首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sawicki G  Dakour J  Morrish DW 《Proteomics》2003,3(10):2044-2051
Neurokinin B (NKB) has recently been demonstrated to be secreted from the placenta in abnormally high amounts in preeclampsia (PE) and to cause hypertension in rats, suggesting it may be a mediator of some pathophysiological features of PE. It is also known that NKB receptors exist in the placenta. To determine the effect of high levels of NKB on the placenta, we have performed proteomics on five separate preparations of cultured purified human term cytotrophoblast cells. The results showed a statistically significant decrease in 20 proteins, of which five were unknown proteins. Proteins important in antioxidant defenses that decreased were thioredoxin, cyclophilin A, cytokeratin 1, and peroxiredoxin 5. Two proteins that inhibit intravascular anticoagulation, cytokeratin 1 and annexin 11 were also decreased. Pathways involving pro-inflammatory cytokine activation of NF-kappa B are opposed by Raf kinase inhibitor protein, which was also decreased. Cofilin 1, a protein involved in defense against bacteria, was also decreased. Among other proteins that were suppressed by NKB were proteasome proteins, desmoplakin, and calgizzarin. Western blots confirmed the decrease in cytokeratin 1 and cyclophilin A protein after NKB exposure. In PE, there is reduced antioxidant activity and increased intravascular coagulation. The findings that high levels of NKB, similar to those observed in PE, can impair these two classes of activity support the hypothesis that high NKB levels may contribute to the pathogenesis of PE.  相似文献   

2.
The in vivo cardiovascular effects of acutely administered neurokinin B (NKB) have been attributed both to direct effects on vascular tone and to indirect effects on central neuroendocrine control of the circulation. We proposed: 1) that a modest long-term increase in plasma NKB levels would decrease mean arterial pressure (MAP) due to attenuated peripheral vascular tone, and 2) that chronic high-dose NKB would increase MAP, due to increased sympathetic outflow which would override the peripheral vasodilation. We examined the in vivo and in vitro cardiovascular effects of chronic peripheral NKB. Low- (1.8 nmol/h) or high- (20 nmol/h) dose NKB was infused into conscious female rats bearing telemetric pressure transducers. MAP, heart rate (HR) and the pressor responses to I.V. phenylephrine (PE, 8 microg) and angiotensin II (Ang II, 150 ng) were measured. Concentration-response curves of small mesenteric arteries were constructed to PE using wire myography. Low-dose NKB reduced basal MAP (88+/-2 mm Hg to 83+/-2 mm Hg), did not affect resting HR, reduced the pressor responses to PE, and attenuated the maximal constriction of mesenteric arteries to PE and KCl. By contrast, high-dose NKB increased basal MAP (86+/-1 mm Hg to 89+/-1 mm Hg), increased HR (350+/-3 beats/min to 371+/-3 beats/min), increased the pressor responses to Ang II and, contrary to our hypothesis, increased the maximum contractile responses of mesenteric arteries to PE and KCl. The cardiovascular effects of NKB are thus dose-dependent: whereas chronic low-dose NKB directly modulates vascular tone to reduce blood pressure, chronic high-dose NKB induces an increase in blood pressure through both central (indirect) and peripheral (direct) pathways.  相似文献   

3.
Pre-eclampsia (PE) complicates around 3% of all pregnancies and is one of the most common causes of maternal mortality worldwide. The pathophysiology of PE remains unclear however its underlying cause originates from the placenta and manifests as raised blood pressure, proteinuria, vascular or systemic inflammation and hypercoagulation in the mother. Women who develop PE are also at significantly higher risk of subsequently developing cardiovascular (CV) disease. In PE, the failing endoplasmic reticulum, oxidative and inflammatory stressed syncytiotrophoblast layer of the placenta sheds increased numbers of syncytiotrophoblast extracellular vesicles (STBEV) into the maternal circulation. Platelet reactivity, size and concentration are also known to be altered in some women who develop PE, although the underlying reasons for this have not been determined. In this study we show that STBEV from disease free placenta isolated ex vivo by dual placental perfusion associate rapidly with platelets. We provide evidence that STBEV isolated from normal placentas cause platelet activation and that this is increased with STBEV from PE pregnancies. Furthermore, treatment of platelets with aspirin, currently prescribed for women at high risk of PE to reduce platelet aggregation, also inhibits STBEV-induced reversible aggregation of washed platelets. Increased platelet reactivity as a result of exposure to PE placenta derived STBEVs correlates with increased thrombotic risk associated with PE. These observations establish a possible direct link between the clotting disturbances of PE and dysfunction of the placenta, as well as the known increased risk of thromboembolism associated with this condition.  相似文献   

4.
We have previously demonstrated the presence in human placenta and maternal serum of a GH variant, called human placental growth hormone (hPGH). We have also shown that the hGH-V gene is expressed at the placental level thus possibly coding for hPGH. The hGH-V cDNA has now been isolated from a lambda gt 11 human placenta cDNA library. Its sequence has been determined which firmly establishes the GH-V gene mode of splicing as well as the GH-V protein structure. Our data give final evidence of placental hGH-V gene expression and reinforce the hypothesis of identity between the hGH-V protein and hPGH.  相似文献   

5.
Guo  Mengxi  Zhou  Chengliang  Xu  Gufeng  Tang  Lin  Ruan  Yechun  Yu  Ying  Lin  Xianhua  Wu  Dandan  Chen  Hao  Yu  Priscilla  Jin  Luyang  Wang  Yinyu  Wu  Yimei  Ullah  Kamran  Rahman  Tanzil Ur  Liu  Xinmei  Sheng  Jianzhong  Chan  Hsiao-Chang  Huang  Hefeng 《中国科学:生命科学英文版》2020,63(3):388-400
The pathophysiology of preeclampsia (PE) remains unclear.PE spiral artery remodeling dysfunction and PE offspring cardiovascular future development has been a worldwide concern.We collected placental and umbilical artery samples from normotensive and PE pregnancies.Mineralocorticoid receptor (MR) and its alternative splicing variant (ASV) expression and their biological effects on PE were examined.An MR ASV was found to be highly expressed in all PE samples and slightly expressed in about half of the normotensive samples (umbilical artery,~57.58%;placenta,~36.84%).The MR ASV expression was positively associated with blood pressure in both groups.The MR ASV protein changed the aldosterone-induced expression pattern of MR target genes related to ion exchanges and cell signaling pathways.The MR ASV can also impair the proliferation,migration,and tube formation ability of endothelial cells.These findings indicate that MR ASV in PE placenta plays a pathogenic role in PE pathophysiology,especially in endothelial dysfunction,and the existence of the MR ASV in PE umbilical artery provides a new direction in the study of PE offspring with increased risk of cardiovascular diseases.  相似文献   

6.
Preeclampsia (PE) is a potentially fatal pregnancy-related hypertensive disorder characterized by poor placenta development that can cause fetal growth restriction. PE-associated pathologies, including thrombosis, hypertension, and impaired placental development, may result from imbalances between thromboxane A2 (TXA2) and prostacyclin. Low-dose aspirin, which selectively inhibits TXA2 production, is used to prevent high-risk PE. However, the role of TXA2 in aspirin-mediated protective effects in women with PE is not understood fully. In this study, we examined the role of prostanoids in PE using human samples and an induced PE mouse model. We demonstrated that the administration of salted drinking water (2.7% NaCl) to wild-type mice resulted in elevated placental TXA2 synthase (TXAS) and plasma TXA2, but not prostacyclin, levels, which was also found in our clinical PE placenta samples. The high salt-treated wild-type pregnant mice had shown unchanged maternal body weight, hypertension (MAP increase 15 mmHg), and decreased pup weight (~50%) and size (~24%), but these adverse effects were ameliorated in TXAS knockout (KO) mice. Moreover, increased expression of interleukin-1β and downstream phosphorylated-p38-mitogen-activated protein kinase were concordant with apoptosis induction in the placentas of salt water-treated wild-type mice. These alterations were not observed in TXAS KO mice. Together, our data suggest that TXA2 depletion has anti-PE effects due to the prevention of hypertension and placental damage through downregulation of the interleukin-1β pathway.  相似文献   

7.
Placental abnormalities are associated with two of the most common and serious complications of human pregnancy, maternal preeclampsia (PE) and fetal intrauterine growth restriction (IUGR), each disorder affecting ~5% of all pregnancies. An important question for the use of the mouse as a model for studying human disease is the degree of functional conservation of genetic control pathways from human to mouse. The human and mouse placenta show structural similarities, but there have been no systematic attempts to assess their molecular similarities or differences. We collected protein and mRNA expression data through shot‐gun proteomics and microarray expression analysis of the highly vascular exchange region, microdissected from the human and mouse near‐term placenta. Over 7000 ortholog genes were detected with 70% co‐expressed in both species. Close to 90% agreement was found between our human proteomic results and 1649 genes assayed by immunohistochemistry for expression in the human placenta in the Human Protein Atlas. Interestingly, over 80% of genes known to cause placental phenotypes in mouse are co‐expressed in human. Several of these phenotype‐associated proteins form a tight protein–protein interaction network involving 15 known and 34 novel candidate proteins also likely important in placental structure and/or function. The entire data are available as a web‐accessible database to guide the informed development of mouse models to study human disease.  相似文献   

8.
Preeclampsia (PE) is a serious medically important disorder of human pregnancy, which features de novo pregnancy-induced hypertension and proteinuria. The severe form of PE can progress to eclampsia, a convulsive, life-threatening condition. When placental growth and perfusion are abnormal, the placenta experiences oxidative stress and subsequently secretes abnormal amounts of certain pro-angiogenic factors (eg, PlGF) as well as anti-angiogenic factors (eg, sFlt-1) that enter the maternal circulation. The net effect is damage to the maternal vascular endothelium, which subsequently manifests as the clinical features of PE. Other than delivery of the fetus and placenta, curative treatments for PE have not yet been forthcoming, which reflects the complexity of the clinical syndrome. A major source of reactive oxygen species that contributes to the widespread maternal vascular endothelium damage is the PE-affected decidua. The role of decidua-derived mesenchymal stem/stromal cells (MSC) in normotensive and pathological placenta development is poorly understood. The ability to respond to an environment of oxidative damage is a “universal property” of MSC but the biological mechanisms that MSC employ in response to oxidative stress are compromised in PE. In this review, we discuss how MSC respond to oxidative stress in normotensive and pathological conditions. We also consider the possibility of manipulating the oxidative stress response of abnormal MSC as a therapeutic strategy to treat preeclampsia.  相似文献   

9.
The pro-and antioxidant systems of the human placenta have been studied in its central and peripheral areas in the state of dysfunction. It has been shown that the intensity of free-radical oxidation (FRO) is 24% higher (p < 0.05) in mitochondria isolated from peripheral placental areas in the case of preterm termination of pregnancy than in placental mitochondria of women with normal pregnancy ending in delivery on due dates. The values of total antioxidant activity in mitochondria isolated from the central and peripheral areas of placentae of women with preterm labor exceeded 1.5-and 1.8-fold the respective values for the placental mitochondria of women with the normal duration of pregnancy. The rate of glutathione peroxidase activity in placental mitochondria of women with preterm labor was lower than in patients with normal duration of pregnancy terminated on due dates. Higher values of intensity of both the FRO processes and the active components of thiobarbituric acid (TBA) were recorded (higher by 42% and 62%, respectively) in the postmitochondrial fraction in the peripheral area of placentae of women with spontaneous termination of pregnancy, compared with the placentae of women with uncomplicated duration of pregnancy with labor on due date. No differences have been observed in the intensity of oxidative modification of placental proteins in both the periphery and the center in the placentae of women from the studied groups. The rate of glutathione peroxidase activity in the placenta of women with spontaneous termination of pregnancy was more than twice as high as the activity of this enzyme during the first trimester of normal pregnancy and remained high during the second and third trimesters. The activity of the enzyme did not depend on its localization (center or periphery) in placentae of women participating in the study. The values of glutathione transferase activity in the placentae increased in the course of normal pregnancy but remained at the level of the first trimester in the central and peripheral areas in the case of a miscarriage at different gestational terms. Our findings allow us to suggest that oxidative stress developing in placenta from its center to periphery plays a key role in the pathogenesis of placental dysfunction, mainly, due to the glutathione-dependent component of the placental antioxidant defense.  相似文献   

10.
The corticotropin releasing hormone gene is expressed in human placenta   总被引:10,自引:0,他引:10  
Maternal plasma immunoreactive corticotropin-releasing hormone (IR-CRH) increases progressively with pregnancy. This elevated plasma IR-CRH is presumably secreted by the placenta. To investigate further this hypothesis, we searched for the CRH mRNA and its peptide product in full term human placentae. Using a radiolabelled 48-mer oligonucleotide probe complementary to a portion of human CRH mRNA, we identified a 1300 nucleotide RNA from human placenta and rat hypothalami. We next examined the chromatographic characteristics of the placental IR-CRH. The bulk of the IR-CRH extracted from placenta and the IR-CRH secreted in vitro by placental fragments had the same chromatographic profiles as synthetic CRH. These findings indicate that the CRH gene is expressed in human placenta and imply that this organ is a site of CRH biosynthesis during pregnancy.  相似文献   

11.
12.
Preeclampsia (PE) is an extremely serious condition in pregnant women and the leading cause of maternal and fetal morbidity and mortality. Despite active research, the etiological factors of this disorder remain elusive. The increased release of 15-hydroxyeicosatetraenoic acid (15-HETE) in the placenta of preeclamptic patients has been studied, but its exact role in PE pathogenesis remains unknown. Mounting evidence shows that PE is associated with placental hypoxia, impaired placental angiogenesis, and endothelial dysfunction. In this study, we confirmed the upregulated expression of hypoxia-inducible factor 1α (HIF-1α) and 15-lipoxygenase-1/2 (15-LO-1/2) in patients with PE. Production of the arachidonic acid metabolite, 15-HETE, also increased in the preeclamptic placenta, which suggests enhanced activation of the HIF-1α–15-LO–15-HETE axis. Furthermore, this study is the first to show that the umbilical cord of preeclamptic women contains significantly higher serum concentrations of 15-HETE than that of healthy pregnant women. The results also show that expression of 15-LO-1/2 is upregulated in both human umbilical vein endothelial cells (HUVECs) collected from preeclamptic women and in those cultured under hypoxic conditions. Exogenous 15-HETE promotes the migration of HUVECs and in vitro tube formation and promotes cell cycle progression from the G0/G1 phase to the G2/M + S phase, whereas the 15-LO inhibitor, NDGA, suppresses these effects. The HIF-1α/15-LO/15-HETE pathway is therefore significantly associated within the pathology of PE.  相似文献   

13.
Dynamic changes in physiologic oxygen are required for proper placenta development; yet, when low-oxygen levels persist, placental development is halted, culminating in preeclampsia (PE), a serious complication of pregnancy. Considering mitochondria’s function is intimately linked to oxygen changes, we investigated the impact of oxygen on mitochondrial dynamics in placental mesenchymal stromal cells (pMSCs) that are vital for proper placental development. Transmission electron microscopy, proximity ligation assays for mitochondrial VDAC1 and endoplasmic reticulum IP3R, and immunoanalyses of p-DRP1 and OPA1, demonstrate that low-oxygen conditions in early 1st trimester and PE promote mitochondrial fission in pMSCs. Increased mitochondrial fission of mesenchymal cells was confirmed in whole PE placental tissue sections. Inhibition of DRP1 oligomerization with MDiVi-1 shows that low oxygen-induced mitochondrial fission is a direct consequence of DRP1 activation, likely via HIF1. Mitophagy, a downstream event prompted by mitochondrial fission, is a prominent outcome in PE, but not 1st trimester pMSCs. We also investigated whether mesenchymal–epithelial interactions affect mitochondrial dynamics of trophoblasts in PE placentae. Exposure of trophoblastic JEG3 cells to exosomes of preeclamptic pMSCs caused heightened mitochondrial fission in the cells via a sphingomyelin-dependent mechanism that was restored by MDiVi-1. Our data uncovered dichotomous regulation of mitochondrial fission and health in human placental mesenchymal cells under physiologic and pathologic hypoxic conditions and its impact on neighboring trophoblast cells.Subject terms: Mechanisms of disease, Endocrine reproductive disorders  相似文献   

14.
This study explores the molecular composition of the tight junction (TJ) in human term placenta from normal women and from patients with preeclampsia, a hypertensive disorder of pregnancy. Maternal endothelial dysfunction is a critical characteristic of preeclampsia; hence, we have analyzed its impact on placental vessels. The study concentrates on the TJ because this structure regulates the sealing of the paracellular route. We have found that, in placental endothelial vessels, TJ components include the peripheral protein ZO–1 and the integral proteins occludin and claudins 1, 3, and 5. During preeclampsia, the amounts of occludin and ZO–1 exhibit no significant variation, whereas those of claudins 1, 3, and 5 diminish, suggesting the presence of leakier TJs in the endothelia of the preeclamptic placenta, possibly in response to the decreased perfusion of this organ during preeclampsia. We have unexpectedly found that, in normal placentae, the multinucleated syncytiotrophoblast layer displays claudin 4 at the basal surface of the plasma membrane, and claudin 16 along the apical and basolateral surfaces. The presence of membrane-lined channels that cross the syncytiotrophoblast constituting a paracellular pathway has been determined by transmission electron microscopy and by the co-immunolocalization of claudin 16 with the plasma membrane proteins Na+K+-ATPase and GP135. Since claudin 16 functions as a paracellular channel for Mg2+, its diffuse pattern in preeclamptic placentae suggests the altered paracellular transport of Mg2+ between the maternal blood and the placental tissue.This work was supported by grants 45691-Q from the Mexican Council for Science and Technology (CONACYT) and 2005/1/I/012 from the Research Promotion Fund of the Mexican Institute of Social Security (IMSS/FOFOI).  相似文献   

15.
The placenta produces a wide number of molecules that play essential roles in the establishment and maintenance of pregnancy. In this context, leptin has emerged as an important player in reproduction. The synthesis of leptin in normal trophoblastic cells is regulated by different endogenous biochemical agents, but the regulation of placental leptin expression is still poorly understood. We have previously reported that 17β-estradiol (E(2)) up-regulates placental leptin expression. To improve the understanding of estrogen receptor mechanisms in regulating leptin gene expression, in the current study we examined the effect of membrane-constrained E(2) conjugate, E-BSA, on leptin expression in human placental cells. We have found that leptin expression was induced by E-BSA both in BeWo cells and human placental explants, suggesting that E(2) also exerts its effects through membrane receptors. Moreover E-BSA rapidly activated different MAPKs and AKT pathways, and these pathways were involved in E(2) induced placental leptin expression. On the other hand we demonstrated the presence of ERα associated to the plasma membrane of BeWo cells. We showed that E(2) genomic and nongenomic actions could be mediated by ERα. Supporting this idea, the downregulation of ERα level through a specific siRNA, decreased E-BSA effects on leptin expression. Taken together, these results provide new evidence of the mechanisms whereby E(2) regulates leptin expression in placenta and support the importance of leptin in placental physiology.  相似文献   

16.
Human placenta produces a large variety of bioactive substances with endocrine and neural competence: pituitary and gonadal hormones, hypothalamic-like releasing or inhibiting hormones, growth factors, cytokines and neuropeptides. The most recent findings indicate that locally produced hormones regulate the secretion of other placental hormones supporting a paracrine/autocrine regulation. In placental endocrinology, a particular relevance is played by steroid hormones. In fact, a specific gonadotropin-releasing hormone (GnRH)-human chorionic gonadotropin (hCG) regulation of placental steroidogenesis has been proposed as a placental internal regulatory system acting on steroids production from human placenta. In addition, activin and inhibin have been proposed as further regulatory substances of the synthesis and secretion of steroids; the addition of activin A to placental culture augments GnRH, hCG and progesterone, and this effect can be significantly reduced by the addition of inhibins. Finally, a steroid-steroid interaction is suggested by the evidence that placental estrogen has a positive role in the regulation of progesterone biosynthesis. Other steroid-protein interactions have been observed in human placenta. In fact, recent data indicate that progesterone inhibits placental corticotropin-releasing factor (CRF) and estrogens act on placental conversion of cortisol to cortisone, activating cortisol secretion by the fetal adrenal and enhancing fetal adrenal function with advancing gestation.  相似文献   

17.
Shin KS  Lee HJ  Jung J  Cha DH  Kim GJ 《Cell proliferation》2010,43(5):435-444
Objectives: Translational research using adult stem cells derived from various tissues has been highlighted in cell‐based therapy. However, there are many limitations to using conventional culture systems of adult stem cells for clinically applicability, including limited combinations of cytokines and use of nutrients derived from animals. Here, we have investigated the effects of placental extract (PE) for culture of placenta‐derived stem cells (PDSCs) as well as their potential for hepatogenic differentiation. Materials and methods: Placental extract, extracted using water‐soluble methods, was used as a supplement for culture of PDSCs. Cell viability was determined using the MTT assay, and cytokine assay was performed using Luminex assay kit. Gene expression, indocyanine green (ICG) up‐take, PAS (Periodic Acid‐Schiff) staining and urea production were also analysed. Results: The placental extract contained several types of cytokine and chemokine essential for maintenance and differentiation of stem cells. Expression of stemness markers in PDSCs cultured with PE is no different from that of PDSCs cultured with foetal bovine serum (FBS). After hepatogenic differentiation, expression patterns for hepatocyte‐specific markers in PDSCs cultured with PE were consistent and potential for hepatogenic differentiation of PDSCs cultured with PE was similar to that of PDSCs cultured with FBS, as shown by PAS staining and urea production assays. Conclusions: Our findings revealed that placental extract could be used as a new component for culture of adult stem cells, as well as for development of human‐based medium, in translational research for regenerative medicine.  相似文献   

18.
Placental neurokinin B (NKB) was recently identified as the causative agent in preeclampsia, a condition characterized by increased maternal and feto-placental vascular resistance. We hypothesized that NKB should constrict placental resistance vessels. Placentas were obtained from normotensive pregnancies. Immediately after delivery, stem villous arteries (300 microm diameter, 1.2 mm long) were dissected from macroscopically normal tissue in cold HEPES-physiological salt solution (PSS), mounted on a wire myograph system, and bathed in HEPES-PSS at 37 degrees C. After determination of the passive-tension internal circumference characteristics, the arteries were set to 90% of the internal circumference they would have under a normal physiological transmural pressure. Cumulative concentration-response curves were constructed for NKB (1 x 10(-12) to 1 x 10(-5) mol/l). Since there was no constrictive response to NKB, cumulative constrictive concentration-response curves were constructed to the thromboxane A(2) mimetic U46619 (1 x 10(-9) to 1 x 10(-5) mol/l). The vessels were then pre-constricted to 80% of maximal response and exposed to cumulative concentrations of NKB (1 x 10(-12) to 1 x 10(-6) mol/l). NKB caused a concentration-dependent relaxation (Maximal response NKB, 51+/-5%, n=5; time control, 12+/-6%, n=4; P<0.05). Removal of the endothelium did not alter the vasodilatory response to NKB. We conclude that, contrary to our hypothesis, NKB causes an endothelium-independent relaxation of the placental resistance vessels. We propose that NKB plays a role in the maintenance of high placental blood flow in normal pregnancy.  相似文献   

19.
Sulfate transport in isolated placental brush-border membrane vesicles has properties consistent with an anion exchange process. To ascertain the relevance of this finding to sulfate accumulation by the fetus and placenta in vivo, we examined sulfate transport in human placental tissue slices, comparing sulfate uptake with that of a non-metabolizable amino acid marker, alpha-aminoisobutyrate (AIB). In contrast to AIB, which was actively concentrated from physiological media, sulfate uptake by the placenta slice was concentrative only in the absence of sodium and at low pH. Uptake of sulfate reached a steady state after 60 min. It was blocked by DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonate), a specific inhibitor of anion transport, but not by ouabain. We found no evidence for Na(+)-dependent uptake of sulfate in incubated placental tissue. It seems unlikely that Na(+)-dependent sulfate transport by the placenta can be responsible for net sulfate accumulation by the human fetus.  相似文献   

20.
A prominent scenario for the evolution of reptilian placentation infers that placentotrophy arose by gradual modification of a simple vascular chorioallantoic placenta to a complex structure with a specialized region for nutrient transfer. The structure of the chorioallantoic placenta of Niveoscincus ocellatus, apparently described originally from a single embryonic stage, was interpreted as a transitional evolutionary type that provided support for the model. Recently, N. ocellatus has been found to be as placentotrophic as species with complex chorioallantoic placentae containing a specialized region called a placentome. We studied placental development in N. ocellatus and confirmed that the chorioallantoic placenta lacks specializations found in species with a placentome. We also found that this species has a specialized omphaloplacenta. The chorioallantoic placenta is confined to the region adjacent to the embryo by a membrane, similar to that found in some other viviparous skinks, that divides the egg into embryonic and abembryonic hemispheres. We term this structure the "inter-omphalopleuric" membrane. The position of this membrane in N. ocellatus is closer to the embryonic pole of the egg than to the abembryonic pole and thus the surface area of the omphaloplacenta is greater than that of the chorioallantoic placenta. In addition, the omphaloplacenta is regionally diversified and more complex histologically than the chorioallantoic placenta. An impressive and unusual feature of the omphaloplacenta of N. ocellatus is the development of extensive overlapping folds in the embryonic component of mid-gestation embryos. The histological complexity and extensive folding of the omphaloplacenta make this a likely site of placental transfer of nutrients in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号