首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Vibrio parahaemolyticus, a Gram-negative halophilic bacterium that causes acute gastroenteritis in humans, is characterized by two type III secretion systems (T3SS), namely T3SS1 and T3SS2. T3SS2 is indispensable for enterotoxicity but the effector(s) involved are unknown. Here, we identify VopV as a critical effector that is required to mediate V. parahaemolyticus T3SS2-dependent enterotoxicity. VopV was found to possess multiple F-actin-binding domains and the enterotoxicity caused by VopV correlated with its F-actin-binding activity. Furthermore, a T3SS2-related secretion system and a vopV homologous gene were also involved in the enterotoxicity of a non-O1/non-O139 V. cholerae strain. These results indicate that the F-actin-targeting effector VopV is involved in enterotoxic activity of T3SS2-possessing bacterial pathogens.  相似文献   

2.
The enteropathogen Vibrio parahaemolyticus possesses two sets of type III secretion systems, T3SS1 and T3SS2. Effector proteins secreted by these T3SSs are delivered into host cells, leading to cell death or diarrhea. However, it is not known how specific effectors are secreted through a specific T3SS when both T3SSs are expressed within bacteria. One molecule thought to determine secretion specificity is a T3SS-associated chaperone; however, no T3SS2-specific chaperone has been identified. Therefore, we screened T3SS2 chaperone candidates by a pull-down assay using T3SS2 effectors fused with glutathione-S-transferase. A secretion assay revealed that the newly identified cognate chaperone VocC for the T3SS2-specific effector VopC was required for the efficient secretion of the substrate through T3SS2. Further experiments determined the chaperone-binding domain and the amino-terminal secretion signal of the cognate effector. These findings, in addition to the previously identified T3SS1-specific chaperone, VecA, provide a strategy to clarify the specificity of effector secretion through T3SSs of V.?parahaemolyticus.  相似文献   

3.
Vibrio parahaemolyticus causes human gastroenteritis. Genomic sequencing of this organism has revealed that it has two sets of type III secretion systems, T3SS1 and T3SS2, both of which are important for its pathogenicity. However, the mechanism of protein secretion via T3SSs is unknown. A characteristic of many effectors is that they require specific chaperones for efficient delivery via T3SSs; however, no chaperone has been experimentally identified in the T3SSs of V. parahaemolyticus . In this study, we identified candidate T3SS1-associated chaperones from genomic sequence data and examined their roles in effector secretion/translocation and binding to their cognate substrates. From these experiments, we concluded that there is a T3S-associated chaperone, VecA, for a cytotoxic T3SS1-dependent effector, VepA. Further analysis using pulldown and secretion assays characterized the chaperone-binding domain encompassing the first 30–100 amino acids and an amino terminal secretion signal encompassing the first 5–20 amino acids on VepA. These findings will provide a strategy to clarify how the T3SS1 of V. parahaemolyticus secretes its specific effectors.  相似文献   

4.
2007~2008年间, 我们调查了浙江沿海地区海产品和养殖环境中副溶血弧菌的污染状况, 并分析了不同来源副溶血弧菌中主要毒力相关基因tdh、trh、ureC和T3SS2(vscC2、vcrD2)的分布特征及溶血表型与尿素酶表型。结果显示, 566份样品中共分离到395株副溶血弧菌, 检出率高达70%, 毒力相关基因分析结果发现, tdh基因阳性率为10.1%, trh与ureC基因阳性率分别为 20.0%与 11.1%, 40株tdh+菌中组成T3SS2的vscC2基因阳性率为32.5%, 其中38株tdh+菌的神奈川试验亦呈阳性; 但在44株trh+-ureC+菌株中, 尿素酶表型阳性只有6株。试验表明, 浙江沿海地区海产品及其养殖环境中副溶血弧菌污染状况比较严重, 且有相当比例的菌株携带毒力或疑似毒力基因。研究结果为深入探索副溶血弧菌的致病性、基因结构与功能(或表型)及其分子演化提供基础。  相似文献   

5.
Vibrio parahaemolyticus strain RIMD2210633 has two sets of genes encoding two separate type III secretion systems (T3SSs), called T3SS1 and T3SS2. T3SS2 has a role in enterotoxicity and is present only in Kanagawa phenomenon-positive strains, which are pathogenic to humans. Accordingly, T3SS2 is considered to be closely related to V. parahaemolyticus human pathogenicity. Despite this, the biological actions of T3SS2 and the identity of the effector protein(s) secreted by this system have not been well understood. Here we report that T3SS2 induces a cytotoxic effect in Caco-2 and HCT-8 cells. Moreover, it was revealed that VPA1327 (vopT), a gene encoded within the proximity of T3SS2, is partly responsible for this cytotoxic effect. The VopT shows approximately 45% and 44% identity with the ADP-ribosyltransferase (ADPRT) domain of ExoT and ExoS, respectively, which are two T3SS-secreted effectors of Pseudomonas aeruginosa. T3SS2 was found to be necessary not only for the secretion, but also for the translocation of the VopT into host cells. We also demonstrate that VopT ADP-ribosylates Ras, a member of the low-molecular-weight G (LMWG) proteins both in vivo and in vitro. These results indicate that VopT is a novel ADPRT effector secreted via V. parahaemolyticus T3SS.  相似文献   

6.
副溶血弧菌的Ⅲ型分泌系统   总被引:1,自引:0,他引:1  
摘要:副溶血弧菌是一种嗜盐性革兰氏阴性短杆菌,主要引起食物中毒性肠胃炎,还可引起水生动物疾病。除了耐热直接溶血毒素和耐热直接溶血相关毒素外,近年发现的副溶血弧菌两套Ⅲ型分泌系统也与该菌的致病性密切相关。Ⅲ型分泌系统1位于染色体1上,主要贡献对宿主细胞的细胞毒性,介导宿主细胞的自体吞噬作用,最后导致细胞死亡。Ⅲ型分泌系统2位于位于染色体2的毒力岛上,具有肠毒性。本文扼要介绍副溶血弧菌Ⅲ型分泌系统的组成、功能及相关转录调控机制。  相似文献   

7.
8.
副溶血弧菌是典型的食源性病原菌,也是全球范围内引起肠胃炎的主要病原菌。针筒状的Ⅲ型分泌系统(T3SS)为该菌主要的毒力因子,细菌感染时可将其效应蛋白直接注射至宿主细胞中,通过效应蛋白操纵宿主细胞,介导毒力的发挥。多数临床分离的副溶血弧菌含有2套T3SSs,其中T3SS1分泌的效应蛋白主要通过诱导细胞自噬、变圆和裂解等过程来发挥其细胞毒性,而T3SS2分泌的效应蛋白则主要通过破坏细胞骨架和操控细胞信号传导来发挥肠毒性。本文主要对副溶血弧菌T3SSs的组成和目前已发现的效应蛋白及其对宿主细胞的操控进行介绍。该研究不仅对深入了解该菌的致病机制有重要意义,而且也为宿主细胞信号转导机制研究提供新视角。  相似文献   

9.
ABSTRACT: BACKGROUND: The central role of Type III secretion systems (T3SS) in bacteria-plant interactions is well established, yet unexpected findings are being uncovered through bacterial genome sequencing. Some Pseudomonas syringae strains possess an uncharacterized cluster of genes encoding putative components of a second T3SS (T3SS-2) in addition to the well characterized Hrc1 T3SS which is associated with disease lesions in host plants and with the triggering of hypersensitive response in non-host plants. The aim of this study is to perform an in silico analysis of T3SS-2, and to compare it with other known T3SSs. RESULTS: Based on phylogenetic analysis and gene organization comparisons, the T3SS-2 cluster of the P. syringae pv. phaseolicola strain is grouped with a second T3SS found in the pNGR234b plasmid of Rhizobium sp. These additional T3SS gene clusters define a subgroup within the Rhizobium T3SS family. Although, T3SS-2 is not distributed as widely as the Hrc1 T3SS in P. syringae strains, it was found to be constitutively expressed in P. syringae pv phaseolicola through RT-PCR experiments. CONCLUSIONS: The relatedness of the P. syringae T3SS-2 to a second T3SS from the pNGR234b plasmid of Rhizobium sp., member of subgroup II of the rhizobial T3SS family, indicates common ancestry and/or possible horizontal transfer events between these species. Functional analysis and genome sequencing of more rhizobia and P. syringae pathovars may shed light into why these bacteria maintain a second T3SS gene cluster in their genome.  相似文献   

10.
The Type VI secretion system (T6SS) is a macromolecular complex widespread in Gram-negative bacteria. Although several T6SS are required for virulence towards host models, most are necessary to eliminate competitor bacteria. Other functions, such as resistance to amoeba predation, biofilm formation or adaptation to environmental conditions have also been reported. This multitude of functions is reflected by the large repertoire of regulatory mechanisms shown to control T6SS expression, production or activation. Here, we demonstrate that one T6SS gene cluster encoded within the Yersinia pseudotuberculosis genome, T6SS-4, is regulated by OmpR, the response regulator of the two-component system EnvZ-OmpR. We first identified OmpR in a transposon mutagenesis screen. OmpR does not control the expression of the four other Y. pseudotuberculosis T6SS gene clusters and of an isolated vgrG gene, and responds to osmotic stresses to bind to and activate the T6SS-4 promoter. Finally, we show that T6SS-4 promotes Y. pseudotuberculosis survival in high osmolarity conditions and resistance to deoxycholate.  相似文献   

11.
Vibrio parahaemolyticus is a pathogenic Vibrio species that causes food-borne acute gastroenteritis, often related to the consumption of raw or undercooked seafood. Vibrio parahaemolyticus has 2 type III secretion systems (T3SS1 and T3SS2). Here, we demonstrate that VP1657 (VopB1) and VP1656 (VopD1), which share sequence similarity with Pseudomonas genes popB (38%) and popD (36%), respectively, are essential for translocation of T3SS1 effectors into host cells. A VP1680CyaA fusion reporter system was constructed to observe effector translocation. Using this reporter assay we showed that the VopB1 and VopD1 deletion strains were unable to translocate VP1680 to host cell but that the secretion of VP1680 into the culture medium was not affected. VopB1 or VopD1 deletion strains did not enhance cytotoxicity and failed to activate mitogen-activated protein kinases and secretion of interleukin-8, which depend on VP1680. Thus, we conclude that VopB1 and VopD1 are essential components of the translocon. To target VopB1 and VopD1 may have therapeutic potential for the treatment or prevention in V.?parahaemolyticus infection.  相似文献   

12.
A type III secretion system (T3SS) is utilized by a large number of gram-negative bacteria to deliver effectors directly into the cytosol of eukaryotic host cells. One essential component of a T3SS is an ATPase that catalyzes the unfolding of proteins, which is followed by the translocation of effectors through an injectisome. Here we demonstrate a functional role of the ATPase SsaN, a component of Salmonella pathogenicity island 2 T3SS (T3SS-2) in Salmonella enterica serovar Typhimurium. SsaN hydrolyzed ATP in vitro and was essential for T3SS function and Salmonella virulence in vivo. Protein-protein interaction analyses revealed that SsaN interacted with SsaK and SsaQ to form the C ring complex. SsaN and its complex co-localized to the membrane fraction under T3SS-2 inducing conditions. In addition, SsaN bound to Salmonella pathogenicity island 2 (SPI-2) specific chaperones, including SsaE, SseA, SscA, and SscB that facilitated translocator/effector secretion. Using an in vitro chaperone release assay, we demonstrated that SsaN dissociated a chaperone-effector complex, SsaE and SseB, in an ATP-dependent manner. Effector release was dependent on a conserved arginine residue at position 192 of SsaN, and this was essential for its enzymatic activity. These results strongly suggest that the T3SS-2-associated ATPase SsaN contributes to T3SS-2 effector translocation efficiency.  相似文献   

13.
Vibrio spp. are associated with infections caused by contaminated food and water. A type III secretion system (T3SS2) is a shared feature of all clinical isolates of V. parahaemolyticus and some V. cholerae strains. Despite its being responsible for enterotoxicity, no molecular mechanism has been determined for the T3SS2-dependent pathogenicity. Here, we show that although Vibrio spp. are typically thought of as extracellular pathogens, the T3SS2 of Vibrio mediates host cell invasion, vacuole formation, and replication of intracellular bacteria. The catalytically active effector VopC is critical for Vibrio T3SS2-mediated invasion. There are other marine bacteria encoding VopC homologs associated with a T3SS; therefore, we predict that these bacteria are also likely to use T3SS-mediated invasion as part of their pathogenesis mechanisms. These findings suggest a new molecular paradigm for Vibrio pathogenicity and modify our view of the roles of T3SS effectors that are translocated during infection.  相似文献   

14.
15.
16.
Salmonella enterica employs two type III secretion systems (T3SS) for interactions with host cells during pathogenesis. The T3SS encoded by Salmonella pathogenicity island 2 (SPI2) is required for the intracellular replication of Salmonella and the survival inside phagocytes. During growth in vitro, acidic pH is a signal that promotes secretion of proteins by this T3SS. We analyzed protein levels and subcellular localization of various T3SS subunits under in vitro conditions at acidic or neutral pH, inducing or ablating secretion, respectively. Growth at acidic pH resulted in higher levels of SsaC, a protein forming the outer membrane secretin, without increasing expression of the operon containing ssaC. Acidic pH also induced oligomerization of SsaC subunits, a prerequisite for a functional secretin pore. It has previously been described that environmental stimuli resembling the intraphagosomal habitat of Salmonella control the expression of SPI2 genes. Here we propose that such stimuli also modulate the assembly of a functional T3SS that is capable of translocation of effector proteins into the host cell.  相似文献   

17.
18.
19.
We employed a heterologous secretion assay to identify proteins potentially secreted by type III secretion systems (T3SSs) in Vibrio parahaemolyticus. N-terminal sequences from 32 proteins within T3SS genomic islands and seven proteins from elsewhere in the chromosome included proteins that were recognized for export by the Yersinia enterocolitica flagellar T3SS.  相似文献   

20.
Vibrio cholerae isolates responsible for cholera pandemics represent only a small portion of the diverse strains belonging to this species. Indeed, most V. cholerae are encountered in aquatic environments. To better understand the emergence of pandemic lineages, it is crucial to discern what differentiates pandemic strains from their environmental relatives. Here, we studied the interaction of environmental V. cholerae with eukaryotic predators or competing bacteria and tested the contributions of the haemolysin and the type VI secretion system (T6SS) to those interactions. Both of these molecular weapons are constitutively active in environmental isolates but subject to tight regulation in the pandemic clade. We showed that several environmental isolates resist amoebal grazing and that this anti-grazing defense relies on the strains' T6SS and its actincross-linking domain (ACD)-containing tip protein. Strains lacking the ACD were unable to defend themselves against grazing amoebae but maintained high levels of T6SS-dependent interbacterial killing. We explored the latter phenotype through whole-genome sequencing of 14 isolates, which unveiled a wide array of novel T6SS effector and (orphan) immunity proteins. By combining these in silico predictions with experimental validations, we showed that highly similar but non-identical immunity proteins were insufficient to provide cross-immunity among those wild strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号