca(2+) channels. At concentrations of 0.5 microM and 1 microM, melittin killed 33% and 45% of cells, respectively, via inducing apoptosis. Lower concentrations of melittin failed to kill cells. The cytotoxic effect of 1 microM melittin was completely reversed by pre-chelating cytosolic Ca(2+) with BAPTA. Taken together, these data showed that in MG63 cells, melittin induced a [Ca(2+)](i) increase by causing Ca(2+) entry through L-type Ca(2+) channels in a manner independent of protein kinase-C and phospholipase A(2) activity; and this [Ca(2+)](i) increase subsequently caused apoptosis.  相似文献   

19.
A change in the intracellular Ca(2+) ([Ca(2+)](i)) level induced by hypoxia was detected in rat adrenal slices by use of fura-2/AM. After hypoxic stress, an increase in [Ca(2+)](i) was observed only in the adrenal medulla. This increase was inhibited by nifedipine, but not modified by the cholinergic receptor blockers. The hypoxia-induced increase in [Ca(2+)](i) was observed in all postnatal developmental stages to a similar extent, whereas the nicotine and high K(+) sensitivities increased along with postnatal development. A 10 nM ryanodine enhanced the hypoxia-induced [Ca(2+)](i) increase in adult but not in neonatal rat slices. These results suggest the existence of an oxygen-sensing mechanism in adult rat adrenals even after sympathetic innervation. Hypoxic responses seemed to be similar both in neonate and in adult rat adrenals and were triggered by the influx of Ca(2+) via L-type voltage-sensitive Ca(2+) channels. However, the sustained [Ca(2+)](i) increase caused by hypoxia might depend on postnatal development and be triggered by Ca(2+)-induced Ca(2+) release (CICR).  相似文献   

20.
Human mesenchymal stem cells (HMSC) have the potential to differentiate into many cell types. The physiological properties of HMSCs including their Ca(2+) signaling pathways, however, are not well understood. We investigated Ca(2+) influx and release functions in HMSCs. In Ca(2+) imaging experiments, spontaneous Ca(2+) oscillations were observed in 36 of 50 HMSCs. The Ca(2+) oscillations were completely blocked by the application of 10 micro M cyclopiazonic acid (CPA) or 1 micro M thapsigargin (TG). A brief application of 1 micro M acetylcholine (ACh) induced a transient increase of [Ca(2+)](i) but the application of caffeine (10 mM) did not induce any Ca(2+) transient. When the stores were depleted with Ca(2+)-ATPase blockers (CPA or TG) or muscarinic agonists (ACh), store-operated Ca(2+) (SOC) entry was observed. Using the patch-clamp technique, store-operated Ca(2+) currents (I(SOC)) could be recorded in cells treated with ACh or CPA, but voltage-operated Ca(2+) currents (VOCCs) were not elicited in most of the cells (17/20), but in 15% of cells examined, small dihydropyridine (DHP)-sensitive Ca(2+) currents were recorded. Using RT-PCR, mRNAs were detected for inositol 1,4,5-trisphosphate receptor (InsP(3)R) type I, II, and III and DHP receptors alpha1A and alpha1H were detected, but mRNA was not detected for ryanodine receptor (RyR) or N-type Ca(2+) channels. These results suggest that in undifferentiated HMSCs, Ca(2+) release is mediated by InsP(3)Rs and Ca(2+) entry through plasma membrane is mainly mediated by the SOCs channels with a little contribution of VOCCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号