首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethanol is a potent teratogenic agent that disrupts several aspects of neuronogenesis, including the proliferation rate of cortical precursors. With regard to corticogenesis, possible targets of ethanol toxicity include soluble factors, like transforming growth factor beta1 (TGFbeta1), that regulate cortical growth and cell cycle proteins that control the kinetics of the cell cycle. The effect of ethanol on normal cell proliferation and TGFbeta1-regulated cell proliferation in the developing cortex was assessed using an organotypic slice culture model. Ethanol elongated the cell cycle, possibly through a decrease in the expression of G1 cell cycle protein cyclin D1. Further, ethanol exposure antagonized the anti-proliferative action of TGFbeta1 and blocked TGFbeta1-dependent increases in cell cycle inhibitor p21. Collectively, this evidence suggests that disruption of appropriate cell cycle protein expression and inhibition of TGFbeta1 activity are potential mechanisms underlying the effect of ethanol on cortical development.  相似文献   

2.
3.
4.
Abstract: Acetylcholine and other muscarinic agonists stimulate the proliferation of rat cortical astrocytes and 132 1N1 human astrocytoma cells by activating muscarinic m3 cholinergic receptors. Ethanol was a potent inhibitor of carbachol-stimulated proliferation, measured by [3H]thymidine incorporation, with an IC50 of 10 m M . On the other hand, basal and serum-stimulated proliferation of astrocytes and astrocytoma cells was inhibited by ethanol with lower potency (IC50 = 200–250 m M ). Concentration-response experiments with carbachol, in the presence of 10 m M ethanol, suggested that inhibition of proliferation by the alcohol was of the noncompetitive type. Experiments with acetaldehyde and with the alcohol dehydrogenase inhibitor 4-methylpyrazole suggested that the inhibitory effect of alcohol was due to ethanol itself and not to its metabolite acetaldehyde. Proliferation of astrocytoma cells induced by carbachol and the inhibitory effects of ethanol were also confirmed by flow cytometry using the 5-bromodeoxyuridine-Hoechst 33258 method. Ethanol (10 m M ) had no effect on proliferation induced by 50 µg/ml insulin and 100 ng/ml platelet-derived growth factor BB; on the other hand, the mitogenic effect of 1 m M histamine, 100 U/ml interleukin-1, and 100 ng/ml 12- O -tetradecanoylphorbol 13-acetate were inhibited by ∼50%. These results indicate that proliferation of glial cells induced by muscarinic agonists is especially sensitive to the inhibitory effect of ethanol. This action of ethanol may be relevant to its developmental neurotoxicity, particularly microencephaly, which is one of the common features of the fetal alcohol syndrome.  相似文献   

5.
Psoriasis is a chronic disease characterized by keratinocyte hyperproliferation and inflammation. It has been demonstrated that the expression of calcitonin gene-related peptide (CGRP) is elevated in psoriasis lesions and CGRP-containing neuropeptide nerve fibers are denser in the psoriatic epidermis. CGRP has been previously described to influence proliferation of several cell types, such as Schwann cell, tracheal epithelial cells, and human gingival fibroblasts. In the present study, we determined the effect of CGRP on HaCaT keratinocyte proliferation and the role of mitogen-activated protein kinases (MAPKs) in CGRP induced keratinocyte proliferation. Our data indicate CGRP increased [3H]-thymidine incorporation and MTT activity of HaCaT in a concentration-dependent manner. CGRP also enhanced serum-induced HaCaT cell proliferation. HaCaT cells cultured with CGRP had a significant increase in phosphorylated ERK1/2, p38 and JNK, and CGRP induced DNA synthesis was inhibited by PD 98059 or SB 203580, selective inhibitors of MAP kinase kinase (MEK, which is upstream from ERK) and p38, respectively. These findings suggest that HaCaT cell proliferate in response to CGRP, which is mediated by phosphorylation of ERK1/2 and p38 MAPK.  相似文献   

6.
Abstract: Early ethanol exposure alters the proliferative activity of glial and neuronal precursors in the developing CNS. The present study tests the hypothesis that ethanol-induced alterations in cell proliferation result from interference with growth factors. An in vitro model of astroglia (C6 astrocytoma cells) was used to study the effects of ethanol on proliferation mediated by basic fibroblast growth factor (bFGF). bFGF stimulated the proliferation of C6 cells. This bFGF-enhanced proliferation was evident by increases in total cell number, DNA synthesis (as measured by [3H]thymidine incorporation), and the number of cells that took up bromodeoxyuridine. A synthetic peptide that specifically blocked the binding of bFGF to its high-affinity receptor completely abolished the proliferation-promoting effect of bFGF. The action of another mitogen for C6 cells, insulin-like growth factor-1, was not affected by this peptide. Therefore, the bFGF-stimulated proliferation was mediated through a specific bFGF receptor. Ethanol inhibited bFGF-mediated proliferation in a concentration-dependent manner. Ethanol concentrations of 100 and 200 mg/dl partially inhibited bFGF-mediated proliferation (by 58 and 74%, respectively), whereas concentrations of ≥400 mg/dl completely abolished the growth-stimulating effect of bFGF. Our data show that ethanol alters proliferative activity of C6 cells by disrupting the action of bFGF. The target of ethanol neurotoxicity is a receptor-mediated activity. bFGF can affect cell proliferation by a non-receptor-mediated intracellular pathway, but ethanol does not have an impact on this pathway.  相似文献   

7.
Bone cells in vivo exist in direct contact with extracellular matrix, which regulates their basic biological processes including metabolism, development, growth and differentiation. Thus, the in vitro activity of cells cultured on tissue culture treated plastic could be different from the activity of cells cultured on their natural substrate. We selected MC3T3-E1 pre-osteoblastic cells to study the effect of extracellular matrix on cell proliferation because these cells undergo a progressive developmental sequence of proliferation and differentiation. MC3T3-E1 cells were cultured on plastic or plastic coated with ECM, fibronectin, collagen type I, BSA or poly l-lysine and their ability to proliferate was assessed by incorporation of [3H]dT or by enumeration of cells. Our results show that (1) ECM inhibits incorporation of [3H]dT by MC3T3-E1 cells; (2) collagen type I, but not BSA, poly l-lysine or fibronectin also inhibits incorporation of [3H]dT; (3) the level of ECM inhibition of [3H]dT incorporation is directly related to the number of cells cultured, but unrelated to the cell cycle distribution or endogenous thymidine content; (4) the kinetic profile of [3H]dT uptake suggest that ECM inhibits transport of [3H]dT from the extracellular medium, and (5) cell counts are similar in cultures whether cells are grown on plastic or ECM. These results suggest that decreased incorporation of [3H]dT by cells cultured on ECM is not reflective of bone cell proliferation.  相似文献   

8.
The evolutionarily conserved Ras/Raf/MEK/ERK pathway is thought to be essential for proliferation of eukaryotic cells. The human multiple myeloma (MM) cell line 8226 encodes an activated K-ras allele and proliferates without requirement for the main MM growth and survival factor IL-6. Surprisingly, the addition of the MEK1/2 inhibitors PD98059 or U0126 to 8226 cultures at doses that block virtually all ERK1/2 activity had minimal effects on the rapid proliferation of this cell line. In contrast, proliferation of the IL-6-dependent MM cell line, ANBL-6 was blocked by PD98059. Levels of activated forms of the other classical MAP kinases (JNK and p38) were very low during MM cell proliferation and, therefore, do not substitute for the mitogenic activities normally regulated by ERK kinases. These data demonstrate that proliferation of 8226 cells does not require ERK1/2 activity, and suggest that IL-6-independent growth of MM may correlate with independence from a requirement for ERK activity. Other signal transduction pathways that appear to regulate cell cycle progression in these cells were examined.  相似文献   

9.
Abstract: Ethanol inhibits L1-mediated cell-cell adhesion in fibroblast cell lines stably transfected with human L1. Here we show that this action of ethanol is present in only a subset of transfected NIH/3T3 and L cell clonal cell lines. All L1-expressing cell lines had higher levels of cell adhesion than cell lines transfected with empty vector. In all ethanol-sensitive cell lines, L1-mediated adhesion was inhibited by ethanol (IC50 5–10 m M ), 2 m M butanol, but not 5 m M pentanol. In contrast, ethanol-insensitive cell lines were not inhibited by up to 200 m M ethanol, 2 m M butanol, or 5 m M pentanol. Ethanol sensitivity or insensitivity was a stable property of each cell line and was not associated with differences in electrophoretic mobility, abundance, or cell surface localization of L1. Fab fragments prepared from anti-L1 polyclonal antisera inhibited cell adhesion only in the ethanol-sensitive cell lines. These data suggest that L1 may exist in an alcohol-sensitive or an alcohol-insensitive state that may be governed by host cell factors.  相似文献   

10.
We examined the effect of chronic exposure of tumor cells to a mitogen-activated protein kinase/extracellular signal-regulated kinases (ERK) kinase inhibitor, PD98059, on cell proliferation was investigated. Human renal carcinoma cells (ACHN) and prostatic carcinoma cells (DU145) were cultured in the presence of PD98059 for more than 4 weeks (denoted ACHN (PD) cells and DU145 (PD) cells, respectively) and proliferation and signal transduction pathways were examined. PD98059 significantly inhibited the proliferation of parental cells. However, PD98059 failed to inhibit proliferation of ACHN (PD) and DU145 (PD) cells significantly. Expression of ERK 1 and 2 was elevated in these cells. These phenotypes were reversible. Downregulation of ERK 2, but not ERK 1, by small interfering RNA significantly inhibited the proliferation of ACHN (PD) and DU145 (PD) cells. Taken together, chronic exposure of tumor cells to PD98059 induced elevated expression of ERK 2, which was associated with decreased sensitivity of cellular proliferation to PD98059.  相似文献   

11.
BRCA1 mutations and estrogen use are risk factors for the development of breast cancer. Recent work has identified estrogen receptors localized at the plasma membrane that signal to cell biology. We examined the impact of BRCA1 on membrane estrogen and growth factor receptor signaling to breast cancer cell proliferation. MCF-7 and ZR-75-1 cells showed a rapid and sustained activation of extracellular signal-related kinase (ERK) in response to estradiol (E2) that was substantially prevented by wild-type (wt) but not mutant BRCA1. The proliferation of MCF-7 cells induced by E2 was significantly inhibited by PD98059, a specific ERK inhibitor, or by dominant negative ERK2 expression and by expression of wt BRCA1 (but not mutant BRCA1). E2 induced the synthesis of cyclins D1 and B1, the activity of cyclin-dependent kinases Cdk4 and CDK1, and G(1)/S and G(2)/M cell cycle progression. The intact tumor suppressor inhibited all of these. wt BRCA1 also inhibited epidermal growth factor and insulin-like growth factor I-induced ERK and cell proliferation. The inhibition of ERK and cell proliferation by BRCA1 was prevented by phosphatase inhibitors and by interfering RNA knockdown of the ERK phosphatase, mitogen-activated kinase phosphatase 1. Our findings support a novel tumor suppressor function of BRCA1 that is relevant to breast cancer and identify a potential interactive risk factor for women with BRCA1 mutations.  相似文献   

12.
Stimulation by both adrenergic and non-adrenergic pathways can induce proliferation of brown pre-adipocytes. To understand the signalling pathways involved in non-adrenergic stimulation of cell proliferation, we examined Erk1/2 activation. In primary cultures of mouse brown pre-adipocytes, both EGF (epidermal growth factor) and PDGF (platelet-derived growth factor) induced Erk1/2 activation. EGF-stimulated Erk1/2 activation involved Src tyrosine kinases, but not PKC or PI3K, whereas in PDGF-induced Erk1/2 activation, PI3K, PKC (probably the atypical ζ isoform) and Src were involved sequentially. Both EGF and PDGF induced PI3K-dependent Akt activation that was not involved in Erk1/2 activation. By comparing effects of signalling inhibitors (wortmannin, SH-6, TPA, Gö6983, PP2, PD98059) on EGF- and PDGF-induced Erk1/2 activation and cell proliferation (3H-thymidine incorporation), we conclude that while the signal transduction pathways initiated by these growth factors are clearly markedly different, their effects on cell proliferation can be fully explained through their stimulation of Erk1/2 activation; thus Erk1/2 is a common, essential step for stimulation of proliferation in these cells.  相似文献   

13.
14.
Although both estrogen and caveolin have been implicated in many physiological functions, their precise relationship is not completely understood in mouse embryonic stem (ES) cells. Thus, this study was designed to examine the relationship between estradiol-17beta (E(2)) and caveolin-1 in mouse ES cell proliferation. E(2) increased the expression of caveolin-1 and caveolin-2 mRNA and proteins, but pre-treatment with ICI 182,780 [an estrogen receptor (ER) antagonist] inhibited E(2)-induced increase in caveolin-1 and caveolin-2 proteins expression. E(2) also increased phosphorylated levels of caveolin-1, Src, and Akt. Phospho-caveolin-1 was significantly blocked by ICI 182,780 or pyrazolopyrimidine 2 (PP2; a Src-kinase inhibitor). LY 294002 (a PI3K inhibitor) or PD 98059 (an ERK1/2 inhibitor) prevented E(2)-induced increase in caveolin-1 expression and the accompanying [(3)H]-thymidine incorporation. Furthermore, inhibition of caveolin-1 expression using a caveolin-1 siRNA significantly attenuated E(2)-induced up-regulation of proto-oncogenes, cell cycle regulatory proteins, [(3)H]-thymidine incorporation, overall cell number, and percent of the cell population in S phase, while mediating a concomitant increase in the G0/G1 population. In conclusion, E(2) stimulates mouse ES cell proliferation partially through up-regulating caveolin-1 via the Src, PI3K/Akt, ERK1/2 signaling pathways.  相似文献   

15.
16.
17.
Abstract: The ability of ethanol to interfere with insulin-like growth factor 1 (IGF-1)-mediated cell survival was examined in primary cultured cerebellar granule neurons. Cells underwent apoptosis when switched from medium containing 25 m M K+ to one containing 5 m M K+. IGF-1 protected granule neurons from apoptosis in medium containing 5 m M K+. Ethanol inhibited IGF-1-mediated neuronal survival but did not inhibit IGF-1 receptor binding or the neurotrophic action of elevated K+, and failed to potentiate cell death in the presence of 5 m M K+. Inhibition of neuronal survival by ethanol was not reversed by increasing the concentration of IGF-1. Significant inhibition by ethanol (15–20%) was observed at 1 m M and was half-maximal at 45 m M . The inhibition of IGF-1 protection by ethanol corresponded to a marked reduction in the phosphorylation of insulin receptor substrate 1, the binding of phosphatidylinositol 3-kinase (PI 3-kinase), and a block of IGF-1-stimulated PI 3-kinase activity. The neurotrophic response of IGF-1 was also inhibited by the PI 3-kinase inhibitor LY294002, the protein kinase C inhibitor chelerythrine chloride, and the protein kinase A inhibitor KT5720, but unaffected by the mitogen-activated protein kinase kinase inhibitor PD 98059. These data demonstrate that ethanol promotes cell death in cerebellar granule neurons by inhibiting the antiapoptotic action of IGF-1.  相似文献   

18.
In addition to important roles in the regulation of cell growth and cell restitution, both pro- and anti-inflammatory effects have been ascribed to TGFbeta in intestinal epithelial cells. However, the mechanisms involved in TGFbeta-dependent anti-inflammatory activities remain to be determined. In the rat intestinal epithelial cell line IEC-6, TGFbeta attenuated the glucocorticoid-dependent increases in mRNA levels of the acute phase protein gene haptoglobin, and of C/EBP isoforms beta and delta. Supershift assays demonstrated a TGFbeta-mediated decrease in the binding of C/EBP isoforms beta and delta to the haptoA and haptoC C/EBP DNA-binding sites from the haptoglobin promoter. Mutations of both HaptoA and HaptoC sites abolished the glucocorticoid-dependent activation and the TGFbeta-mediated attenuation of the haptoglobin promoter, as assessed by transient transfection assays. TGFbeta induced p42/p44 MAP kinase activities. Treatment with the MEK 1/2 inhibitor PD 98059 abolished TGFbeta attenuation. These results suggest that C/EBP isoforms are involved both in the glucocorticoid-dependent induction and in the TGFbeta-mediated attenuation of haptoglobin expression. Furthermore, p42/p44 MAP kinases may function in a TGFbeta-dependent signaling pathway leading to attenuation of haptoglobin expression.  相似文献   

19.
Bovine type I collagen (BIC), which is widely used as a fibrous extracellular matrix component in cell culture models, inhibits the progression of melanoma cell cycle via p27 up-regulation. BIC also induces nitric oxide synthase in macrophages through JunB/AP-1 and NF-kappaB activation. Given the previous observations, this study investigates the effect of BIC on the cell cycle progression and regulatory function of Raw264.7 macrophage cells and the responsible signaling pathways. Cell cycle analysis revealed that BIC completely suppressed proliferation of Raw264.7 cells with inhibition of the percentage of cells in the S phase and the reciprocal decrease in the G0/G1 phase. DNA synthesis was also inhibited by BIC, as evidenced by a decrease in the cellular incorporation of [3H]thymidine. The G1/S arrest induced by BIC was reversed by chemical inhibition of phosphatidylinositol 3-kinase (PI3-kinase) or overexpression of the p85 subunit of PI3-kinase. Either PD98059 or stable transfection with mitogen-activated protein kinase kinase-1 [MKK1(-)] or c-Jun N-terminal kinase 1 [JNK1(-)] also released the cell cycle arrest. Immunoblot analyses revealed that the levels of cyclins D1, A and B1 were partly or completely down-regulated by BIC, but cyclin E, p21 and p27 were minimally changed. Chemical inhibition and dominant negative mutant overexpression experiments revealed that either PI3-kinase inhibition or JNK1(-) transfection prevented the decreases in cyclin D1, A and B1 by BIC, indicating that the PI3-kinase and JNK1 pathways were associated with disruption of the cyclins. The pathway involving MKK1-extracellular signal-regulated kinase-1/2 (ERK1/2) was responsible for the suppression of cyclin A and B1, but not that of cyclin D1. The present study showed that BIC inhibited proliferation of Raw264.7 cells and that the pathways involving PI3-kinase and mitogen-activated protein kinases regulate the cell cycle arrest.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号