首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
1. The developmental patterns of the phosphatidic acid phosphohydrolase activities in developing rabbit lung were determined using both aqueously dispersed phosphatidic acid (PAaq) and membrane-bound phosphatidic acid (PAmb) as the substrates. 2. The specific activities and the total activities of the PAmb-dependent phosphohydrolase activities in the microsomes and to a lesser extent in the homogenates increased between 26 and 30 days gestation (term 31), but decreased in the adult. The PAaq-dependent activities demonstrated a smaller increase during late gestation and a decrease in the adult. 3. There was little change in either the Paaq- or the Pamb-dependent activities in the cytosol between 25 and 30 days gestation. The total activities per g lung were increased in the adult. 4. Fractionation of adult cytosol on Bio-Gel A5m revealed PAaq-dependent activities in the void volume (Vo) (50% total), a peak with an apparent molecular mass (Mr) = 150 kdaltons (25% total) and a peak with Mr = 110 kdaltons (25% total). The PAaq-dependent peak with Mr = 150 kdaltons was not detected in the fetal cytosols. 5. Gel filtration revealed PAmb-dependent activity in the Vo (15% total), a major peak with an apparent Mr = 390 kdaltons (44% total) and minor peaks with Mr = 240 kdaltons (16% total) and Mr = 110 kdaltons (24% total). Little change was observed during development. 6. Thermal denaturation studies on he PAmb-dependent activities in the cytosols produced biphasic curves with a rapidly inactivated component and a relatively heat-stable component. The thermal denaturation profiles for the PAmb-dependent activities remained relatively unaltered throughout fetal development. The thermal denaturation profiles of the PAaq-dependent activities in the fetal cytosols were also biphasic. In contrast, the inactivation profiles of the PAaq-dependent activities in adult cytosol were monophasic.  相似文献   

2.
1. The properties of the aqueously dispersed phosphatidate-dependent phosphatidic acid phosphatase (EC 3.1.3.4) activities of rat lung have been studied in microsomal and cytosol preparations and compared with the properties of the membrane-bound phosphatidate-dependent activities. 2. The microsomal phosphatidic acid phosphatase displayed a prominent pH optimum at 6.5 with a minor peak which varied between 7.5--8 in different experiments. With the cytosol, the major activity was at the higher pH (7.5--8.0) but a distinct optimum was also observed at pH 6.0--6.5. With the membrane-bound substrate, a single broad optimum was observed between pH 7.4 and 8.0 with the cytosol and 6.5--7.5 with the microsomal fraction. 3. Subcellular fractionation studies revealed that the microsomal fraction possessed the greatest proportion of the total phosphatidic acid phosphatase activity and the highest relative specific activity. However, studies with marker enzymes indicated that the aqueously dispersed phosphatidate-dependent activity could be present in plasma membrane, lysosomes and osmiophilic lamellar bodies as well as in the endoplasmic reticulum. 4. The aqueously dispersed phosphatidic acid-dependent activities present in the microsomal and supernatant fractions were inhibited by Ca2+, Mn2+, F- and by high concentrations of Mg2+. In contrast to the membrane-bound phosphatidate-dependent activities, there was little Mg2+ stimulation and only a very slight inhibitory effect was noted with EDTA. A small EDTA-dependent Mg2+ stimulation could be observed with the microsomal fraction but only at the lower pH optimum (6.5). 5. The presence of a number of phosphate esters tended to stimulate rather than inhibit the microsomal activity, indicating that the hydrolase is relatively specific for lipid substrates. Marked inhibitions were noted with lysophosphatidic acid and phosphatidylglycerol phosphate. Phosphatidylcholine produced a slight inhibition. 6. The results indicate that the bulk of the aqueously dispersed phosphatidate-dependent phosphatidic acid phosphatase activities of rat lung microsomes and cytosol is not related to the activities observed with membrane-bound phosphatidate. The Mg2+-dependent hydrolase activities may be synonymous. However, unequivocal conclusions will only be possible when the polypeptide or polypeptides responsible for these activities can be purified.  相似文献   

3.
Rat lung cytosol and microsomal fractions both contain phosphohydrolase activity towards membrane-bound phosphatidic acid (PAmb) and aqueously dispersed phosphatidic acid (PAaq) which cannot be explained through contamination with the other fraction. The phosphohydrolase activities with PAaq demonstrated Km and Vmax values which were more than an order of magnitude greater than those observed with PAmb and with vesicles prepared from the lipids extracted from [32P]PA-labelled microsomes. The PAaq-dependent activities in both fractions were stimulated by preparing mixed liposomes with phosphatidylcholine. The PAmb-dependent activities in rat lung microsomes and cytosol were markedly stimulated by high concentrations of Triton X-100 and Nonidet P-40. The PAmb- and PAaq-dependent activities in the microsomes were stimulated by deoxycholate. Although no difference was observed in the inhibition profiles of the PAmb- and PAaq-dependent activities of the cytosol in the presence of various mercurials, the PAmb-dependent activity in the microsomes was somewhat more susceptible than the PAaq-dependent activity. The PAmb-dependent activities in both fractions were more susceptible to inhibition by iodoacetamide. These results support the view that separate rat lung enzymes were involved in the hydrolysis of PAmb and PAaq. The relative abilities of rat lung cytosol and microsomes to hydrolyse PA endogenously generated on the microsomes were compared using relative concentrations of cytosol corresponding to the levels in intact rat lung. During the initial period (5-10 min) the cytosol phosphohydrolase activity was more effective than the microsomal activity. At later stages (10-20 min), the rates were comparable.  相似文献   

4.
In the present study we investigated the maturation of the surfactant phospholipids and the role of fetal sex on the effect of betamethasone in male and female rabbit fetuses. Betamethasone was administered to the doe (0.2 mg/kg intramuscularly) 42 and 18 h prior to killing. The fetuses were studied at 27 and 28 days from conception. Results from the alveolar lavage show that male fetuses tended to have a lower disaturated phosphatidylcholine/sphingomyelin ratio and lower levels of phosphatidylinositol. Phosphatidylglycerol was detected in trace amounts. This was apparently due to the high extracellular levels of myo-inositol inhibiting the synthesis of surfactant phosphatidylglycerol while increasing the synthesis of surfactant phosphatidylinositol. Betamethasone increased the recovery of disaturated phosphatidylcholine and phosphatidylinositol from the lung lavage in both sexes. As studied in lung slices in vitro, the betamethasone treatment decreased the incorporation of glucose into phospholipids, including into the fatty acid moiety of disaturated phosphatidylcholine, although it had no significant effect on the incorporation of glucose into the glycerol moiety of disaturated phosphatidylcholine. However, the addition of palmitate increased the incorporation of glucose into the glycerol moiety of disaturated phosphatidylcholine. The betamethasone treatment did not increase the incorporation of [1-14C]pyruvate into disaturated phosphatidylcholine. Following betamethasone administration, the availability of fatty acids may become rate-limiting for the synthesis of surfactant phospholipids. Betamethasone increased the activities of phosphatidic acid phosphohydrolase and phosphatidate cytidyltransferase in a fraction of microsomal membranes. The present evidence suggests that the glucocorticoid-induced lung maturation and the maturation of the normal lung are associated with an increase in the activity of the enzymes which are involved in metabolizing phosphatidic acid to neutral and acidic surfactant secretion of the male fetus was not explained by possible sex-related differences in the biosynthesis of the phospholipids.  相似文献   

5.
The incorporation of [14C]-glycerol 3-phosphate and [3H]-palmitate into phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine and triacylglycerols by lung microsomes from ventilated and unventilated rabbits was measured. Unventilated lung microsomes showed an impairment of the "de novo" synthesis of phosphatidic acid and, therefore, a general decrease of glycerolipids synthesized from glycerol 3-phosphate. The incorporation of [3H]-palmitate into phosphatidic acid was considerably lower than the incorporation of [14C]-glycerol 3-phosphate by lung microsomes from both ventilated and unventilated rabbits, and the 3H/14C molar ratio did not change during incubation time. These observations suggest the preferential utilization of endogenous fatty acids by acyltransferases involved in the formation of phosphatidic acid. The activities of the enzymes implicated in the synthesis of phosphatidylcholine from lysophosphatidylcholine remained unchanged in lung from both ventilated and unventilated rabbits.  相似文献   

6.
The 104,000 × g supernatant fraction from rat lung contains a greater proportion of the phosphatidic acid phosphatase activity toward membrane-bound phosphatidic acid than the microsomal fraction. The microsomal fraction is more effective in hydrolyzing aqueously dispersed phosphatidic acid. The effects of various ions and chelators, particularly Mg2+ and EDTA, suggest that these two activities are distinct. These results indicate that the supernatant fraction of rat lung contains a phosphatidic acid phosphatase activity which may play an important role in pulmonary glycerolipid synthesis.  相似文献   

7.
Lung cell-free homogenate, which contains about twice the units of phosphatidate phosphohydrolase per mg of protein compared to liver, was fractionated by differential centrifugation and the fractions were assayed for phosphatidate phosphohydrolase and marker enzymes of endoplasmic reticulum, mitochondria, and lysosomes. Over 60% of the lung phosphatidate phosphohydrolase was associated with the endoplasmic reticulum, compared to 50% of the total liver enzyme. Thus a major portion of the more active lung enzyme is potentially involved in lipid biosynthesis by the endoplasmic reticulum. Less than 0.2% of the total lung enzyme was found in a lamellar body fraction, consistent with previous findings. The lung microsomal phosphohydrolase was specific for lipid substrates, showing equal activity towards phosphatidic acid or lysophosphatidic acid and relatively low activities towards glycerophosphates. It had a neutral pH optimum, similar to the liver enzyme, but differed somewhat in its relative activity at extremes of pH. Stability at 65 degrees C was greater for the lung enzyme. Fluroide inhibited lung (or liver) microsomal phosphatidate phosphohydrolase, while tartrate, MgCl2, or EDTA had no effect. The presence of a high activity of phosphatidate phosphohydrolase in lung endoplasmic reticulum is consistent with the rapid synthesis of pulmonary surfactant phosphatidylcholine.  相似文献   

8.
De novo fatty acid synthesis in developing rat lung   总被引:1,自引:0,他引:1  
The rate of de novo fatty acid synthesis in developing rat lung was measured by the rate of incorporation of 3H from 3H2O into fatty acids in lung slices and by the activity of acetyl-CoA carboxylase in fetal, neonatal and adult lung. Both tritium incorporation and acetyl-CoA carboxylase activity increased sharply during late gestation, peaked on the last fetal day, and declined by 50% 1 day after birth. In the adult, values were only one-half the peak fetal rates. In vitro regulation of acetyl-CoA carboxylase activity in fetal lung was similar to that described in adult non-pulmonary tissues: activation by citrate and inhibition by palmitoyl-CoA. Similarly, incubation conditions that favored enzyme phosphorylation inhibited acetyl-CoA carboxylase activity in lung while dephosphorylating conditions stimulated activity. Incorporation of [U-14 C]glucose into lung lipids during development was influenced heavily by incorporation into fatty acids, which generally paralleled the rate of tritium incorporation into fatty acids. The relative utilization of acetyl units from exogenous glucose for overall fatty acid synthesis was greater in adult lung than in fetal or neonatal lung, suggesting that other substrates may be important for fatty acid synthesis in developing lung. In fetal lung explants, de novo fatty acid synthesis was inhibited by exogenous palmitate. Taken together, these data suggest that de novo synthesis may be an important source of saturated fatty acids in fetal lung but of lesser importance in the neonatal period. Furthermore, the regulation of acetyl-CoA carboxylase activity and fatty acid synthesis in lung may be similar to non-pulmonary tissues.  相似文献   

9.
The two nucleic acid-dependent nucleoside triphosphate phosphohydrolases, previously purified from vaccinia virus cores, were shown to be immunologically distinct enzymes. Antiserum prepared against purified phosphohydrolase I and antiserum prepared against purified phosphohydrolase II only neutralized the activity of that enzyme used as antigen. Both enzymes were induced in HeLa cells after vaccinia infection. DNA-cellulose chromatography was used to purify the two phosphohydrolases from the cytoplasms of infected cells. The enzymes were identified by their different substrate specificities, nucleic acid dependence, and neutralization with specific antiserum. A third chromatographically separable nucleic acid-dependent phosphohydrolase similar to phosphohydrolase I in substrate specificity but not neutralizable by antiserum to either phosphohydrolase I or II, was also isolated from infected cells. No nucleic acid-dependent nucleoside triphosphate phosphohydrolase activity was detected by similar methods from uninfected HeLa cells. Formation of these virus-induced enzymes was prevented by actinomycin D and cycloheximide, indicating a requirement for de novo RNA and protein synthesis, respectively. The kinetics of induction and inhibition by cytosine arabinoside, an inhibitor of DNA synthesis, suggested that synthesis of the phosphohydrolases is a late viral function. Rifampin, an inhibitor of vaccinia virus growth which prevents virion assembly, had no inhibitory effect on the induction of the phosphohydrolases. This result was consistent with the finding that these enzymes exist in a soluble as well as in a particulate form in the cytoplasm of infected cells. Addition of another specific anti-poxviral drug, isatin-beta-thiosemicarbazone, to vaccinia-infected cells partially inhibited induction of the phosphohydrolases.  相似文献   

10.
Phosphatidate phosphohydrolase (EC 3.1.3.4) activity can be found in late gestational human amniotic fluid and is thought to originate in type II alveolar cells of the fetal lungs where it plays an important role in lung surfactant synthesis. In the present study, phosphatidate phosphohydrolase activity was detected and characterized in a 105 000 X g pellet of amniotic fluid using either [32P]phosphatidate or a water-soluble analog, 1-O-hexadecyl-rac-[2-(3)H]glycerol 3-phosphate as substrate. With either substrate, enzyme activity was optimal at pH 6.0. The soluble analog was hydrolyzed with a Km value of 163 micrometer and a V of 30 nmole/min per mg of protein, and offered several advantages over phosphatidate as a substrate for assaying phosphatidate phosphohydrolase in amniotic fluid. Using the synthetic analog, phosphatidate phosphohydrolase activity was measured in the 700 X g supernatant fraction of 30 human amniocentesis samples and compared with another index of fetal lung maturity, the phosphatidylcholine/sphingomyelin ratio. The results suggest that the new phosphohydrolase assay may be clinically useful in the assessment of fetal lung development.  相似文献   

11.
The activities of glycerophosphate and lysophosphatidylcholine (LPC) acyltransferases were determined using lung microsomes in the presence of lung fatty acid binding protein (FABP). The synthesis of phosphatidic acid (PA) was increased two- to fourfold in the presence of FABP as compared to albumin. Lung FABP did not increase the incorporation of palmitoyl CoA into phosphatidylcholine. The results indicate that FABP-bound fatty acyl CoA may be a preferred substrate for glycerophosphate acyltransferase.  相似文献   

12.
The effects of levonorgestrel treatment (4 micrograms/day per kg body weight 0.75 for 18 days) on rate-limiting enzymes of hepatic triacylglycerol synthesis, namely glycerol-3-phosphate acyltransferase and phosphatidic acid phosphatase were investigated in microsomal, mitochondrial and cytosolic fractions of rat liver. Levonorgestrel treatment resulted in a significant reduction (26%) of hepatic microsomal glycerol-3-phosphate acyltransferase specific activity. Hepatic mitochondrial glycerol-3-phosphate acyltransferase specific activity was unchanged. Levonorgestrel treatment also significantly reduced (by 20%) the specific activity of hepatic microsomal magnesium-independent phosphatidic acid phosphatase. However, magnesium-dependent phosphatic acid phosphatase specific activities in microsomal and cytosolic fractions were unaffected. Cytosolic magnesium-independent phosphatidic acid phosphatase activity was also unchanged. These studies are consistent with the view that levonorgestrel lowers serum triacylglycerol levels, at least in part, by inhibition of the glycerol-3-phosphate acyltransferase (EC 2.3.1.15) step in hepatic triacylglycerol synthesis.  相似文献   

13.
Fetal rabbit lungs from 23 day gestation animals were used to investigate the potential role of lactate as a substrate for fetal lung glycogen synthesis. Fetal lactate dehydrogenase activity was approximately twice that found in the adult lung, while the activity of phosphoenolpyruvate carboxykinase was elevated fourfold over the adult value. Pyruvate carboxylase activities were similar in both fetal and adult lungs. Studies employing fetal lung explants in organ culture indicated that the presence of both glucose and lactate may be necessary for glycogen accumulation in the developing fetal lung. These data support the hypothesis that lactate is an important precursor for fetal lung glycogen.  相似文献   

14.
The metabolic pathways by which the glycogen is utilized by fetal tissues is not well established. In the present study the ontogeny of seven key enzymes involved in glycolysis and the tricarboxylic acid cycle has been established for rabbit fetal lung, heart, and liver. In the fetal lung the activities of phosphofructokinase, pyruvate kinase, lactic dehydrogenase, citrate synthase, and malate dehydrogenase increase from day 21 to 25. Thereafter the levels either drop to day 19 levels or do not change. The isocitrate dehydrogenase activity continues to increase from day 19 of gestation to maximum level on day 31 of gestation. In fetal heart the pattern of activity is similar, but in fetal liver most of the enzymes reach maximum levels earlier and, with the exception of pyruvate kinase, do not show a significant fall in activity near term. The pattern of development of pyruvate dehydrogenase complex is different; maximum activity is observed on day 27 in fetal lung and heart and on day 21 in fetal liver. These results indicate that all three fetal tissues can oxidize glucose. Also, the accumulation of glycogen, particularly in fetal lung, appears to ensure that at specific times during gestation adequate quantities of energy (ATP) and substrates, required for surfactant phospholipid synthesis, are available independent of maternal supply of glucose or during brief episodes of hypoxia.  相似文献   

15.
The cellular mechanism by which glucocorticoids stimulate phosphatidylcholine biosynthesis has been studied in the fetal rat lung in vivo and in cultured fetal rat lung cells of varying levels of complexity. Administration of dexamethasone to pregnant rats at 18 days gestation resulted in a significant increase in saturated phosphatidylcholine content in fetal lung 24 h after injection. Dexamethasone administration increased the activity of fetal lung choline-phosphate cytidylyltransferase by 34%. It had no effect on the activities of fetal lung choline kinase and choline phosphotransferase. Exposure of fetal lung type II cells in organotypic cultures (which contain both type II cells and fibroblasts) to cortisol resulted in a 1.6-fold increase in the incorporation of [Me-3H]choline into saturated phosphatidylcholine. The activities of the enzymes in the choline pathway for the de novo biosynthesis of phosphatidylcholine were not significantly altered except for a 105% increase in choline-phosphate cytidylyltransferase activity. Treatment of monolayer cultures of fetal type II cells with cortisol-conditioned medium from fetal lung fibroblasts resulted in a 1.5-fold increase in saturated phosphatidylcholine production. This effect correlated with a doubling of choline-phosphate cytidylyltransferase activity. Additional evidence that this stimulatory action is mediated by fibroblast-pneumonocyte factor, produced by fetal lung fibroblasts in response to cortisol, was obtained. The factor was partially purified from cortisol-conditioned medium of fetal lung fibroblasts by gel filtration and affinity chromatography. Based on biological activity, a 3000-fold purification was obtained. Stimulation of saturated phosphatidylcholine synthesis in type II cells by fibroblast-pneumonocyte factor was maximal within 60 min of incubation. Pulse-chase experiments indicated that the stimulatory effect was correlated with an increased conversion of choline phosphate into CDP choline. Moreover, the enhanced phosphatidylcholine formation by fetal type II cells in response to fibroblast-pneumonocyte factor was accompanied by decreased levels of cellular choline phosphate. These findings further support the concept that glucocorticoid action on surfactant-associated phosphatidylcholine synthesis occurs ultimately at the level of the alveolar type II cell and involves fibroblast-pneumonocyte factor which stimulates the activity of choline-phosphate cytidylyltransferase.  相似文献   

16.
1. The association between hepatic microsomal enzyme induction and triacylglycerol metabolism was examined in fasting male rabbits (2kg body wt.) injected intra-peritoneally with 50 mg of phenobarbital per kg for 10 days. 2. Occurrence of enzyme induction was established by a significant increase in hepatic aminopyrine N-demethylase activity and cytochrome P-450 content, as well as a doubling of microsomal protein per g of liver and a 54% increase in liver weight. Parallel increments in hepatic gamma-glutamyltransferase (EC 2.3.2.2) activity occurred; these were more pronounced in the whole homogenate than in the microsomes, which only accounted for 12.5% of the total enzyme activity in the controls and 17.0% in the animals given phenobarbital. Increased activity of gamma-glutamyltransferase activity was also observed in the blood serum of the test animals. 3. The rabbits given phenobarbital manifested increased hepatic triacylglycerol content and the triacylglycerol concentration of blood serum was also elevated. These changes were accompanied by a significantly enhanced ability of cell-free fractions of liver from the test animals (postmitochondrial supernatant and microsomal fractions) to synthesize glycerolipids in vitro from sn-[14C] glycerol 3-phosphate and fatty acids, when expressed per whole liver. Relative to the protein content of the fraction, glycerolipid synthesis in vitro was significantly decreased in the microsomes, presumably consequent upon the dramatic increase in their total protein content, whereas no change occurred in the postmitochondrial supernatant, possibly due to the protective effect of cytosolic factors present in this fraction and known to enhance glycerolipid synthesis. 4. Microsomal phosphatidate phosphohydrolase accounted for 85% of the total liver activity of this enzyme and its specific activity was 20-fold higher than that of the cytosolic phosphatidate phosphohydrolase (EC 3.1.3.4), when each was measured under optimal conditions. A significant increase in the activity of both enzymes per whole liver occurred in the rabbits given phenobarbital. A closer correlation between hepatic triacylglycerol content and and microsomal phosphatidate phosphohydrolase, as well as the above observation, suggest that this, rather than the cytosolic enzyme, may be rate-limiting for triacylglycerol synthesis in rabbit liver. 5. Significant correlations were observed between the various factors of hepatic microsomal-enzyme induction (aminopyrine N-demethylase and gamma-glutamyltransferase activity as well as cytochrome P-450 content) and hepatic triacylglycerol content, suggesting that that microsomal enzyme induction may promote hepatic triacylglycerol synthesis and consequently hypertriglyceridaemia in the rabbit.  相似文献   

17.
An acute ethanol load (5 g per kg body wt) given by gastric intubation to fasted rats caused a significant increase in phosphatidate phosphohydrolase activity in the soluble fraction of the liver. The activity was two-fold at 8 hours and three-fold at 16 hours after the ethanol administration and decreased to the control level a few hours after the disappearance of ethanol from the blood. Results from in vivo experiments with intraportally injected [3H]glycerol showed an ethanol-induced cross-over point between glycerol incorporation into phosphatidic acid and neutral glycerolipids. This cross-over could be observed only when the phosphatidate phosphohydrolase activity was increased.  相似文献   

18.
Effects of maternal ethanol consumption were investigated on the rates of protein synthehsis by livers of foetal and neonatal rats both in vivo and in vitro, and on the activities of enzymes involved in protein synthesis and degradation. The rates of general protein synthesis by ribosomes in vitro studied by measuring the incorporation of [14C]leucine into ribosomal protein showed that maternal ethanol consumption resulted in an inhibition of the rates of protein synthesis by both foetal and neonatal livers from the ethanol-fed group. The rates of incorporation of intravenously injected [14C]leucine into hepatic proteins were also significantly lower in the foetal, neonatal and adult livers from the ethanol-fed group. Incubation of adult-rat liver slices with ethanol resulted in an inhibition of the incorporation of [14C]leucine into hepatic proteins; however, this effect was not observed in the foetal liver slices. This effect of externally added ethanol was at least partially prevented by the addition of pyrazole to the adult liver slices. Pyrazole addition to foetal liver slices was without significant effect on the rates of protein synthesis. Cross-mixing experiments showed that the capacity of both hepatic ribosomes and pH5 enzyme fractions to synthesize proteins was decreased in the foetal liver from the ethanol-fed group. Maternal ethanol consumption resulted in a decrease in hepatic total RNA content, RNA/DNA ratio and ribosomal protein content in the foetal liver. Foetal hepatic DNA content was not significantly affected. Ethanol consumption resulted in a significant decrease in proteolytic activity and the activity of tryptophan oxygenase in the foetal, neonatal and adult livers. It is possible that the mechanisms of inhibition of protein synthesis observed here in the foetal liver after maternal ethanol consumption may be responsible for at least some of the changes observed in 'foetal alcohol syndrome'.  相似文献   

19.
Reconstitution of purified rabbit kidney Na,K-ATPase in phosphatidylcholine/phosphatidic acid liposomes resulted in the absence of ATP in a time-, temperature- and protein-dependent formation of inorganic phosphate. This formation of inorganic phosphate could be attributed to a phosphatidate phosphohydrolase activity present in the Na,K-ATPase preparation. A close interaction of the enzyme with the substrate phosphatidic acid was important, since no or little Pi production was observed under any of the following conditions: without reconstitution, after reconstitution in the absence of phosphatidic acid, with low concentrations of detergent or at low lipid/protein ratios. The hydrolysis of phosphatidic acid was not influenced by the Na,K-ATPase inhibitor ouabain but was completely inhibited by the P-type ATPase inhibitor vanadate. Besides Pi diacylglycerol was also formed, confirming that a phosphatidate hydrolase activity was involved. Since the phosphatidate phosphohydrolase activity was rather heat- and N-ethylmaleimide-insensitive, we conclude that the phosphatidic acid hydrolysis was not due to Na,K-ATPase itself but to a membrane-bound phosphatidate phosphohydrolase, present as an impurity in the purified rabbit kidney Na,K-ATPase preparations.  相似文献   

20.
The sequence of reactions which function to incorporate choline into phosphatidylcholine was investigated in lung from fetuses following premature delivery. The rate of [methyl-14C]choline incorporation by rat lung slices into phosphatidylcholine increases following premature delivery at both 20 and 21 days gestation. The increase in choline incorporation is primarily due to an increased specific activity of phosphorylcholine resulting from a decreased pool size of phosphorylcholine. The decrease in the concentration of phosphorylcholine following premature delivery is apparently caused by an increased activity of cytidylyltransferase which leads to an increase in the conversion of phosphorylcholine to phosphatidylcholine. The total activity of choline kinase, cytidylyltransferase, cholinephosphotransferase and phosphatidate phosphohydrolase did not change significantly. However, the cytidylyltransferase activity in the microsome fraction increased following premature delivery at 20 and 21 days gestation. The amount of cytidylyltransferase in the H form in the cytosol fraction increased following premature delivery at 21 days gestation but not at 20 days gestation. The results are interpreted to indicate that the active form of cytidylyltransferase in lung cells is the membrane-bound enzyme and this form increases following birth resulting in an increased synthesis of phosphatidylcholine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号