首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to test the assumption that (13)C-enrichment of respiratory substrate does not perturb metabolism. Cell suspension cultures of Arabidopsis thaliana were grown in MS medium containing unlabelled glucose (with (13)C at natural abundance), 100% [1-(13)C]glucose, 100% [U-(13)C(6)]glucose or 10% [U-(13)C(6)]glucose plus 90% unlabelled glucose. There was no significant difference in the metabolism of [U-(14)C]glucose between the cultures. Similarly, the pattern of (14)CO(2) release from specifically labelled [(14)C]-substrates was unaffected. Principal component analysis of (13)C-decoupled (1)H NMR metabolite fingerprints of cell extracts was unable to discriminate between the different culture conditions. It is concluded that (13)C-enrichment of the growth substrate has no effect on flux through the central pathways of carbon metabolism in higher plants. This conclusion supports the implicit assumption in metabolic flux analysis that steady-state (13)C-labelling does not perturb fluxes through the reactions of the metabolic network it seeks to quantify.  相似文献   

2.
The seeds of cereals represent an important sink for metabolites during the accumulation of storage products, and seeds are an essential component of human and animal nutrition. Understanding the metabolic interconversions (networks) underpinning storage product formation could provide the foundation for effective metabolic engineering of these primary nutritional sources. In this paper, we describe the use of retrobiosynthetic nuclear magnetic resonance analysis to establish the metabolic history of the glucose (Glc) units of starch in maize (Zea mays) kernels. Maize kernel cultures were grown with [U-(13)C(6)]Glc, [U-(13)C(12)]sucrose, or [1,2-(13)C(2)]acetate as supplements. After 19 d, starch was hydrolyzed, and the isotopomer composition of the resulting Glc was determined by quantitative nuclear magnetic resonance analysis. [1,2-(13)C(2)]Acetate was not incorporated into starch. [U-(13)C(6)]Glc or [U-(13)C(12)]sucrose gave similar labeling patterns of polysaccharide Glc units, which were dominated by [1,2,3-(13)C(3)]- and [4,5,6-(13)C(3)]-isotopomers, whereas the [U-(13)C(6)]-, [3,4,5,6-(13)C(4)]-, [1,2-(13)C(2)]-, [5,6-(13)C(2)], [3-(13)C(1)], and [4-(13)C(1)]-isotopomers were present at lower levels. These isotopomer compositions indicate that there is extensive recycling of Glc before its incorporation into starch, via the enzymes of glycolytic, glucogenic, and pentose phosphate pathways. The relatively high abundance of the [5,6-(13)C(2)]-isotopomer can be explained by the joint operation of glycolysis/glucogenesis and the pentose phosphate pathway.  相似文献   

3.
Cut seedlings of Mercurialis annua L. were supplied with solutions containing [1-13C1]glucose or [U-13C4,15N1]aspartate. After 5–7 days, the pyridinone-type chromogen, hermidin, was isolated and analyzed by NMR spectroscopy. In the experiment with [1-13C1]glucose, five single-labelled isotopomers of hermidin were detected at high abundances (2.7–1.8 mol%). In the experiment with [U-13C4,15N1]aspartate, contiguous labelling was observed for carbon atoms 2 and 3 and the nitrogen atom in hermidin. The labelling patterns of hermidin and of amino acids from the same experiments rule out predominant formation of the pyridinone by pathways resembling the biosyntheses of vitamin-B6, anabasine, or polyketides, but suggest a pathway by condensation of aspartate and dihydroxyacetone phosphate affording nicotinate as a precursor of hermidin.  相似文献   

4.
Hyperforin and adhyperforin contribute to the antidepressant effects of Hypericum perforatum. The involvement of branched-chain amino acids in the biosynthesis of hyperforin and adhyperforin was demonstrated in H. perforatum shoot cultures. L-[U-(13)C(5)]Valine and L-[U-(13)C(6)]isoleucine, upon administration to the shoot cultures, were incorporated into acyl side chain of hyperforin and adhyperforin, respectively. Feeding the shoot cultures with unlabelled L-isoleucine at a concentration of 2mM induced a 3.7-fold increase in the production of adhyperforin. The addition of 3mM L-threonine, a precursor of isoleucine, stimulated a 2.0-fold increase in the accumulation of adhyperforin. The administration of L-valine at concentrations of 0-5mM had no stimulating effect on the hyperforin production in H. perforatum shoot cultures.  相似文献   

5.
At seawater temperatures below 1 degrees C, rainbow smelt (Osmerus mordax) accumulate plasma levels of glycerol up to 400 mM. Aspects of the synthesis of glycerol in liver and its regulation were previously investigated, but the pathways leading to glycerol synthesis remained unconfirmed. Here, we report nuclear magnetic resonance (NMR) studies which elucidate, in more detail, the fuel sources for rapid glycerol synthesis in rainbow smelt. Initial NMR analysis of liver homogenates from fish held at cold (-1 degrees C) temperatures and from fish transferred from 8 degrees C to -1 degrees C showed elevated glycerol, whereas those from fish held at 8 degrees C had far lower glycerol levels. These results confirm a temperature-responsive glycerol synthesis and show that NMR is a suitable approach to investigate the phenomenon. Further studies with fish held at low temperature and injected with labelled L-[2,3-(13)C(2)] alanine or D-[U-(13)C(6)]glucose revealed conversion of both alanine and glucose to glycerol. (13)C spectra showed satellites ((1)J(CC)=41.1 Hz) about the glycerol resonances indicating intact incorporation of a (13)C-(13)C unit in liver glycerol of fish injected with L-[2,3-(13)C(2)]alanine and a (13)C-(13)C-(13)C unit in liver glycerol of fish injected with D[U-(13)C(6)]glucose. Thus, glycerol can be efficiently produced directly from amino acid precursors by glyceroneogenesis, which is an abbreviated gluconeogenesis process leading to glycerol through dihydroxyacetone phosphate (DHAP). Glucose can also be metabolised to glycerol via an abbreviated form of glycolysis that similarly leads to glycerol through DHAP.  相似文献   

6.
The binding of the transport inhibitor forskolin, synthetically labelled with (13)C, to the galactose-H(+) symport protein GalP, overexpressed in its native inner membranes from Escherichia coli, was studied using cross-polarization magic angle spinning (13)C NMR. (13)C-Labelled D-galactose and D-glucose were displaced from GalP with the singly labelled [7-OCO(13)CH(3)]forskolin and were not bound to any alternative site within the protein, demonstrating that any multiple sugar binding sites are not simultaneously accessible to these sugars and the inhibitor within GalP. The observation of singly (13)C-labelled forskolin was hampered by interference from natural abundance (13)C in the membranes and so the effectiveness of double-quantum filtration was assessed for the exclusive detection of (13)C spin pairs in sugar (D-[1,2-(13)C(2)]glucose) and inhibitor ([7-O(13)CO(13)CH(3)]forskolin) bound to the GalP protein. The solid state NMR methodology was not effective in creating double-quantum selection of ligand bound with membranes in the 'fluid' state (approx. 2 degrees C) but could be applied in a straightforward way to systems that were kept frozen. At -35 degrees C, double-quantum filtration detected unbound sugar that was incorporated into ice structure within the sample, and was not distinguished from protein-bound sugar. However, the method detected doubly labelled forskolin that is selectively bound only to the transport system under these conditions and provided very effective suppression of interference from natural abundance (13)C background. These results indicate that solid state NMR methods can be used to resolve selectively the interactions of more hydrophobic ligands in the binding sites of target proteins.  相似文献   

7.
Wheat plants (Triticum durum Desf., cv. Regallo) were grown in the field to study the effects of contrasting [CO(2)] conditions (700 versus 370 μmol mol(-1)) on growth, photosynthetic performance, and C management during the post-anthesis period. The aim was to test whether a restricted capacity of sink organs to utilize photosynthates drives a loss of photosynthetic capacity in elevated CO(2). The ambient (13)C/(12)C isotopic composition (δ(13)C) of air CO(2) was changed from -10.2‰ in ambient [CO(2)] to -23.6‰ under elevated [CO(2)] between the 7th and the 14th days after anthesis in order to study C assimilation and partitioning between leaves and ears. Elevated [CO(2)] had no significant effect on biomass production and grain filling, and caused an accumulation of C compounds in leaves. This was accompanied by up-regulation of phosphoglycerate mutase and ATP synthase protein content, together with down-regulation of adenosine diphosphate glucose pyrophosphatase protein. Growth in elevated [CO(2)] negatively affected Rubisco and Rubisco activase protein content and induced photosynthetic down-regulation. CO(2) enrichment caused a specific decrease in Rubisco content, together with decreases in the amino acid and total N content of leaves. The C labelling revealed that in flag leaves, part of the C fixed during grain filling was stored as starch and structural C compounds whereas the rest of the labelled C (mainly in the form of soluble sugars) was completely respired 48 h after the end of labelling. Although labelled C was not detected in the δ(13)C of ear total organic matter and respired CO(2), soluble sugar δ(13)C revealed that a small amount of labelled C reached the ear. The (12)CO(2) labelling suggests that during the beginning of post-anthesis the ear did not contribute towards overcoming flag leaf carbohydrate accumulation, and this had a consequent effect on protein expression and photosynthetic acclimation.  相似文献   

8.
This study was performed to analyze the effects of the barbiturate thiopental on neuronal glutamate uptake, release and metabolism. Since barbiturates are known to bind to the GABA(A) receptor, some experiments were carried out in the presence of GABA. Cerebellar granule neurons were incubated for 2 h in medium containing 0.25 mM [U-(13)C]glutamate, 3 mM glucose, 50 microM GABA and 0.1 or 1 mM thiopental when indicated. When analyzing cell extracts, it was surprisingly found that in addition to glutamate, aspartate and glutathione, GABA was also labeled. In the medium, label was observed in glutamate, aspartate and lactate. Glutamate exhibited different labeling patterns, indicating metabolism in the tricarboxylic acid cycle, and subsequent release. A net uptake of [U-(13)C]glutamate and unlabeled glucose was seen under all conditions. The amounts of most metabolites synthesized from [U-(13)C]glutamate were unchanged in the presence of GABA with or without 0.1 mM thiopental. In the presence of 1 mM thiopental, regardless of the presence of GABA, decreased amounts of [1,2, 3-(13)C]glutamate and [U-(13)C]aspartate were found in the medium. In the cell extracts increased [U-(13)C]glutamate, [1,2, 3-(13)C]glutamate, labeled glutathione and [U-(13)C]aspartate were observed in the 1 mM thiopental groups. Glutamate efflux and uptake were studied using [(3)H]D-aspartate. While efflux was substantially reduced in the presence of 1 mM thiopental, this barbiturate only marginally inhibited uptake even at 3 mM. These results may suggest that the previously demonstrated neuroprotective action of thiopental could be related to its ability to reduce excessive glutamate outflow. Additionally, thiopental decreased the oxidative metabolism of [U-(13)C]glutamate but at the same time increased the detectable metabolites derived from the TCA cycle. These latter effects were also exerted by GABA.  相似文献   

9.
Paracoccus denitrificans was grown on either unlabelled glucose, [1-13C]glucose or [6-13C]glucose as the sole carbon source for growth. The cells were then incubated with a range of 14C-glucose substrates to compare the 14CO2-evolution rates between cells grown on the glucose and the 13C-labelled glucose. Cells grown on 13C-glucose had significantly faster rates of 14CO2-evolution than those grown on unlabelled glucose. The % yields of 14CO2, per [1-14C]-, [6-14C]- and [U-14C]glucose supplied were also substantially greater than those measured for cells grown on unlabelled glucose. The data indicated that growth of Paracoccus on 13C-enriched glucose substrates resulted in cells with notably different 14C-glucose oxidation metabolism compared to that observed in cells grown on unlabelled glucose.  相似文献   

10.
Both ammonia and beta-methylene-DL-aspartate (beta-MA), an irreversible inhibitor of aspartate aminotransferase activity and thus of the malate-aspartate shuttle, were found previously to decrease oxidative metabolism in cerebral cortex slices. In the present work, the possibility that ammonia and beta-MA affect energy metabolism by a common mechanism (i.e., via inhibition of the malate-aspartate shuttle) was investigated using primary cultures of neurons and astrocytes. Incubation of astrocytes for 30 min with 5 mM beta-MA resulted in a decreased production of 14CO2 from [U-14C]glucose, but did not affect 14CO2 production from [2-14C]pyruvate. Conversely, incubation of astrocytes with 3 mM ammonium chloride resulted in decreased 14CO2 production from [2-14C]pyruvate, but 14CO2 production from [U-14C]glucose was not significantly affected. Ammonium chloride had no significant effect on 14CO2 production from either [U-14C]glucose or [2-14]pyruvate by neurons. However, incubation of neurons with beta-MA or beta-MA plus ammonium chloride resulted in a approximately 45% decrease of 14CO2 production from both [U-14C]glucose and [2-14C]pyruvate. A 2-h incubation of astrocytes with beta-MA resulted in no change in ATP levels, but a 35% decrease in phosphocreatine. Similar treatment of neurons resulted in greater than 50% decrease in ATP, but had little effect on phosphocreatine. beta-MA also caused a decrease in glutamate and aspartate content of neurons, but not of astrocytes. The different metabolic responses of neurons and astrocytes towards beta-MA were probably not due to a differential inhibition of aspartate aminotransferase which was inhibited by approximately 45% in astrocytes and by approximately 55% in neurons.  相似文献   

11.
Tobacco plants grown in vitro were supplied with a mixture of [U-13C6]glucose and unlabelled sucrose via the root system. After 20 days, leaves were harvested and extracted with water. Glucose was isolated from the extract and was analysed by 13C NMR spectroscopy. All 13C signals appeared as complex multiplets due to 13C-13C coupling. The abundance of 21 isotopologous glucose species was determined from the 13C NMR signal integrals by numerical deconvolution using a genetic algorithm. The relative fractions of specific isotopologs in the overall excess of 13C-labelled specimens establish flux contributions via glycolysis/glucogenesis, pentose phosphate pathway, citric acid cycle and Calvin cycle including 13CO2 refixation. The fluxes were modelled and reconstructed in silico by a novel rule-based approach yielding the contributions of circular pathways and the degree of multiple cycling events. The data indicate that the vast majority of the proffered [U-13C6]glucose molecules had been modified by catabolism and subsequent glucogenesis from catabolic fragments, predominantly via passage through the citric acid cycle and the pentose phosphate pathway.  相似文献   

12.
N4-Ethyl-L-[u-14C]asparagine and L-[U-14C]aspartate give identical metabolites, mainly intermediates of the tricarboxylic acid cycle and related amino acids, in whole cells of Pseudomonas stutzeri. The labelled asparagine derivative is converted into [14C]-aspartate by cell-free extracts, and this reaction, which has an optimum pH of 8.8 +/- 0.2, is neither inhibited by unlabelled asparagine nor enhanced by unlabelled 2-oxoglutarate. No labelled keto acid corresponding to N4-ethylasparagine was detected in either whole cells or cell-free extracts. Thus N4-ethyl-L-asparagine, like asparagine, must be broken down by hydrolysis, at least in this bacterium.  相似文献   

13.
To non-anaesthetized rats starved for 3 days, [U-14C]acetone, NaH14CO3, L-[U-14C]lactate, [2-14C]acetate or D-[U-14C]- plus D-[3-3H]-glucose was injected intravenously. From the change in the plasma concentration of labelled acetone versus time after the injection, the metabolic clearance rate of acetone was calculated as 2.25 ml/min per kg body wt., and its rate of turnover as 0.74 mumol/min per kg. The extent and time course of the labelling of plasma glucose, lactate, urea and acetoacetate were followed and compared with those observed after the injection of labelled lactate, acetate and NaHCO3. The labelling of plasma lactate was rapid and extensive. Some 1.37% of the 14C atoms of circulating glucose originated from plasma acetone, compared with 44% originating from lactate. By deconvolution of the Unit Impulse Response Function of glucose, it was shown that the flux of C atoms from acetone to glucose reached a peak at about 100 min after injection of labelled acetone. In comparable experiments the transfer from lactate reached a peak at 14 min after the injection of labelled lactate. It was concluded that acetone is converted into lactate to a degree sufficient to account for the labelling of plasma glucose and is thus a true, albeit minor, substrate of glucose synthesis in starved rats.  相似文献   

14.
Malaise  W.J.  Ladrière  L.  Jijakli  H.  Laatikainen  R.  Niemitz  M.  Verbruggen  I.  Biesernans  M.  Willem  R. 《Molecular and cellular biochemistry》1998,189(1-2):137-144
Hepatocytes prepared from overnight fasted rats were incubated for 120 min in the presence of the dimethyl ester of [2,3-13C]succinic acid (10 mM). The identification and quantification of 13C-enriched metabolites in the incubation medium were performed by a novel computational strategy for the deconvolution of NMR spectra with multiplet structures and constraints. The generation of 13C-labelled metabolites, including succinate, fumarate, malate, lactate, alanine, aspartate and glucose accounted for about half of the initial amount of the ester present in the incubation medium. A fair correlation was observed between the experimental abundance of each 13C-labelled glucose isotopomer and the corresponding values derived from a model for the metabolism of [2,3-13C]succinate. Newly formed glucose was more efficiently labelled in the carbon C5 than C2, as well as the carbon C6 than C1, supporting the concept that D-glyceraldehyde-3-phosphate may undergo enzyme-to-enzyme channelling between glyceraldehyde-3-phosphate dehydrogenase and phosphofructoaldolase.  相似文献   

15.
Li+ effects on glucose metabolism and on the competitive metabolism of glucose and lactate were investigated in the human neuroblastoma SH-SY5Y cell line using 13C NMR spectroscopy. The metabolic model proposed for glucose and lactate metabolism in these cells, based on tcaCALC best fitting solutions, for both control and Li+ conditions, was consistent with: (i) a single pyruvate pool; (ii) anaplerotic flux from endogenous unlabelled substrates; (iii) no cycling between pyruvate and oxaloacetate. Li+ was shown to induce a 38 and 53% decrease, for 1 and 15 mM Li+, respectively, in the rate of glucose conversion into pyruvate, when [U-13C]glucose was present, while no effects on lactate production were observed. Pyruvate oxidation by the tricarboxylic acid cycle and citrate synthase flux were shown to be significantly reduced by 64 and 84% in the presence of 1 and 15 mM Li+, respectively, suggesting a direct inhibitory effect of Li+ on tricarboxylic acid cycle flux. This work also showed that when both glucose and lactate are present as energetic substrates, SH-SY5Y cells preferentially consumed exogenous lactate over glucose, as 62% of the acetyl-CoA was derived from [3-13C]lactate while only 26% was derived from [U-13C]glucose. Li+ did not significantly affect the relative utilisation of these two substrates by the cells or the residual contribution of unlabelled endogenous sources for the acetyl-CoA pool.  相似文献   

16.
Developing kernels of the inbred maize line W22 were grown in sterile culture and supplied with a mixture of [U-13C6]glucose and unlabeled glucose during three consecutive intervals (11-18, 18-25, or 25-32 days after pollination) within the linear phase of starch formation. At the end of each labeling period, glucose was prepared from starch and analyzed by 13C isotope ratio mass spectrometry and high-resolution (13)C NMR spectroscopy. The abundances of individual glucose isotopologs were calculated by computational deconvolution of the NMR data. [1,2-(13)C2]-, [5,6-(13)C2]-, [2,3-(13)C2]-, [4,5-(13)C2]-, [1,2,3-(13)C3]-, [4,5,6-(13)C3]-, [3,4,5,6-(13)C4]-, and [U-(13)C6]-isotopologs were detected as the major multiple-labeled glucose species, albeit at different normalized abundances in the three intervals. Relative flux contributions by five different pathways in the primary carbohydrate metabolism were determined by computational simulation of the isotopolog space of glucose. The relative fractions of some of these processes in the overall glucose cycling changed significantly during maize kernel development. The simulation showed that cycling via the non-oxidative pentose phosphate pathway was lowest during the middle interval of the experiment. The observed flux pattern could by explained by a low demand for amino acid precursors recruited from the pentose phosphate pathway during the middle interval of kernel development.  相似文献   

17.
The novel compound 2,3-cyclopyrophosphoglycerate (CPP) is the major small molecule carbon pool in Methanobacterium thermoautotrophicum. High-field 13C NMR 13CO2 pulse/unenriched CO2 chase experiments have shown that the labeled CPP rapidly loses its 13C to an insoluble pool, while the CPP steady-state concentration is maintained (as monitored by 31P NMR spectroscopy). The biosynthesis of CPP from CO2, acetyl coenzyme A, and pyruvate as precursors has been established by a 13C NMR study of ethanol extracts of Mb. thermoautotrophicum fed with 13CO2, [1-13C]- and [2-13C]acetate, and [1-13C]pyruvate. That CPP is a post-phosphoenolpyruvate metabolite has been confirmed by in vitro experiments with cell extracts. A role for CPP in carbohydrate metabolism was established when [1-13C]glucose fed to cells resulted in the formation of [3-13C]CPP exclusively. Possible functions of CPP within the cell are discussed.  相似文献   

18.
The objective of this study was to determine the contribution of myocardial triglycerides to overall ATP production in isolated working rat hearts. Endogenous lipid pools were initially prelabeled (pulsed) by perfusing hearts for 60 min with Krebs-Henseleit buffer containing 1.2 mM [1-14C]palmitate. During a subsequent 60-min period (chase), hearts were perfused with either no fat, low fat (0.4 mM [9,10-3H] palmitate), or high fat (1.2 mM [9,10-3H]palmitate). All buffers contained 11 mM glucose. During the "chase," 14CO2 production (a measure of endogenous fatty acid oxidation) and 3H2O production (a measure of exogenous fatty acid oxidation) were determined. Oxidative rates of endogenous fatty acids during the chase were 279 +/- 50, 88 +/- 14, and 88 +/- 8 nmol of [14C]palmitate oxidized per g dry weight.min in the no fat, low fat, and high fat groups, respectively, compared to exogenous palmitate oxidation rates of 0, 361 +/- 68, and 633 +/- 60 nmol of [3H]palmitate/g dry weight.min, in the no fat, low fat, and high fat groups, respectively. Endogenous [14C]palmitate oxidation rates were matched by loss of [14C]palmitate from endogenous myocardial triglycerides. Overall triglyceride content decreased during the no fat and low fat chase perfusion but did not change during the high fat chase. Loss of triglyceride [14C]palmitate during the high fat chase was matched by incorporation of exogenous [3H]palmitate in triglycerides. In a second series of perfusions, three groups of hearts were perfused under similar conditions, except that unlabeled palmitate was used during the "pulse" and that 11 mM [2-3H/U-14C]glucose and unlabeled palmitate was present during the chase. During the chase, both glycolysis (3H2O production) and glucose oxidation (14CO2 production) rates were measured. Rates of glucose oxidation were inversely related to the fatty acid concentration in the perfusate (1257 +/- 158, 366 +/- 40, and 124 +/- 26 nmol of glucose oxidized per min.g dry weight in the no fat, low fat, and high fat groups, respectively), while rates of glycolysis were not significantly different between these groups. Calculation of overall ATP production from both oxidative and glycolytic sources determined that even in the presence of high concentrations of fatty acids, myocardial triglyceride turnover can provide over 11% of steady state ATP production in the aerobically perfused heart. In the absence of fatty acids, myocardial triglyceride fatty acids can become the major energy substrate of the heart.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Fructose and glutamate metabolism was monitored in cell suspensions of streptomyces parvulus by 13C nuclear magnetic resonance. The experiments were performed for cells grown with various 13C sources in a growth medium containing D-[U-13C]fructose, L-[13C]glutamate, or L-[U-13C]aspartate and with nonlabeled precursors to compare intracellular pools in S. parvulus cells at different periods of the cell life cycle. The transport of fructose into the cells was biphasic in nature; during rapid transport, mannitol, fructose, and glucose 6-phosphate were accumulated intracellularly, whereas during the passive diffusion of fructose, the intracellular carbohydrate pool comprised mainly trehalose (1,1'-alpha-alpha-D-glucose). The regulation of fructokinase activity by the intracellular intermediates may play an important role in fructose catabolism in S. parvulus. Transaldolase activity in S. parvulus was determined from the 13C nuclear magnetic resonance labeling pattern of trehalose carbons obtained from cells grown in medium containing either L-[U-13C]aspartate or L-[U-13C]glutamate. Only carbons 4, 5, and 6 of the disaccharide were labeled. Isotopomer analysis of the trehalose carbons led us to conclude that the flux through the reverse glycolytic pathway, condensation of glyceraldehyde 3-phosphate with dihydroxyacetone phosphate, makes at best a minor contribution to the 13C-labeled glucose units observed in trehalose. The pentose pathway and transaldolase activity can explain the labeling pattern of 4,5,6-13C3 of trehalose. Moreover, the transfer of the 13C label of L-[U-13C]aspartate into the different isotopomers of trehalose C4, C5, and C6 by the transaldolase activity allowed us to calculate the relative fluxes from oxaloacetate via gluconeogenesis and through the tricarboxylic acid cycle. The ratio of the two fluxes is approximately 1. However, the main carbon source for trehalose synthesis in S. parvulus is fructose and not glutamate or aspartate. The 13C enrichment and isotopomer population, measured by nuclear magnetic resonance and gas chromatography-mass spectrometry, of the actinomycin D peptide ring enabled us to specify the origins of the five amino acids of actinomycin D. Threonine and proline exhibited isotopomer populations similar to that of the extracellular L-[13C]glutamate, indicating that protein catabolism is the origin of their 13C label, whereas the isotopomer populations of sarcosine and N-methylvaline were similar to those of the new intracellular pool of S. parvulus that originated from D-[U-13C]fructose during the production of actinomycin D.  相似文献   

20.
The rates of conversion of D-(-)-3-hydroxy[3-14C]butyrate, [3-14C]acetoacetate, [6-14C]glucose and [U-14C]glutamine into 14CO2 were measured in the presence and absence of alternative oxidizable substrates in intact dissociated cells from the brains of young and adult rats. When unlabelled glutamine was added to [6-14C]glucose or unlabelled glucose was added to [U-14C]glutamine, the rate of 14CO2 production was decreased in both young and adult rats. The rate of oxidation of 3-hydroxy[3-14C]butyrate was also decreased by the addition of unlabelled glutamine in both age groups, but in the reverse situation, i.e. unlabelled 3-hydroxybutyrate added to [U-14C]glutamine, only the brain cells from young rats were affected. No significant effects were seen when glutamine and acetoacetate were combined. The addition of either of the two ketone bodies to [6-14C]glucose markedly lowered the rate of 14CO2 production in young rats, but in the adult only 3-hydroxybutyrate was effective and the magnitude of decrease in the rate of [6-14C]glucose oxidation was much lower than in young animals. Unlabelled glucose decreased the rate of [3-14C]acetoacetate oxidation to a minor extent in brain cells from both age groups; when added to 3-hydroxy[3-14C]butyrate, glucose had no effect in young rats and greatly enhanced 14CO2 production in adult brain cells. Many of these patterns of substrate interaction in dissociated brain cells differ from those in whole homogenates; they may be a function of the plasma membranes and the role of a carrier-mediated transport system or a reflection of a difference in the population of cell types or subcellular organelles in these two preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号