首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The development of haem biosynthetic enzyme activity during normoblastic human erythropoiesis was examined in seven patients. The first and last enzymes of the haem biosynthetic pathway, ALA synthase and ferrochelatase, were assayed by radiochemical/high performance liquid chromatographic (HPLC) methods. An assay for ferrochelatase activity in human bone marrow was developed. Enzyme substrates were protoporphyrin IX and 59Fe2+ ions. 59Fe-labelled haem was isolated by organic solvent extraction/sorbent extraction followed by reversed-phase HPLC. Optimal activity occurred at pH 7.3 in the presence of ascorbic acid, in darkness and under anaerobic conditions. Haem production was proportional to cell number and was linear with time to 30 min. The assay was sensitive to the picomolar range of haem production. ALA synthase and ferrochelatase activity was assayed in four highly purified age-matched erythroid cell populations. ALA synthase activity was maximal in the most immature erythoid cells and diminished as the cells matured with an overall five fold loss of activity from proerythroblast to late erythroblast development. Ferrochelatase activity was, however, more stable with less than a two fold change in activity observed during the same period of erythroid differentiation. Maximal activity occurred in erythroid fractions enriched with intermediate erythroblasts. These results support sequential rather than simultaneous appearance of these enzymes during normoblastic erythropoiesis. Quantitative analysis of relative enzyme activity however indicates that at all times during erythroid differentiation ferrochelatase activity is present in excess to that theoretically required relative to ALA synthase activity since ALA and haem are not produced in stoichiometric amounts. The lability of ALA synthase versus the stability and gross relative excess of ferrochelatase activity indicates a far greater role for ALA synthase in the regulation of erythroid haem biosynthesis than for ferrochelatase.  相似文献   

2.
Heme is a cofactor for proteins participating in many important cellular processes, including respiration, oxygen metabolism and oxygen binding. The key enzyme in the heme biosynthesis pathway is ferrochelatase (protohaem ferrolyase, EC 4.99.1.1), which catalyzes the insertion of ferrous iron into protoporphyrin IX. In higher plants, the ferrochelatase enzyme is localized not only in mitochondria, but also in chloroplasts. The plastidic type II ferrochelatase contains a C-terminal chlorophyll a/b (CAB) motif, a conserved hydrophobic stretch homologous to the CAB domain of plant light harvesting proteins and light-harvesting like proteins. This type II ferrochelatase, found in all photosynthetic organisms, is presumed to have evolved from the cyanobacterial ferrochelatase. Here we describe a detailed enzymological study on recombinant, refolded and functionally active type II ferrochelatase (FeCh) from the cyanobacterium Synechocystis sp. PCC 6803. A protocol was developed for the functional refolding and purification of the recombinant enzyme from inclusion bodies, without truncation products or soluble aggregates. The refolded FeCh is active in its monomeric form, however, addition of an N-terminal His6-tag has significant effects on its enzyme kinetics. Strikingly, removal of the C-terminal CAB-domain led to a greatly increased turnover number, kcat, compared to the full length protein. While pigments isolated from photosynthetic membranes decrease the activity of FeCh, direct pigment binding to the CAB domain of FeCh was not evident.  相似文献   

3.
We examined the activity of heme synthesis when ferrochelatase purified from rat liver mitochondria was incubated with ferric chloride and mesoporphyrin IX as substrates in the absence of reducing reagents. In the presence of the NADH dehydrogenase-rich fraction and NAD(P)H, mesoheme was synthesized; the addition of FMN or FAD markedly enhanced the activity. These results indicate that the NAD(P) H-oxidizing system reduces ferric ion to ferrous ion. This ferrous ion is then utilized for heme synthesis by ferrochelatase. The effect of lead on NAD(P)H-dependent heme synthesis was also examined. Lead reduced NAD(P)H-dependent heme synthesis by 50% at 10(-5) M, but had no effect when ferrous ion was used as substrate. Zn-Porphyrin synthesis was not changed in the presence of Pb2+ at 10(-5) M. Thus, heme synthesis from ferric ion was more susceptible to Pb2+ than heme synthesis from ferrous ion.  相似文献   

4.
Rapid, sensitive and specific high-performance liquid chromatographic assays are described for protoporphyrinogen oxidase and ferrochelatase in human leucocytes. The enzyme reaction products were separated and quantitated by reversed-phase high-performance liquid chromatography with fluorescence detection. The optimal pH for the protoporphyrinogen oxidase assay was 8.6 and the Michaelis constant for protoporphyrinogen IX was 9.78 ± 0.96 μM (mean ± S.D.). The mean (± S.D.) activity of protoporphyrinogen oxidase in fourteen apparently healthy subjects was 0.146 ± 0.023 nmol protoporphyrin IX per min per mg protein. In one patient with variegate porphyria, the activity was 0.028 nmol protoporphyrin IX per min per mg protein. The optimal pH for ferrochelatase was 7.4 and with protoporphyrin and Zn2+ as substrates, the Michaelis constants were 1.49 and 8.33 μM, respectively. The mean activity of ferrochelatase in ten control subjects was 0.24 nM Zn—protoporphyrin or 2.05 nM Zn—mesoporphyrin formed per h per mg protein.  相似文献   

5.
Administration of the porphyrogenic agent, 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) to mice, leads to the accumulation of N-methylprotoporphyrin IX in liver. This porphyrin is a potent inhibitor of ferrochelatase activity and accounts for the porphyria produced after DDC administration. The N-methylprotoporphyrin IX extracted from DDC-treated mice is primarily of one isomeric form, as shown by nuclear magnetic resonance spectroscopy. The methyl group of N-methylprotoporphyrin IX isolated from DDC-treated mice is derived mostly from the 4-methyl group of DDC. The transfer of this methyl group and its subsequent covalent attachment to protoporphyrin IX may be mediated by a form of hepatic microsomal cytochrome P-450. N-Methylprotoporphyrin IX is also found in livers of untreated mice at levels that are low but significant.  相似文献   

6.
The hemoglobins of Spirocamallanus cricotus, a reddish-colored, camallanid nematode, and its Atlantic croacker fish host, Micropogonias undulatus, were characterized with spectrophotometry and isoelectric focusing. Hemoglobin from female parasites' perienteric fluid and homogenized male parasites gave Spectrophotometric peaks at 412, 539, and 575 nm, whereas female worms drained of perienteric fluid and homogenized differed by having a Soret peak of 408 nm. Changing the ionic strength of the buffer from 0.1 to 0.01 M shifted the Soret peak to 406 nm for the female parasites' perienteric fluid and ground male parasites and 404 nm for homogenized female parasites. In all cases, the β band had a higher absorption than the α band suggesting a high O2 affinity for the parasite hemoglobin. Host hemoglobin had peaks of 406, 437, and 577 nm. Isoelectric focusing not only confirmed the Spectrophotometric evidence that host and parasite hemoglobins differed, but also showed that the parasite's analyzed hemoglobin fractions differed from one another by having different isoelectric points.  相似文献   

7.
A continuous spectrofluorimetric assay for determining ferrochelatase activity has been developed using the physiological substrates ferrous iron and protoporphyrin IX under strictly anaerobic conditions. In contrast to heme, the product of the ferrochelatase-catalyzed reaction, protoporphyrin IX is fluorescent, and therefore the progress of the reaction can be monitored by following the decrease in protoporphyrin fluorescence intensity (with excitation and emission wavelengths at 505 and 635 nm, respectively). This continuous fluorimetric assay detects activities as low as 0.01 nmol porphyrin consumed min(-1), representing an increase in sensitivity of up to two orders of magnitude over the currently used, discontinuous assays. The determination of the steady-state kinetic parameters of ferrochelatase yielded K(m)(PPIX)=1.4+/-0.2 microM, K(m)(Fe(2+))=1.9+/-0.3 microM, and k(cat)=4.0+/-0.3 min(-1). In addition to its applicability for acquisition of kinetic data to characterize ferrochelatase and recombinant variants, this new method should permit detection of low concentrations of ferrochelatase in biological samples.  相似文献   

8.
Extracts of the phycocyanin-containing unicellular red alga, Cyanidium caldarium, catalyzed enzymatic cleavage of the heme macrocycle to form the linear tetrapyrrole bilin structure. This is the key first step in the branch of the tetrapyrrole biosynthetic pathway leading to phycobilin photosynthetic accessory pigments. A mixed-function oxidase mechanism, similar to the biliverdin-forming reaction catalyzed by animal cell-derived microsomal heme oxygenase, was indicated by requirements for O2 and a reduced pyridine nucleotide. To avoid enzymatic conversion of the bilin product to phycocyanobilins and subsequent degradation during incubation, mesoheme IX was substituted for the normal physiological substrate, protoheme IX. Mesobiliverdin IX alpha was identified as the primary incubation product by comparative reverse-phase high-pressure liquid chromatography and absorption spectrophotometry. The enzymatic nature of the reaction was indicated by the requirement for cell extract, absence of activity in boiled cell extract, high specificity for NADPH as cosubstrate, formation of the physiologically relevant IX alpha bilin isomer, and over 75% inhibition by 1 microM Sn-protoporphyrin, which has been reported to be a competitive inhibitor of animal microsomal heme oxygenase. On the other hand, coupled oxidation of mesoheme, catalyzed by ascorbate plus pyridine or myoglobin, yielded a mixture of ring-opening mesobiliverdin IX isomers, was not inhibited by Sn-protoporphyrin, and could not use NADPH as the reductant. Unlike the animal microsomal heme oxygenase, the algal reaction appeared to be catalyzed by a soluble enzyme that was not sedimentable by centrifugation for 1 h at 200,000g. Although NADPH was the preferred reductant, small amounts of activity were obtained with NADH or ascorbate. A portion of the activity was retained after gel filtration of the cell extract to remove low-molecular-weight components. Considerable stimulation of activity, particularly in preparations that had been subjected to gel filtration, was obtained by addition of ascorbate to the incubation mixture containing NADPH. The results indicate that C. caldarium possesses a true heme oxygenase system, with properties somewhat different from that catalyzing heme degradation in animals. Taken together with previous results indicating that biliverdin is a precursor to phycocyanobilin, the results suggest that algal heme oxygenase is a component of the phycobilin biosynthetic pathway.  相似文献   

9.
The effects of two porphyrogenic agents, 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) and 3,5-diethoxycarbonyl-2,6-dimethyl-4-ethyl-1,4-dihydropyridine (DDEP), have been studied in rats. The administration of these compounds leads to the formation and accumulation in the liver of N-methylprotoporphyrin IX and N-ethylprotoporphyrin IX, respectively. In each case, the alkyl group of the porphyrin is derived from the 4-alkyl group of the porphyrogenic chemical. Each N-alkylporphyrin is a potent inhibitor of protoheme ferrolyase (EC 4.99.1.1) (ferrochelatase) activity. N-Methylprotoporphyrin IX is somewhat more potent than N-ethylprotoporphyrin IX as an inhibitor of ferrochelatase activity in vitro. However, more N-ethylprotoporphyrin IX accumulates in rat liver than does the N-methyl analog. Since alkylporphyrins are formed during the catabolism of heme (or hemoprotein), the effects of DDC and DDEP on hepatic microsomal cytochrome P-450 were also studied. Whereas DDC treatment led to only a slight decrease in cytochrome P-450 levels (25%), DDEP administration led to a marked decrease (75%) in the total cytochrome P-450 level. In phenobarbital- and 3-methylcholanthrene-treated rats, DDC administration did not alter the hepatic microsomal cytochrome P-450 content, while administration of DDEP to either phenobarbital-treated or 3-methylcholanthrene-treated rats led to marked reduction of levels in cytochrome P-450. Although the N-methylprotoporphyrin IX level was not increased following DDC administration to either phenobarbital- or 3-methylcholanthrene-treated rats, there was a marked increase in N-ethylprotoporphyrin IX accumulation in both phenobarbital- and 3-methylcholanthrene-treated rats after the administration of DDEP. These results suggest that DDC and DDEP react with different forms of rat hepatic microsomal cytochrome P-450.  相似文献   

10.
The specific insertion of a divalent metal ion into tetrapyrrole macrocycles is catalyzed by a group of enzymes called chelatases. Distortion of the tetrapyrrole has been proposed to be an important component of the mechanism of metallation. We present the structures of two different inhibitor complexes: (1) N-methylmesoporphyrin (N-MeMP) with the His183Ala variant of Bacillus subtilis ferrochelatase; (2) the wild-type form of the same enzyme with deuteroporphyrin IX 2,4-disulfonic acid dihydrochloride (dSDP). Analysis of the structures showed that only one N-MeMP isomer out of the eight possible was bound to the protein and it was different from the isomer that was earlier found to bind to the wild-type enzyme. A comparison of the distortion of this porphyrin with other porphyrin complexes of ferrochelatase and a catalytic antibody with ferrochelatase activity using normal-coordinate structural decomposition reveals that certain types of distortion are predominant in all these complexes. On the other hand, dSDP, which binds closer to the protein surface compared to N-MeMP, does not undergo any distortion upon binding to the protein, underscoring that the position of the porphyrin within the active site pocket is crucial for generating the distortion required for metal insertion. In addition, in contrast to the wild-type enzyme, Cu2+-soaking of the His183Ala variant complex did not show any traces of porphyrin metallation. Collectively, these results provide new insights into the role of the active site residues of ferrochelatase in controlling stereospecificity, distortion and metallation.  相似文献   

11.
In this work, we corrected the resonance Raman (RR) results presented earlier for deoxy mesoheme IX-reconstituted hemoglobin (mesoHb) alpha and beta subunits implied that mesohemes in these subunits undergo substantial structural changes upon formation of a hemoglobin tetramer (Biochemistry 29 (1990) 5087). We show that these data were probably due to the improper handling of the deoxy mesoheme subunit preparation. Additionally, we discuss the RR spectra of deoxy, oxy, and CO species of mesoheme IX-reconstituted myoglobin (mesoMb) and alpha and beta deoxy meso hemoglobin subunits, including their analogues with deuterium-substituted mesoheme IX in all methyl groups (d(12)). Based on the obtained data, we propose a complete RR band assignment for all of the investigated molecules. The most pronounced changes are observed for the gamma(7) mode (out-of-plane movement of methane carbon atoms) associated with the interaction of the ethyl groups with the globin. We also show that in mesoheme IX-reconstituted proteins, the O(2) molecule binds stronger than in the case of native species. This is manifested by the up-shift of nu(Fe-O(2)).  相似文献   

12.
Ferrochelatase catalyzes the metallation of protoporphyrin IX in the terminal step of heme biosynthesis. Mutations in the ferrochelatase gene can lead to the disease erythropoietic porphyria. The catalyzing mechanism of ferrochelatase is still not fully understood. In this paper, we have studied the insertion of Fe2+ into the protoporphyrin IX ring by Bacillussubtilis ferrochelatase using combined quantum mechanical and molecular mechanics (QM/MM) calculations. Geometries were optimized at the BP86/6-31G∗ level and energies were calculated at the B3LYP/TZVP level. The overall process involves the stepwise displacement of Glu-264, His-183, and a water molecule from Fe2+, and the removal of two protons from the porphyrin ring. The rate-determining step is the cleavage of the bond between the oxygen atom of Glu-264 and Fe2+, concomitant with the formation of the first Fe-N bond. It has an energy barrier of 57 kJ mol−1. The porphyrin ring is only slightly distorted in the enzyme active site. The residue Tyr-13 plays a key role for the catalytic process extracting two protons from protoporphyrin IX.  相似文献   

13.
Novel pyrazolylbenzo[d]imidazole derivatives (2a2f) were designed, synthesized and evaluated against four human carbonic anhydrase isoforms belonging to α family comprising of two cytosolic isoforms hCA I and II as well as two transmembrane tumor associated isoforms hCA IX and XII. Starting from these derivatives that showed high potency but low selectivity in favor of tumor associated isoforms hCA IX and XII, we investigated the impact of removing the sulfonamide group. Thus, analogs 3a3f without sulfonamide moiety were synthesized and biological assay revealed a good activity as well as an excellent selectivity as inhibitors for tumor associated hCA IX and hCA XII and the same was analyzed by molecular docking studies.  相似文献   

14.
Facultative phototrophs such as Rhodobacter sphaeroides can switch between heterotrophic and photosynthetic growth. This transition is governed by oxygen tension and involves the large‐scale production of bacteriochlorophyll, which shares a biosynthetic pathway with haem up to protoporphyrin IX. Here, the pathways diverge with the insertion of Fe2+ or Mg2+ into protoporphyrin by ferrochelatase or magnesium chelatase, respectively. Tight regulation of this branchpoint is essential, but the mechanisms for switching between respiratory and photosynthetic growth are poorly understood. We show that PufQ governs the haem/bacteriochlorophyll switch; pufQ is found within the oxygen‐regulated pufQBALMX operon encoding the reaction centre–light‐harvesting photosystem complex. A pufQ deletion strain synthesises low levels of bacteriochlorophyll and accumulates the biosynthetic precursor coproporphyrinogen III; a suppressor mutant of this strain harbours a mutation in the hemH gene encoding ferrochelatase, substantially reducing ferrochelatase activity and increasing cellular bacteriochlorophyll levels. FLAG‐immunoprecipitation experiments retrieve a ferrochelatase‐PufQ‐carotenoid complex, proposed to regulate the haem/bacteriochlorophyll branchpoint by directing porphyrin flux toward bacteriochlorophyll production under oxygen‐limiting conditions. The co‐location of pufQ and the photosystem genes in the same operon ensures that switching of tetrapyrrole metabolism toward bacteriochlorophyll is coordinated with the production of reaction centre and light‐harvesting polypeptides.  相似文献   

15.
Porphyromonas gingivalis acquires heme through an outer-membrane heme transporter HmuR and heme-binding hemophore-like lipoprotein HmuY. Here, we compare binding of iron(III) mesoporphyrin IX (mesoheme) and iron(III) deuteroporphyrin IX (deuteroheme) to HmuY with that of iron(III) protoporphyrin IX (protoheme) and protoporphyrin IX (PPIX) using spectroscopic methods. In contrast to PPIX, mesoheme and deuteroheme enter the HmuY heme cavity and are coordinated by His134 and His166 residues in a fully analogous way to protoheme binding. However, in the case of deuteroheme two forms of HmuY–iron porphyrin complex were observed differing by a 180° rotation of porphyrin about the α-γ-meso-carbon axis. Since the use of porphyrins either as active photosensitizers or in combination with antibiotics may have therapeutic value for controlling bacterial growth in vivo, it is important to compare the binding of heme derivatives to HmuY.  相似文献   

16.
Lateral roots (LRs) play important roles in increasing the absorptive capacity of roots as well as to anchor the plant in the soil. Therefore, understanding the regulation of LR development is of agronomic importance. In this study, we examined the effect of methyl jasmonate (MJ) on LR formation in rice. Treatment with MJ induced LR formation and heme oxygenase (HO) activity. As well, MJ could induce OsHO1 mRNA expression. Zinc protoporphyrin IX (the specific inhibitor of HO) and hemoglobin [the carbon monoxide/nitric oxide (NO) scavenger] reduced LR formation, HO activity and OsHO1 expression. LR formation and HO activity induced by MJ was reduced by the specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-oxide. The effects of Ca2+ chelators, Ca2+-channel inhibitors, and calmodulin (CaM) antagonists on LR formation induced by MJ were also examined. All these inhibitors were effective in reducing the action of MJ. However, Ca2+ chelators and Ca2+ channel inhibitors induced HO activity when combining with MJ further. It is concluded that Ca2+ may regulate MJ action mainly through CaM-dependent mechanism.  相似文献   

17.
Magnesium-protoporphyrin IX (or its monomethyl ester) is the first committed intermediate in the biosynthesis of chlorophyll in green plants. Membranes from lysed washed cucumber etiochloroplasts synthesized small amounts of 14C-labelled magnesium-protoporphyrin IX from [14C]protoporphyrin IX at the rate of 1–3 pmol/h per mg protein. Maximum activity in these membrane preparations was dependent upon added EDTA, GSH, ATP and MgCl2. Activity was totally dependent upon added ATP, probably as the species MgATP2? and there was also a requirement for Mg2+ in addition to that used to form the MgATP2? complex.  相似文献   

18.
1. Haems are unstable under aerobic conditions in the presence of thiols, which are used to activate the ferrochelatase enzyme; catalase inhibits this degradation of haem. In addition, thiols interfere with the determination of protohaem as its pyridine haemochromogen derivative. 2. Three ferrochelatase assays are described that minimize interference by these two reactions. Two of these assays involve measurement of porphyrin utilization, one spectrophotometrically and the second spectrofluorimetrically. The third assay measures haem formation by a pyridine haemochromogen technique. Results obtained with these three methods were in close agreement at a GSH concentration of 4mm. 3. The stimulatory effect of GSH on ferrochelatase has been confirmed. The spectrum of the haem formed is dependent on GSH concentration; at high GSH concentrations (20mm) the haem is in the reduced state, but at low concentration (4mm) the spectrum of the product resembles that of an oxidized haemoprotein such as ferrihaemoglobin. 4. The inhibitory effect of oxygen on ferrochelatase activity has been confirmed by spectrophotometric assay of porphyrin disappearance.  相似文献   

19.
In addition to chlorophyll-protein complexes, other proteins were labeled when isolated developing pea (Pisum sativum L.) chloroplasts were incubated with [14C]-5-aminolevulinic acid. The major labeled band (Mr = 43 kilodaltons by lithium dodecyl sulfate-polyacrylamide gel electrophoresis) was labeled even in the presence of chloramphenicol. Heme-dependent peroxidase activity (as detected by the tetramethyl benzidine-H2O2 stain) was not visibly associated with this band. The radioactive band was stable to heat, 5% HCl in acetone, and was absent if the incubation with [14C]-5-aminolevulinic acid was carried out in the presence of N-methyl protoporphyrin IX dimethyl ester (a specific inhibitor of ferrochelatase). Organic solvent extraction procedures for the enrichment of cytochrome f from chloroplast membranes also extracted this unknown labeled product. It was concluded that this labeled product was probably a c-type cytochrome; however, the possibility that it might be a protein containing a covalently linked linear tetrapyrrole was not ruled out.  相似文献   

20.
Due to their spectroscopic properties porphyrins are of special interest for a variety of applications, ranging from drug development or targeting to material sciences and chemical and biological sensors. Since chemical syntheses are limited in terms of regio- and stereoselective functionalization of porphyrins, a biosynthetic approach with tailored enzyme catalysts offers a promising alternative. In this paper, we describe assembly of the entire heme biosynthetic pathway in a three-plasmid system and overexpression of the corresponding genes with Escherichia coli as a host. Without further optimization, this approach yielded remarkable porphyrin production levels, up to 90 μmol/liter, which is close to industrial vitamin B12 production levels. Different combinations of the genes were used to produce all major porphyrins that occur as intermediates in heme biosynthesis. All these porphyrin intermediates were obtained in high yields. The product spectrum was analyzed and quantified by using high-performance liquid chromatography. Intriguingly, although protoporphyrin IX could be produced at high levels, overexpressed Bacillus subtilis ferrochelatase could not convert this substrate appreciably into heme. However, further investigation clearly revealed a high level of expression of the ferrochelatase and a high level of activity in vitro. These results may indicate that heme has a regulatory impact on the iron uptake of E. coli or that the ferrochelatase is inactive in vivo due to an incompatible enzyme interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号