首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The activity of key enzymes of heme metabolism (delta-aminolevulinate synthase, EC 2.3.1.37, and heme oxygenase, EC 1.14.99.3) and the content of some hemoproteins were examined in the liver of male Wistar rats aged 1, 3 and 24 months. It is established that the activity of delta-aminolevulinate synthase decreases when rats reach the age of 3 months and remains at the same level in rats aged 24 months. The content of microsomal cytochrome P450 and the activity of tryptophan-2,3-dioxygenase holoenzyme increase when rats reach the age of 3 months. The total tryptophan-2,3 dioxygenase activity is higher in animals aged 24 months as compared to those aged 1 month. The heme oxygenase activity and the content of microsomal cytochrome b5 do not change with age.  相似文献   

2.
The 5-aminolevulinate synthase, heme oxygenase, tryptophan-2,3-dioxygenase activities, the content of total heme and cytochrome P-450 content in the rat liver and absorption spectrum of blood serum in Soret region under glycerol model of rhabdomiolisis and hemolytic anemia caused by single phenylhydrazine injection have been investigated. The glycerol injection caused a considerable accumulation of heme-containing products in the serum and the increase of the total heme content, holoenzyme, total activity and heme saturation of tryptophan-2,3-dioxygenase, as well as the increase of the 5-aminolevulinate synthase and heme oxygenase activities in the liver during the first hours of its action and the decrease of cytochrome P-450 content in 24 h. Administration of phenylhydrazine lead to the increasing of hemolysis products content in blood serum too, although it was less expressed. The phenylhydrazine injection caused the increase of activities of 5-aminolevulinate synthase, holoenzyme, total activity and heme saturation of tryptophan-2,3-dioxygenase, as well as decrease of cytochrome P-450 content in the rat liver in 2 h. The increase of the total heme content and heme oxygenase activity has been observed in 24 h. The effect of heme arrival from the blood stream, as well as a direct influence of glycerol and phenylhydrazine on the investigated parameters are discussed.  相似文献   

3.
Rat liver delta-aminolevulinate synthase (delta-ALAS) activity in the early period after mercury chloride administration (0.7 mg per 100 g body weight) was found to be followed by free heme level increase, which was registered by the increase of heme saturation of the heme-binding protein tryptophan-2,3-dioxygenase (T-2,3-DO). delta-ALAS and heme oxygenase activity increase was observed 24 h after action. Microsomal cytochromes P450 and b5 levels decrease. Heme saturation of the T-2,3-DO returned to control level. Heme oxygenase and T-2,3-DO induction promoted hepatocytes free heme level normalization. Heme oxygenase and delta-ALAS induction role in the liver cells defense from the oxidative damage is discussed.  相似文献   

4.
Administration of Prudhoe Bay crude oil (PBCO) to rats resulted in a dose-related increase in liver weight; rapid and marked increase in the activity of hepatic delta-aminolevulinate synthetase, the initial and rate-limiting enzyme in the heme biosynthetic pathway; rapid decline in the activity of hepatic heme oxygenase, the rate-limiting enzyme of heme catabolism; and more gradual increase in the levels of hepatic cytochrome P-450 and some mixed-function oxidase activities such as benzo[a]pyrene hydroxylase and 7-ethoxyresorufin-O-deethylase. PBCO treatment also increased renal cytochrome P-450 levels and mixed-function oxidase activities; however, delta-aminolevulinate synthetase and heme oxygenase activities were unchanged. This suggests that different regulatory mechanism(s) may be involved in renal heme metabolism and induction of monoxygenase system.  相似文献   

5.
The authors studied the effects of the whole-body x-irradiation on the activity of delta-aminolevulinate synthase and heme oxygenase in the liver of Wistar rats. The activity of delta-aminolevulinate synthase decreased to 81-49% of normal by the 1st-3d day after irradiation in a dose of 7 Gy followed by partial normalization of the enzyme activity by the 5th-7th day. The activity of heme oxygenase was over 2 times as increased by the 5th-7th day following irradiation in a dose of 7 Gy. Irradiation in a dose of 5 Gy did not alter the activity of heme oxygenase and caused a negligible reduction in the activity of delta-aminolevulinate synthase. During the most pronounced decrease in the rate of heme synthesis in the liver of irradiated rats, there was an elevation in the level of "free" heme (measured by the degree of tryptophane pyrrolase saturation with heme). This attests to a possible lowering of the rate of heme utilization in the synthesis of heme. A possible role of the effects described in the irradiation-induced decrease in the content of cytochrome P-450 in the animals' liver.  相似文献   

6.
The effects of retinoic acid (RA) (50 micrograms/100 g body wt. per day) on hepatic heme oxygenase activity, delta-aminolevulinate synthase (ALAS) activity and on cytochrome P-450 content were determined in thyroidectomized rats treated with T3 (10 micrograms/100 g body wt. per day) or diluent. RA, when administered for 3 days, failed to influence significantly the activity of either heme oxygenase or ALAS, however, the retinoid depleted hepatic cytochrome P-450 content by 17% (P less than 0.01) and microsomal heme content by 47% (P less than 0.001). T3 administration enhanced heme oxygenase activity by 72% (P less than 0.001) and ALAS activity by 251% (P less than 0.001) above levels in diluent treated controls and depleted cytochrome P-450 levels by 55% (P less than 0.001) and heme levels by 75% (P less than 0.001). When RA and T3 were administered together, the retinoid markedly enhanced the T3 stimulation of heme oxygenase activity; 173% above controls (P less than 0.001), and 61% above T3 alone (P less than 0.001). However, RA failed to influence the effect of T3 on ALAS activity or cytochrome P-450 depletion. The results indicate that RA can influence the levels of hepatic cytochrome P-450 and can modulate the stimulation of heme oxygenase activity by thyroid hormone in vivo.  相似文献   

7.
1. The role of heme in the coordinate elevations of liver delta-aminolevulinate (ALA) synthase activity and microsomal cytochrome P-450 concentration induced by phenobarbital (PB) was investigated in the chicken embryo. 2. Eighteen day old chicken embryos were given PB, and the changes in liver content of PB-inducible cytochrome P-450 RNA and of ALA synthase RNA were determined at different times after exposure to the drug. 3. The concentrations of both types of RNA increased rapidly after PB administration, and by 9 hr the level of ALA synthase RNA was 55-fold higher than control and that of cytochrome P-450 RNA was 7-fold higher than normal. 4. While the rate of increase in ALA synthase activity paralleled closely that of the enzyme's RNA concentration, the rate of increase of spectrally active cytochrome P-450 concentration in microsomes lagged behind that of the apoprotein's RNA by several hours. 5. To test whether heme depletion was responsible for the coordinate inductions of the two enzymes, embryos were loaded with ALA 2 hr before exposure to PB. 6. The protocol led to a drop in the PB-inducible ALA synthase RNA concentration and to an increase in that of cytochrome P-450 RNA, measured 6 hr after drug administration. 7. In primary cultures of hepatocytes, hemin in the culture medium caused a modest drop in ALA synthase RNA concentration but had a variable effect on that of cytochrome P-450 RNA in cells incubated with PB for 9 hr.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The 5-aminolevulinate synthase, tryptophan-2,3-dioxygenase activities and cytochrome P-450 content in the rat liver was studied in different terms after CdCl2 administration and after administration of metal salt against a background of 2-hours action of alpha-tocopherol. The lowering of activity of 5-aminolevulinate synthase in 2 h with the consequent increase of the enzyme activity in 6 h and 24 h was detected. The holoenzyme activity and heme saturation of tryptophan-2,3-dioxygenase increased 6 h after CdCl2 administration. The holoenzyme activity and the total activity of tryptophan-2,3-dioxygenase rised in 24 h. The level of cytochrome P-450 lowered. Preliminary administration of alpha-tocopherol prevented changes of studied parameters 24 h after CdCl2 administration. The relationship between decrease of cytochrome P-450 level and 5-aminolevulinate synthase activation are discussed.  相似文献   

9.
The administration of doxorubicin, an anti-tumor antibiotic, to rodents resulted in an increase in heme oxygenase activity and a decrease in delta-aminolevulinate (ALA) synthase activity and in cellular heme and cytochrome P450 content in liver. Sn-protoporphyrin, a potent inhibitor of heme degradation both in vitro and in vivo, when administered to rodents prior to doxorubicin, mitigates the drug-induced toxic actions which are reflected by the drug-induced decreases of both cellular heme and cytochrome P450 content. Sn-protoporphyrin thus provides a pharmacological means of protecting against the toxic effects of doxorubicin and other drugs which enhance heme oxygenase activity and thus decrease cellular heme and cytochrome P450 content in vivo.  相似文献   

10.
Repeated administration of human chorionic gonadotropin to rats results in a maximal depression of testicular microsomal heme and cytochrome P-450 levels at 24 h, followed by increases that plateau at pretreatment levels by day six. Associated with the depressed levels of microsomal heme and cytochrome P-450 is an increase of testicular microsomal heme oxygenase activity at 12-24 h. Testicular mitochondrial delta-aminolevulinic acid synthase activity was increased at 24 h, and remained elevated throughout the 9-day treatment period. Pretreatment with 1,4,6-androstatrien-3,17-dione, an aromatase inhibitor, failed to prevent the depression of testicular microsomal heme or cytochrome P-450 or increased heme oxygenase activity caused by repeated administration of human chorionic gonadotropin, and administration of estradiol benzoate failed to alter testicular microsomal heme oxygenase activity suggesting that these parameters were not related to altered testicular estrogen content caused by increased aromatase activity. These results suggest that increased testicular heme oxygenase activity is associated with decreased microsomal heme and cytochrome P-450 content during human chorionic gonadotropin-induced desensitization.  相似文献   

11.
A novel action of the gonadotropic hormones of the adenohypophysis on the regulation of kidney heme metabolism and cytochrome P-450 concentrations is described. The treatment of rats with cis-platinum for 7 days caused a greater than twofold increase in the microsomal cytochrome P-450 and heme concentrations in the kidney. The sodium dodecyl sulfate-gel electrophoresis of the microsomal preparation revealed increased levels of both apocytochrome P-450 and heme in the molecular weight region corresponding to cytochrome P-450. In hypophysectomized rats, similar increases in heme and the cytochrome contents in the kidney were observed. Conversely, the treatment of rats with human chorionic gonadotropin (hCG) fully reversed the effect of cis-platinum on heme and cytochrome P-450 concentrations. The cellular basis of increases in concentrations of heme and the hemoprotein was explored by measuring the incorporation of [14C]glycine-labeled hemoglobin heme into the kidney microsomal heme fractions. In comparison with the control rats, the specific 14C activity of heme in microsomal fraction was not increased. Moreover, the effect of cis-platinum on kidney cytochrome P-450 appeared to be unrelated to alterations in the activities of the rate-limiting enzymes of heme biosynthesis and degradation pathways, delta-aminolevulinate synthetase, and heme oxygenase, respectively. On the other hand, ferrochelatase activity and the concentration of total porphyrins in the kidney were profoundly altered by cis-platinum treatment; a twofold increase in ferrochelatase activity and a marked reduction (40%) in the total porphyrin concentration were observed. Also, the activities of uroporphyrinogen-I synthetase and delta-aminolevulinate dehydratase were decreased in cis-platinum-treated animals. The latter effects reflect a direct inhibitory action of cis-platinum. It appears that the cis-platinum-mediated increase in the microsomal heme concentrations involves an accelerated rate of heme production as a consequence of increased ferrochelatase activity. This, in turn, could increase the production of cytochrome P-450. It is suggested that the anterior pituitary hormones control the concentration of the cytochrome P-450 in the kidney, and this process may be interrupted by cis-platinum.  相似文献   

12.
The treatment of rats with cis-platinum for 7 days caused a profound, and seemingly selective, decrease (70-80%) in the microsomal cytochrome P-450 levels in the testis. This decrease was accompanied by marked reductions (70-80%) in steroid 17 alpha-hydroxylase activity and in plasma testosterone concentration. The treatment of rats with human chorionic gonadotropin partially restored the cytochrome P-450 concentration and 17 alpha-hydroxylase activity and permitted the plasma testosterone level to approach control values. The effect of cis-platinum on the testicular cytochrome P-450 appeared unrelated to deficiencies in heme metabolic processes, in so far that neither was the activity of delta-aminolevulinate synthetase decreased, nor was that of heme oxygenase increased. These enzymes are rate-limiting in heme biosynthesis and degradation pathways, respectively. Also, the activities of uroporphyrinogen I synthetase, delta-aminolevulinate dehydratase, and ferrochelatase and the concentration of total porphyrins in the testis remained unchanged. The sodium dodecyl sulfate-gel electrophoresis of the microsomal preparation did not reveal a diminished level of apocytochrome; however, in this preparation, heme could not be detected in molecular weight regions corresponding to cytochrome P-450. The microsomal cytochrome b5 and the mitochondrial heme concentrations were not decreased in cis-platinum-treated rats. It is suggested that the mechanism of depletive action of cis-platinum on microsomal cytochrome P-450 involves an impairment of the effective assembly of heme and apoprotein moieties. It is further suggested that the anterior pituitary hormones control the factor(s) involved in this assembly, a process which is interrupted by cis-platinum.  相似文献   

13.
Relationships between activities of delta-aminolevulinate synthase and heme oxygenase, respectively the rate-limiting enzymes of heme biosynthesis and degradation, have been studied in chick embryo liver cell cultures following exposure of the cultures to glutethimide and iron, a combination known to produce a synergistic induction of both enzymes. In time-course experiments, synergistic induction of heme oxygenase activity by glutethimide and iron preceded that of delta-aminolevulinate synthase by 4 h. Effects of selective inhibitors of both heme synthesis and degradation have also been studied with respect to effects on delta-aminolevulinate synthase and heme oxygenase activities. The synergistic induction of heme oxygenase by glutethimide and iron appears to be dependent upon cellular heme synthesis because addition of inhibitors of heme biosynthesis, 4,6-dioxoheptanoic acid or N-methyl-mesoporphyrin abolishes this synergistic induction. Exposure of cultures to tin-mesoporphyrin, a potent inhibitor of heme oxygenase, prevented the synergistic induction of delta-aminolevulinate synthase produced by glutethimide and iron, or, when added after induction was already established, promptly halted any further induction. These results suggest that the level of activity of heme oxygenase can reciprocally modulate intracellular heme levels and thus activity of delta-aminolevulinate synthase.  相似文献   

14.
The response of the microsomal heme oxygenase in the testis to metal ions distinctly differed from that of the ovarian source. The activity of the ovarian enzyme in rats treated with Co2+ (250 mumol/kg, 24 h) responded in consonance with that of the liver and the kidney, i.e., heme oxygenase activity was elevated. In contrast, similar treatments did not increase the activity of testicular heme oxygenase. In addition, other metal ions, such as Cu2+, Sn2+, Pb2+, and Hg2+, known for their potency to increase heme oxygenase activity, were ineffective in increasing the enzyme activity in the testis. The unprecedented response of heme oxygenase in the testis to metal ions did not reflect an unusual nature of the enzyme protein insofar as it displayed a similar cofactor requirement and inhibition by known inhibitors of the enzyme activity, such as KCN and NaN3. Moreover, the apparent Km's for oxidation of hematoheme by the testicular and ovarian microsomal fractions were comparable and measured 2.3 and 1.4 microM, respectively. In the testis of Co2+-treated rats, the concentration of cytochrome P-450 in the rough and smooth endoplasmic reticular fractions was significantly decreased. The decrease in the hemoprotein level, however, did not reciprocate the activity of heme oxygenase in the fractions. The inability of metal ions to induce heme oxygenase activity in the testis did not represent the general refractory nature of the enzymes of heme metabolism to metal ions in this organ, since in rats treated with Co2+ the activity of delta-aminolevulinate synthetase was significantly decreased 24 h after treatment. However, the activities of uroporphyrinogen-I synthetase, delta-aminolevulinate dehydratase, and ferrochelatase and the content of porphyrins were not altered in the testis of rats treated with Co2+. The response of delta-aminolevulinate synthetase in the ovarian tissue to Co2+ treatment contrasted that of the testis. In the ovary, the enzyme activity significantly decreased 6 h after treatment. This decrease was followed by a rebound increase at 24 h after administration of Co2+. The presently described inability of metal ions to induce testicular heme oxygenase activity suggests that the activity of the enzyme in the testis is controlled by factor(s) which differ from those regulating the enzyme activity in other organs, including another steroidogenic organ, the ovary.  相似文献   

15.
Activities of heme oxygenase and tryptophan-2,3-dioxygenase and cytochrome P450 content in liver as well as absorption of the Soret band and optical density at 280 nm in serum were determined 2 and 24 h after administration of HgCl2 and CoCl2 and after co-administration of the metal salts with a-tocopherol. Administration of HgCl2 and CoCl2 increased the contents of hemolysis products in the serum, induced heme oxygenase, and decreased cytochrome P450 content in the liver. Injection of HgCl2 increased the activity of tryptophan-2,3-dioxygenase holoenzyme and enzyme saturation with the heme, but administration of CoCl2 decreased these parameters. Pretreatment with a-tocopherol completely blocked the changes induced by HgCl2 after 24 h. Induction of heme oxygenase induced by CoCl2 was not blocked by a-tocopherol, but this antioxidant normalized the increase in the level of hemolysis products in the serum and decrease in tryptophan-2,3-dioxygenase holoenzyme activity and cytochrome P450 content. Mechanisms of regulation of heme oxygenase by mercury and cobalt ions are discussed.  相似文献   

16.
TPP-Sn4+ was administered intraperitoneally (25 mg/kg body weight). The study was performed for 1-30 days. A day after administration the increase in the hemoprotein level 1.4 times was observed, as well as an increase in the level of p-hydroxylation of aniline. On 7-14 days the greatest increase in cytochrome P-450 content was observed. To clarity the mechanism of TPP-Sn4+ effect on cytochrome P-450, we studied its effect on the activity of heme oxygenase and LP rate. This compound is an inhibitor of heme oxygenase activity and reduces the rate of LP in the microsomes which regulates porphyrin metabolism in the organism.  相似文献   

17.
Addition of glucose to cultured chick embryo hepatocytes caused a concentration-dependent impairment of phenobarbital-mediated induction of delta-aminolevulinate (ALA) synthase resembling the "glucose effect" observed in rodents in vivo. This glucose effect occurred in the complete absence of extrahepatic factors such as serum and hormones. Fructose, glycerol, and lactate mimicked the inhibitory glucose effect on ALA synthase induction, whereas 2-deoxyglucose and 3-O-methylglucose augmented the induction evoked by phenobarbital. 2-Deoxyglucose reversed the effect of glucose, glycerol, and lactate on ALA synthase induction suggesting that the glucose effect is mediated by free glucose or glucose 6-phosphate or a nonglycolytic metabolite of glucose 6-phosphate. The phenobarbital-mediated induction of cytochrome P-450 hemoprotein(s) and its monooxygenase function were concomitantly diminished by glucose. However, this inhibitory effect or glucose was reversible by the addition of exogenous heme or ALA suggesting that the primary target of the glucose effect is ALA synthase induction and not synthesis of apocytochrome P-450. Glucagon and dibutyryl cAMP enhanced the induction of ALA synthase and cytochrome P-450 by phenobarbital and partially counteracted the glucose effect on both enzymes suggesting that the glucose effect may be mediated by changes in cAMP levels. Although insulin did not alter induction of ALA synthase, it impaired induction of cytochrome P-450 even in the presence of glucagon and cAMP. These data may be relevant for the treatment with glucose and heme of patients with "inducible" hepatic porphyria.  相似文献   

18.
Hepatic δ-aminolevulinic acid synthetase was induced in rats injected with allylisopropylacetamide. The induction process was studied in relation to experimental perturbation of cytochrome P-450 in the liver. Animals were treated with either administered endotoxin or exogenous heme, both of which accelerate degradation of cytochrome P-450 heme. These manipulations were effective in blocking induction of δ-aminolevulinic acid synthetase, and the effect of each compound was proportional to its ability to stimulate degradation of cytochrome P-450 heme. The findings suggest that the heme moiety of cytochrome P-450 dissociates reversibly from its apoprotein and, prior to its degradation, mixes with endogenously synthesized heme to form a pool that regulates δ-aminolevulinic acid synthetase activity. A similar or identical heme fraction appears to mediate stimulation of heme oxygenase, which suggests that the regulation of δ-aminolevulinic acid synthetase and of heme oxygenase in the liver are closely interrelated.  相似文献   

19.
Oral administration of bis(tri-n-butyltin)oxide, an important organotin biocidal agent, produces a substantial elevation in heme oxygenase activity when measured at 16 hours in rat small intestine. An apparent Km for hemin of 100 microM is the same in both control and the organotin-induced 9,000 X g supernatant preparations. Concomitant with elevated heme oxygenase activity there occurs a substantial reduction in benzo(a)pyrene hydroxylase activity (approximately 20% of controls) and cytochrome P-450 concentration (approximately 60% of controls). These perturbations of heme metabolism in intestinal epithelium of the rat define an important new toxicological effect of organotins and raise the possibility that concurrent oral ingestion of environmental pollutants can directly affect the cytochrome P-450-dependent metabolism of other chemicals in the intestine.  相似文献   

20.
The hepatic porphyrias are inborn errors of porphyrin and haem biosynthesis characterized biochemically by excessive excretion of delta-aminolaevulinate (ALA), porphobilinogen and other intermediates in haem synthesis. Clinical evidence has implicated iron in the pathogenesis of several types of genetically transmitted diseases. We investigated the role of iron in haem metabolism as well as its relationship to drug-mediated induction of ALA synthase and haem oxygenase in acute and chronic iron overload. Acute iron overload in rats resulted in a marked increase in hepatic haem oxygenase that was associated with a decrease in cytochrome P-450 and an increase in ALA synthase activity. Aminopyrine N-demethylase and aniline hydroxylase activities, which are dependent on the concentration of cytochrome P-450, were also decreased. In contrast, in chronic-iron-overloaded rats, there was an adaptive increase in haem oxygenase activity and an increase in ALA synthase that was associated with normal concentrations of microsomal haem and cytochrome P-450. The induction of ALA synthase in chronic iron overload was enhanced by phenobarbital and allylisopropylacetamide, in spite of the fact that these agents did not increase haem oxygenase activity. Small doses of Co2+ were potent inducers of the haem oxygenase in chronic-iron-overloaded, but not in control, animals. We conclude that increased hepatic cellular iron may predispose certain enzymes of haem synthesis to induction by exogenous agents and thereby affect drug-metabolizing enzyme activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号