首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Davidow LS  Goetsch L  Byers B 《Genetics》1980,94(3):581-595
Yeast cells subjected to a reversible thermal arrest of meiosis yielded progressively fewer spores per ascus as the arrest was extended. Dissection of two-spored asci by a newly developed method that prevents selection of false asci revealed that the spores were not a random sample of the haploid meiotic products. Most, if not all, pairs of spores contain nonsister products of the reductional division. Electron microscopic examination of the meiotic cells revealed the cytological basis for this bias. All four spindle pole bodies (SPBs) present at the second meiotic division normally gain a structural modification (the outer plaque) upon which the initiation of the prospore wall occurs. In the formation of a two-spored ascus, only one spindle pole body on each meiosis II spindle was so modified. These observations suggest that the morphogenesis of spores is regulated at meiosis II by limiting the number of SPBs gaining the outer plaque. The enhancement of spore yield upon addition of fresh medium suggests that this morphogenetic regulation responds more directly to nutrient deprivation arising during the thermal arrest, rather than to elevated temperature per se.  相似文献   

2.
We show here that Ask1p, Dad2p, Spc19p and Spc34p are subunits of the budding yeast Duo1p-Dam1p- Dad1p complex, which associate with kinetochores and localize along metaphase and anaphase spindles. Analysis of spc34-3 cells revealed three novel functions of the Duo1-Dam1p-Dad1p subunit Spc34p. First, SPC34 is required to establish biorientation of sister kinetochores. Secondly, SPC34 is essential to maintain biorientation. Thirdly, SPC34 is necessary to maintain an anaphase spindle independently of chromosome segregation. Moreover, we show that in spc34-3 cells, sister centromeres preferentially associate with the pre-existing, old spindle pole body (SPB). A similar preferential attachment of sister centromeres to the old SPB occurs in cells depleted of the cohesin Scc1p, a protein with a known role in facilitating biorientation. Thus, the two SPBs are not equally active in early S phase. We suggest that not only in spc34-3 and Deltascc1 cells but also in wild-type cells, sister centromeres bind after replication preferentially to microtubules organized by the old SPB. Monopolar attached sister centromeres are resolved to bipolar attachment in wild-type cells but persist in spc34-3 cells.  相似文献   

3.
Sporulation in diploid cells homozygous for the cyr1-2 mutation of the yeast Saccharomyces cerevisiae was examined. This mutation causes a defect in adenylate cyclase and temperature-sensitive arrest in the G1 phase of the mitotic cell cycle. The cyr1-2/cyr1-2 diploid cells were able to initiate meiotic divisions, but produced predominantly two-spored asci at the restrictive temperature. Temperature-sensitive period for production of two-spored asci was approximately 12 h after the transfer of cells to the sporulation medium. The levels of cAMP increased during this period in the wild type and cyr1-2/cyr1-2 diploid cells incubated at the permissive temperature, but remained at an extremely low level in the cyr1-2/cyr1-2 diploid cells incubated at the restrictive temperature. Dyad analysis of the cyr1-2 strain indicated that meiotic products were randomly included into ascospores. Fluorescent microscopy of the cyr1-2/cyr1-2 diploid cells incubated at the restrictive temperature revealed that individual haploid nuclei were enclosed in each of the two spores after meiosis. About half of the cyr1-2/cyr1-2 diploid cells entered normal meiosis 1 producing two normal spindle pole bodies with inner and outer plaques, and the other half entered abnormal meiosis 1 producing one normal spindle pole body and one defective spindle pole body without out plaque. At meiosis II, some cells contained a pair of normal spindle pole bodies and other cells contained pairs of normal and abnormal spindle pole bodies.  相似文献   

4.
We have isolated a novel gene (NUM1) with unusual internal periodicity. The NUM1 gene encodes a 313 kDa protein with a potential Ca2+ binding site and a central domain containing 12 almost identical tandem repeats of a 64 amino acid polypeptide. num1-disrupted strains grow normally, but contain many budded cells with two nuclei in the mother cell instead of a single nucleus at the bud neck, while all unbudded cells are uninucleate. This indicates that most G2 nuclei divide in the mother before migrating to the neck, followed by the migration of one of the two daughter nuclei into the bud. Furthermore, haploid num1 strains tend to diploidize during mitosis, and homozygous num1 diploid or tetraploid cells sporulate to form many budded asci with up to eight haploid or diploid spores, respectively, indicating that meiosis starts before nuclear redistribution and cytokinesis. Our data suggest that the NUM1 protein is involved in the interaction of the G2 nucleus with the bud neck.  相似文献   

5.
Two successive rounds of chromosome segregation following a single round of DNA replication enable the production of haploid gametes during meiosis. In the fission yeast Schizosaccharomyces pombe, karyogamy is the process where the nuclei from 2 haploid cells fuse to create a diploid nucleus, which then undergoes meiosis to produce 4 haploid spores. By screening a collection of S. pombe deletion strains, we found that the deletion of 2 genes, mal3 and mto1, leads to the production of asci containing up to 8 spores. Here, we show that Mal3, the fission yeast member of the EB1 family of conserved microtubule plus-end tracking proteins, is required for karyogamy, oscillatory nuclear movement, and proper segregation of chromosomes during meiosis. In the absence of Mal3, meiosis frequently initiates before the completion of karyogamy, thus producing up to 8 nuclei in a single ascus. Our results provide new evidence that fission yeast can initiate meiosis prior to completing karyogamy.  相似文献   

6.
During meiosis in Saccharomyces cerevisiae four daughter cells, called spores, are generated within the boundaries of the mother cell. This cell differentiation process requires de novo synthesis of prospore membranes (PSMs), which are the precursors of the spore plasma membranes. Assembly of these membranes is initiated at the spindle pole bodies (SPBs) during meiosis II. At this stage of the cell cycle, 4 SPBs are present. Two different meiosis-specific structures are known to be required for PSM formation. At the SPBs, specialized attachments, called the meiotic plaques, provide the required functionality necessary for the recruitment and assembly of the membranes. During subsequent membrane elongation, a second structure becomes important. This proteinaceous assembly forms a coat, called the leading edge protein coat (LEP coat), which covers the boundaries of the membranes. Assembly of the coat occurs at sites next to the SPBs, whereas its disassembly is concomitant to the closure of the membranes. This mini review discusses our current understanding of how the meiotic plaque and the LEP coat might function during biogenesis of the prospore membrane.  相似文献   

7.
A recessive mutation, hfd1–1, in strain SOS4 of Saccharomyces cerevisiae leads the mutant cells to produce predominantly two-spored asci. Light microscopical examination of Giemsa-stained cells revealed no significant differences in the meiotic figures between mutant and wild-type strains. However, only two of the four meiotic products in a developing ascus matured to ascospores in SOS4. Dyad analysis was carried out on an hfd1–1 mutant strain heterozygous for three markers, asp5, gal1 and arg4, which are closely linked to their centromeres, and for his4, which is loosely linked to its centromere. The twospored asci produced by the hfd1–1 mutant segregated dominant (+) and recessive (-) alleles of each marker in a 1:1 ratio; they generally contained one + and one - spore for any given marker. The occurrence of rare dyads with two + or two - spores can be explained quantitatively by recombination between the marker and its centromere. From the results of these cytological and genetical analyses, we infer that, in the mutant strain, one genome set is partitioned to each of the four second-meiotic division poles, but only two nonsister genomes are incorporated into mature spores. Thus, the hfd1–1 mutation in SOS4 blocks incorporation of two nonsister nuclei into mature ascospores, but does not block enclosure of the remaining two nonsister nuclei.  相似文献   

8.
The asci of Metschnikowia species normally contain two ascospores (never more), raising the question of whether these spores are true meiotic products. We investigated this problem by crossing genetically-marked strains of the haploid, heterothallic taxa Metschnikowia hawaiiensis, Metschnikowia continentalis var. continentalis, and M. continentalis var. borealis. Asci were dissected and the segregation patterns for various phenotypes analyzed. In all cases (n = 47) both mating types (h+ and h-) were recovered in pairs of sister spores, casting further uncertainty as to whether normal meiosis takes place. However, the segregation patterns for cycloheximide resistance and several auxotrophic markers were random, suggesting that normal meiosis indeed occurs. To explain the lack of second-division segregation of mating types, we concluded that crossing-over does not occur between the mating-type locus and the centromere, and that meiosis I is tied to spore formation, which explains why the number of spores is limited to two. The latter assumption was also supported by fluorescence microscopy. The second meiotic division takes place inside the spores and is followed by the resorption of two nuclei, one in each spore.  相似文献   

9.
Nickas ME  Neiman AM 《Genetics》2002,160(4):1439-1450
Spore formation in Saccharomyces cerevisiae requires the de novo synthesis of prospore membranes and spore walls. Ady3p has been identified as an interaction partner for Mpc70p/Spo21p, a meiosis-specific component of the outer plaque of the spindle pole body (SPB) that is required for prospore membrane formation, and for Don1p, which forms a ring-like structure at the leading edge of the prospore membrane during meiosis II. ADY3 expression has been shown to be induced in midsporulation. We report here that Ady3p interacts with additional components of the outer and central plaques of the SPB in the two-hybrid assay. Cells that lack ADY3 display a decrease in sporulation efficiency, and most ady3Delta/ady3Delta asci that do form contain fewer than four spores. The sporulation defect in ady3Delta/ady3Delta cells is due to a failure to synthesize spore wall polymers. Ady3p forms ring-like structures around meiosis II spindles that colocalize with those formed by Don1p, and Don1p rings are absent during meiosis II in ady3Delta/ady3Delta cells. In mpc70Delta/mpc70Delta cells, Ady3p remains associated with SPBs during meiosis II. Our results suggest that Ady3p mediates assembly of the Don1p-containing structure at the leading edge of the prospore membrane via interaction with components of the SPB and that this structure is involved in spore wall formation.  相似文献   

10.
Summary We have isolated a novel gene (NUM1) with unusual internal periodicity. The NUM1 gene encodes a 313 kDa protein with a potential Ca2+ binding site and a central domain containing 12 almost identical tandem repeats of a 64 amino acid polypeptide. num1-disrupted strains grow normally, but contain many budded cells with two nuclei in the mother cell instead of a single nucleus at the bud neck, while all unbudded cells are uninucleate: This indicates that most G2 nuclei divide in the mother before migrating to the neck, followed by the migration of one of the two daughter nuclei into the bud. Furthermore, haploid num1 strains tend to diploidize during mitosis, and homozygous num1 diploid or tetraploid cells sporulate to form many budded asci with up to eight haploid or diploid spores, respectively, indicating that meiosis starts before nuclear redistribution and cytokinesis. Our data suggest that the NUM1 protein is involved in the interaction of the G2 nucleus with the bud neck.  相似文献   

11.
Cells of the fission yeast Schizosaccharomyces pombe normally reproduce by mitotic division in the haploid state. When subjected to nutrient starvation, two haploid cells fuse and undergo karyogamy, forming a diploid cell that initiates meiosis to form four haploid spores. Here, we show that deletion of the mal3 gene, which encodes a homolog of microtubule regulator EB1, produces aberrant asci carrying more than four spores. The mal3 deletion mutant cells have a disordered cytoplasmic microtubule structure during karyogamy and initiate meiosis before completion of karyogamy, resulting in twin haploid meiosis in the zygote. Treatment with anti-microtubule drugs mimics this phenotype. Mutants defective in karyogamy or mutants prone to initiate haploid meiosis exaggerate the phenotype of the mal3 deletion mutant. Our results indicate that proper microtubule structure is required for ordered progression through the meiotic cycle. Furthermore, the results of our study suggest that fission yeast do not monitor ploidy during meiosis.  相似文献   

12.
Amoebae of Physarum polycephalum carrying the mth mating-type allele may differentiate into plasmodia in the absence of mating. Such plasmodia are haploid and, upon sporulation, produce mainly inviable spores. We have asked whether the viable spores arise from meiotic or mitotic divisions. Using a microfluorometric measurement of the deoxyribonucleic acid content of individual nuclei, we found the fraction of viable spores to be correlated with the proportion of rare, diploid nuclei containing in the generally haploid plasmodium. When homozygous diploid plasmodia were created by heat shocking, spore viability increased dramatically. We suggest that viable spores are produced via meiosis in mth plasmodia, that the mth allele has no effect on sporulation per se, and that the normal source of viable haploid spores is a small fraction of diploid nuclei ubiquitous in haploid plasmodia.  相似文献   

13.
14.
Klar AJ 《Genetics》1980,94(3):597-605
Given a nutritional regime marked by a low nitrogen level and the absence of fermentable carbon sources, conventional a/α diploid cells of Saccharomyces cerevisiae exhibit a complex developmental sequence that includes a round of premeiotic DNA replication, commitment to meiosis and the elaboration of mature tetrads containing viable ascospores. Ordinarily, haploid cells and diploid cells of genotype a/a and α/α fail to display these reactions under comparable conditions. Here, we describe a simple technique for sporulation of α/α and a/a cells. Cells of genotype α/α are mated to haploid a cells carrying the kar1 (karyogamy defective) mutation to yield heterokaryons containing the corresponding diploid and haploid nuclei. The kar1 strains mate normally, but nuclei in the resultant zygotes do not fuse. When heterokaryotic cells are inoculated into sporulation media, they produce asci with six spores. Four spores carry genotypes derived from the diploid nucleus and the other two possess the markers originating from the haploid nucleus, i.e., the diploid nucleus divides meiotically while the haploid nucleus apparently divides mitotically. Similarly, the a/a genome is "helped" to sporulate as a consequence of mating with α kar1 strains. The results allow us to conclude that the mating-type functions essential for meiosis and sporulation are communicated and act through the cytoplasm and that sporulation can be dissociated from typical meiosis. This procedure will facilitate the genetic analysis of strains that are otherwise unable to sporulate.  相似文献   

15.
Amitrole treatment causes multispored ascus production by cells of a yeast strain whose asci normally contain two diploid spores. Single spores were isolated from asci containing two to eight spores and their ability to germinate was determined. Cells in colonies grown from single spores sporulated in the same manner as the parent strain indicating that amitrole had not induced meiotic division in the developing asci.  相似文献   

16.
During sporulation of diploids from crosses between different strains of the yeast Saccharomycopsis (Candida) lipolytica irregular numbers of ascospores per ascus have been observed. Using the serial section method it could be shown now by means of electron microscopy that in one-, two-, and three-spored asci unenclosed "naked" nuclei occur additionally to nuclei incorporated in mature spores. It was demonstrated that the production of less than four spores per ascus in this yeast is not the result of a lack of meiotic products but of the nonutilization of nuclei from meiosis. In 2--4 spored asci usually four products of meiosis in form of enclosed and free nuclei could be demonstrated which indicate a normal meiotic division. All ascospores derived from asci with different spore numbers are uninuclear. It is assumed that a defect in spore formation caused by structural changes of chromosomes or aneuploidy should give rise to the occurrence of non incorporated nuclei and spore irregularity. It was concluded that meiosis and spore formation in Saccharomycopsis lipolytica seem to represent parallel and coordinated processes which generally resemble those recorded for Saccharomyces cerevisiae and Hansenula species.  相似文献   

17.
Spindle pole bodies (SPBs) provide a structural basis for genome inheritance and spore formation during meiosis in yeast. Upon carbon source limitation during sporulation, the number of haploid spores formed per cell is reduced. We show that precise spore number control (SNC) fulfills two functions. SNC maximizes the production of spores (1-4) that are formed by a single cell. This is regulated by the concentration of three structural meiotic SPB components, which is dependent on available amounts of carbon source. Using experiments and computer simulation, we show that the molecular mechanism relies on a self-organizing system, which is able to generate particular patterns (different numbers of spores) in dependency on one single stimulus (gradually increasing amounts of SPB constituents). We also show that SNC enhances intratetrad mating, whereby maximal amounts of germinated spores are able to return to a diploid lifestyle without intermediary mitotic division. This is beneficial for the immediate fitness of the population of postmeiotic cells.  相似文献   

18.
M Knop  G Pereira  S Geissler  K Grein    E Schiebel 《The EMBO journal》1997,16(7):1550-1564
Previously, we have shown that the gamma-tubulin Tub4p and the spindle pole body component Spc98p are involved in microtubule organization by the yeast microtubule organizing centre, the spindle pole body (SPB). In this paper we report the identification of SPC97 encoding an essential SPB component that is in association with the SPB substructures that organize the cytoplasmic and nuclear microtubules. Evidence is provided for a physical and functional interaction between Tub4p, Spc98p and Spc97p: first, temperature-sensitive spc97(ts) mutants are suppressed by high gene dosage of SPC98 or TUB4. Second, Spc97p interacts with Spc98p and Tub4p in the two-hybrid system. Finally, immunoprecipitation and fractionation studies revealed complexes containing Tub4p, Spc98p and Spc97p. Further support for a direct interaction of Tub4p, Spc98p and Spc97p comes from the toxicity of strong SPC97 overexpression which is suppressed by co-overexpression of TUB4 or SPC98. Analysis of temperature-sensitive spc97(ts) alleles revealed multiple spindle defects. While spc97-14 cells are either impaired in SPB separation or mitotic spindle formation, spc97-20 cells show an additional defect in SPB duplication. We discuss a model in which the Tub4p-Spc98p-Spc97p complex is part of the microtubule attachment site at the SPB.  相似文献   

19.
The cells of haploid Aspergillus niger strains contain, on the average, 7-9 nuclei, a fragment of a thin hypha 100 me long comprising 11-19 nuclei. The cells of a diploid strain are 1.5-2.6 times larger in volume. The diploid cells contain less nuclei and more cytoplasm per nucleus as compared to the haploid strains. The primary sterigmae of Aspergillus niger comprise 3-13 nuclei, the secondary sterigmae and conidia, one nucleus. The conidia of the diploid strains are 1.8-2.0 times larger in volume and contain twice as much DNA as compared to the haploid strains.  相似文献   

20.
We have previously shown that Stu2p is a microtubule-binding protein and a component of the Saccharomyces cerevisiae spindle pole body (SPB). Here we report the identification of Spc72p, a protein that interacts with Stu2p. Stu2p and Spc72p associate in the two-hybrid system and can be coimmunoprecipitated from yeast extracts. Stu2p and Spc72p also interact with themselves, suggesting the possibility of a multimeric Stu2p-Spc72p complex. Spc72p is an essential component of the SPB and is able to associate with a preexisting SPB, indicating that there is a dynamic exchange between soluble and SPB forms of Spc72p. Unlike Stu2p, Spc72p does not bind microtubules in vitro, and was not observed to localize along microtubules in vivo. A temperature-sensitive spc72 mutation causes defects in SPB morphology. In addition, most spc72 mutant cells lack cytoplasmic microtubules; the few cytoplasmic microtubules that are observed are excessively long, and some of these are unattached to the SPB. spc72 cells are able to duplicate and separate their SPBs to form a bipolar spindle, but spindle elongation and chromosome segregation rarely occur. The chromosome segregation block does not arrest the cell cycle; instead, spc72 cells undergo cytokinesis, producing aploid cells and polyploid cells that contain multiple SPBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号