首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthetic/artificial protein switches provide an efficient means of controlling protein functions using chemical signals and stimuli. Mutually exclusive proteins, in which only the host or guest domain can remain folded at a given time owing to conformational strain, have been used to engineer novel protein switches that can switch enzymatic functions on and off in response to ligand binding. To further explore the potential of mutually exclusive proteins as protein switches and sensors, we report here a new redox-based approach to engineer a mutually exclusive folding-based protein switch. By introducing a disulfide bond into the host domain of a mutually exclusive protein, we demonstrate that it is feasible to use redox potential to switch the host domain between its folded and unfolded conformations via the mutually exclusive folding mechanism, and thus switching the functionality of the host domain on and off. Our study opens a new and potentially general avenue that uses mutually exclusive proteins to design novel switches able to control the function of a variety of proteins.  相似文献   

2.
Alternate frame folding (AFF) is a mechanism by which conformational change can be engineered into a protein. The protein structure switches from the wild‐type fold (N) to a circularly‐permuted fold (N′), or vice versa, in response to a signaling event such as ligand binding. Despite the fact that the two native states have similar structures, their interconversion involves folding and unfolding of large parts of the molecule. This rearrangement is reported by fluorescent groups whose relative proximities change as a result of the order–disorder transition. The nature of the conformational change is expected to be similar from protein to protein; thus, it may be possible to employ AFF as a general method to create optical biosensors. Toward that goal, we test basic aspects of the AFF mechanism using the AFF variant of calbindin D9k. A simple three‐state model for fold switching holds that N and N′ interconvert through the unfolded state. This model predicts that the fundamental properties of the switch—calcium binding affinity, signal response (i.e., fluorescence change upon binding), and switching rate—can be controlled by altering the relative stabilities of N and N′. We find that selectively destabilizing N or N′ changes the equilibrium properties of the switch (binding affinity and signal response) in accordance with the model. However, kinetic data indicate that the switching pathway does not require whole‐molecule unfolding. The rate is instead limited by unfolding of a portion of the protein, possibly in concert with folding of a corresponding region. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Allostery is commonly described as a functional connection between two distant sites in a protein, where a binding event at one site alters affinity at the other. Here, we review the conformational dynamics that encode an allosteric switch in the PDZ domain of Par-6, which is a scaffold protein that organizes other proteins into a complex required to initiate and maintain cell polarity. NMR measurements revealed that the PDZ domain samples an evolutionarily conserved unfolding intermediate allowing rearrangement of two adjacent loop residues that control ligand binding affinity. Cdc42 binding to Par-6 creates a novel interface between the PDZ domain and the adjoining CRIB motif that stabilizes the high-affinity PDZ conformation. Thermodynamic and kinetic studies suggest that partial PDZ unfolding is an integral part of the Par-6 switching mechanism. The Par-6 CRIB-PDZ module illustrates two important structural aspects of protein evolution: the interface between adjacent domains in the same protein can give rise to allosteric regulation, and thermodynamic stability may be sacrificed to increase the sampling frequency of an unfolding intermediate required for conformational switching.  相似文献   

4.
We recently suggested that the sensitivity and range of a cluster of membrane receptors in bacteria would be enhanced by cooperative interactions between neighbouring proteins. Here, we examine the consequences of this "conformational spread" mechanism for an idealised one-dimensional system comprising a closed ring of identical allosteric protomers (protein molecules, or a group of protein domains operating as a unit). We show analytically and by means of Monte Carlo simulations that a ring of allosteric protomers can exhibit a switch-like response to changes in ligand concentration. We derive expressions for the sensitivity and cooperativity of switching and show that the maximum sensitivity is proportional to the number of protomers in the ring. A ring of this kind can reproduce the sensitivity and kinetics of the switch complex of a bacterial flagellar motor, for example, which is based on a ring of 34 FliM proteins. We also compare smaller rings of conformationally coupled protomers to classical allosteric proteins such as haemoglobin and show that the canonical MWC and KNF models arise naturally as limiting cases. Conformational spread appears to be a natural extension of the familiar mechanism of allostery: a physically realistic mechanism that should apply widely to many structures built from protein molecules.  相似文献   

5.
6.
G protein-coupled receptors (GPCRs) recognize a wide variety of extracellular ligands to control diverse physiological processes. Compounds that bind to such receptors can either stimulate, fully or partially (full or partial agonists), or reduce (inverse agonists) the receptors' basal activity and receptor-mediated signaling. Various studies have shown that the activation of receptors through binding of agonists proceeds by conformational changes as the receptor switches from a resting to an active state leading to G protein signaling. Yet the molecular basis for differences between agonists and inverse agonists is unclear. These different classes of compounds are assumed to switch the receptors' conformation in distinct ways. It is not known, however, whether such switching occurs along a linear 'on-off' scale or whether agonists and inverse agonists induce different switch mechanisms. Using a fluorescence-based approach to study the alpha2A-adrenergic receptor (alpha(2A)AR), we show that inverse agonists are differentiated from agonists in that they trigger a very distinct mode of a receptor's switch. This switch couples inverse agonist binding to the suppression of activity in the receptor.  相似文献   

7.
Adjacent N11L and L12N mutations in the antiparallel beta-ribbon of Arc repressor result in dramatic changes in local structure in which each beta-strand is replaced by a right-handed helix. The full solution structure of this "switch" Arc mutant shows that irregular 3(10) helices compose the new secondary structure. This structural metamorphosis conserves the number of main-chain and side-chain to main-chain hydrogen bonds and the number of fully buried core residues. Apart from a slight widening of the interhelical angle between alpha-helices A and B and changes in side-chain conformation of a few core residues in Arc, no large-scale structural adjustments in the remainder of the protein are necessary to accommodate the ribbon-to-helix change. Nevertheless, some changes in hydrogen-exchange rates are observed, even in regions that have very similar structures in the two proteins. The surface of switch Arc is packed poorly compared to wild-type, leading to approximately 1000A(2) of additional solvent-accessible surface area, and the N termini of the 3(10) helices make unfavorable head-to-head electrostatic interactions. These structural features account for the positive m value and salt dependence of the ribbon-to-helix transition in Arc-N11L, a variant that can adopt either the mutant or wild-type structures. The tertiary fold is capped in different ways in switch and wild-type Arc, showing how stepwise evolutionary transformations can arise through small changes in amino acid sequence.  相似文献   

8.
Cells can switch the functional states of extracellular matrix proteins by stretching them while exerting mechanical force. Using steered molecular dynamics, we investigated how the mechanical stability of FnIII modules from the cell adhesion protein fibronectin is affected by natural variations in their amino acid sequences. Despite remarkably similar tertiary structures, FnIII modules share low sequence homology. Conversely, the sequence homology for the same FnIII module across multiple species is notably higher, suggesting that sequence variability is functionally significant. Our studies find that the mechanical stability of FnIII modules can be tuned through substitutions of just a few key amino acids by altering access of water molecules to hydrogen bonds that break early in the unfolding pathway. Furthermore, the FnIII hierarchy of mechanical unfolding can be changed by environmental conditions, such as pH for FnIII10, or by forming complexes with other molecules, such as heparin binding to FnIII13.  相似文献   

9.
The ability to regulate cellular protein activity offers a broad range of biotechnological and biomedical applications. Such protein regulation can be achieved by modulating the specific protein activity or through processes that regulate the amount of protein in the cell. We have previously demonstrated that the nonhomologous recombination of the genes encoding maltose binding protein (MBP) and TEM1 β‐lactamase (BLA) can result in genes that confer maltose‐dependent resistance to β‐lactam antibiotics even though the encoded proteins are not allosteric enzymes. We showed that these phenotypic switches—named based on their conferral of a switching phenotype to cells—resulted from a specific interaction with maltose in the cell that increased the switches cellular accumulation. Since phenotypic switches represent an important class of engineered proteins for basic science and biotechnological applications in vivo, we sought to elucidate the phenomena behind the increased accumulation and switching properties. Here, we demonstrate the key role for the linker region between the two proteins. Experimental evidence supports the hypothesis that in the absence of their effector, some phenotypic switches possess an increased rate of unfolding, decreased conformational stability, and increased protease susceptibility. These factors alone or in combination serve to decrease cellular accumulation. The effector functions to increase cellular accumulation by alleviating one or more of these defects. This perspective on the mechanism for phenotypic switching will aid the development of design rules for switch construction for applications and inform the study of the regulatory mechanisms of natural cellular proteins.  相似文献   

10.
Recent protein design experiments have demonstrated that proteins can migrate between folds through the accumulation of substitution mutations without visiting disordered or nonfunctional points in sequence space. To explore the biophysical mechanism underlying such transitions we use a three-letter continuous protein model with seven atoms per amino acid to provide realistic sequence-structure and sequence-function mappings through explicit simulation of the folding and interaction of model sequences. We start from two 16-amino-acid sequences folding into an α-helix and a β-hairpin, respectively, each of which has a preferred binding partner with 35 amino acids. We identify a mutational pathway between the two folds, which features a sharp fold switch. By contrast, we find that the transition in function is smooth. Moreover, the switch in preferred binding partner does not coincide with the fold switch. Discovery of new folds in evolution might therefore be facilitated by following fitness slopes in sequence space underpinned by binding-induced conformational switching.  相似文献   

11.
Aptamers, an emerging class of therapeutics, are DNA or RNA molecules that are selected to bind molecular targets that range from small organic compounds to large proteins. All of the determined structures of aptamers in complex with small molecule targets show that aptamers cage such ligands. In structures of aptamers in complex with proteins that naturally bind nucleic acid, the aptamers occupy the nucleic acid binding site and often mimic the natural interactions. Here we present a crystal structure of an RNA aptamer bound to human thrombin, a protein that does not naturally bind nucleic acid, at 1.9 A resolution. The aptamer, which adheres to thrombin at the binding site for heparin, presents an extended molecular surface that is complementary to the protein. Protein recognition involves the stacking of single-stranded adenine bases at the core of the tertiary fold with arginine side chains. These results exemplify how RNA aptamers can fold into intricate conformations that allow them to interact closely with extended surfaces on non-RNA binding proteins.  相似文献   

12.
Familial hypertrophic cardiomyopathy (FHC) is caused by missense or premature truncation mutations in proteins of the cardiac contractile apparatus. Mutant proteins are incorporated into the thin filament or thick filament and eventually produce cardiomyopathy. However, it has been unclear how the several, genetically identified defects in protein structure translate into impaired protein and muscle function. We have studied the basis of FHC caused by premature truncation of the most frequently implicated thin filament target, troponin T. Electron microscope observations showed that the thin filament undergoes normal structural changes in response to Ca(2+) binding. On the other hand, solution studies showed that the mutation alters and destabilizes troponin binding to the thin filament to different extents in different regulatory states, thereby affecting the transitions among states that regulate myosin binding and muscle contraction. Development of hypertrophic cardiomyopathy can thus be traced to a defect in the primary mechanism controlling cardiac contraction, switching between different conformations of the thin filament.  相似文献   

13.
The folding of multisubunit proteins is of tremendous biological significance since the large majority of proteins exist as protein-protein complexes. Extensive experimental and computational studies have provided fundamental insights into the principles of folding of small monomeric proteins. Recently, important advances have been made in extending folding studies to multisubunit proteins, in particular homodimeric proteins. This review summarizes the equilibrium and kinetic theory and models underlying the quantitative analysis of dimeric protein folding using chemical denaturation, as well as the experimental results that have been obtained. Although various principles identified for monomer folding also apply to the folding of dimeric proteins, the effects of subunit association can manifest in complex ways, and are frequently overlooked. Changes in molecularity typically give rise to very different overall folding behaviour than is observed for monomeric proteins. The results obtained for dimers have provided key insights pertinent to understanding biological assembly and regulation of multisubunit proteins. These advances have set the stage for future advances in folding involving protein-protein interactions for natural multisubunit proteins and unnatural assemblies involved in disease.  相似文献   

14.
Recent protein design experiments have demonstrated that proteins can migrate between folds through the accumulation of substitution mutations without visiting disordered or nonfunctional points in sequence space. To explore the biophysical mechanism underlying such transitions we use a three-letter continuous protein model with seven atoms per amino acid to provide realistic sequence-structure and sequence-function mappings through explicit simulation of the folding and interaction of model sequences. We start from two 16-amino-acid sequences folding into an α-helix and a β-hairpin, respectively, each of which has a preferred binding partner with 35 amino acids. We identify a mutational pathway between the two folds, which features a sharp fold switch. By contrast, we find that the transition in function is smooth. Moreover, the switch in preferred binding partner does not coincide with the fold switch. Discovery of new folds in evolution might therefore be facilitated by following fitness slopes in sequence space underpinned by binding-induced conformational switching.  相似文献   

15.
16.
We have determined crystal structures of Sec4, a member of the Rab family in the G protein superfamily, in two states: bound to GDP, and to a non-hydrolyzable GTP analog, guanosine-5'-(beta, gamma)-imidotriphosphate (GppNHp). This represents the first structure of a Rab protein bound to GDP. Sec4 in both states grossly resembles other G proteins bound to GDP and GppNHp. In Sec4-GppNHp, structural features common to active Rab proteins are observed. In Sec4-GDP, the switch I region is highly disordered and displaced relative to the switch I region of Ras-GDP. In two of the four molecules of Sec4-GDP in the asymmetric unit of the Sec4-GDP crystals, the switch II region adopts a conformation similar to that seen in the structure of the small G protein Ran bound to GDP. This allows residues threonine 76, glutamate 80, and arginine 81 of Sec4 to make contacts with other conserved residues and water molecules important for nucleotide binding. In the other two molecules in the asymmetric unit, these interactions do not take place. This structural variability in both the switch I and switch II regions of GDP-bound Sec4 provides a possible explanation for the high off-rate of GDP bound to Sec4, and suggests a mechanism for regulation of the GTPase cycle of Rab proteins by GDI proteins.  相似文献   

17.
Protein–membrane interactions play essential roles in a variety of cell functions such as signaling, membrane trafficking, and transport. Membrane-recruited cytosolic proteins that interact transiently and interfacially with lipid bilayers perform several of those functions. Experimental techniques capable of probing changes on the structural dynamics of this weak association are surprisingly limited. Among such techniques, electron spin resonance (ESR) has the enormous advantage of providing valuable local information from both membrane and protein perspectives by using intrinsic paramagnetic probes in metalloproteins or by attaching nitroxide spin labels to proteins and lipids. In this review, we discuss the power of ESR to unravel relevant structural and functional details of lipid–peripheral membrane protein interactions with special emphasis on local changes of specific regions of the protein and/or the lipids. First, we show how ESR can be used to investigate the direct interaction between a protein and a particular lipid, illustrating the case of lipid binding into a hydrophobic pocket of chlorocatechol 1,2-dioxygenase, a non-heme iron enzyme responsible for catabolism of aromatic compounds that are industrially released in the environment. In the second case, we show the effects of GPI-anchored tissue-nonspecific alkaline phosphatase, a protein that plays a crucial role in skeletal mineralization, and on the ordering and dynamics of lipid acyl chains. Then, switching to the protein perspective, we analyze the interaction with model membranes of the brain fatty acid binding protein, the major actor in the reversible binding and transport of hydrophobic ligands such as long-chain, saturated, or unsaturated fatty acids. Finally, we conclude by discussing how both lipid and protein views can be associated to address a common question regarding the molecular mechanism by which dihydroorotate dehydrogenase, an essential enzyme for the de novo synthesis of pyrimidine nucleotides, and how it fishes out membrane-embedded quinones to perform its function.  相似文献   

18.
ATP-binding cassette (ABC) transporters are responsible for the transport of a wide variety of water-soluble molecules and ions into prokaryotic cells. In Gram-negative bacteria, periplasmic-binding proteins deliver ions or molecules such as thiamin to the membrane-bound ABC transporter. The gene for the thiamin-binding protein tbpA has been identified in both Escherichia coli and Salmonella typhimurium. Here we report the crystal structure of TbpA from E. coli with bound thiamin monophosphate. The structure was determined at 2.25 A resolution using single-wavelength anomalous diffraction experiments, despite the presence of nonmerohedral twinning. The crystal structure shows that TbpA belongs to the group II periplasmic-binding protein family. Equilibrium binding measurements showed similar dissociation constants for thiamin, thiamin monophosphate, and thiamin pyrophosphate. Analysis of the binding site by molecular modeling demonstrated how TbpA binds all three forms of thiamin. A comparison of TbpA and thiaminase-I, a thiamin-degrading enzyme, revealed structural similarity between the two proteins, especially in domain 1, suggesting that the two proteins evolved from a common ancestor.  相似文献   

19.
Transfer RNA (tRNA) is a small nucleic acid (typically 76 nucleotides) that forms binary complexes with proteins, such as aminoacyl tRNA synthetases (RS) and Trbp111. The latter is a widely distributed structure-specific tRNA-binding protein that is incorporated into cell signaling molecules. The structure of Trbp111 was modeled onto to the outer, convex side of the L-shaped tRNA. Here we present RNA footprints that are consistent with this model. This binding mode is in contrast to that of tRNA synthetases, which bind to the inside, or concave side, of tRNA. These opposite locations of binding for these two proteins suggest the possibility of a ternary complex. The formation of a tRNA synthetase--tRNA--Trbp111 ternary complex was detected by two independent methods. The results indicate that the tRNA is sandwiched between the two protein molecules. A thermodynamic and functional analysis is consistent with the tRNA retaining its native structure in the ternary complex. These results may have implications for how the translation apparatus is linked to other cellular machinery.  相似文献   

20.
Numerous synthetic fluorophores have been developed that can switch their spectroscopic properties upon interaction with other molecules or by irradiation with light. In recent years, protein-labeling techniques have been introduced that permit the specific attachment of such molecules to proteins of interest in living cells. We review here how the attachment of switchable fluorophores to selected proteins of interest via self-labeling protein tags enables new applications in different areas of biology and discuss how these molecules could be further improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号