首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In the summer of 1980, a field experiment was started to evaluate the direct and residual effect of applied zinc (as zinc sulphate) on the yield and chemical composition of rice and wheat grown as crops in sequence, on an alkali soil. The treatments comprised six rates of zinc 0, 2.25, 4.5, 9.0, 18.0 and 27.0 kg ha−1 applied either only once to the first crop, or repeated to each successive crop in a split plot design with 4 replications. Gypsum at 14 t ha−1, was applied uniformly to all plots. The results show that with respect to increase of yield and available zinc content of soil, an application of 2.25 kg ha−1 zinc frequently to each crop was better than a single high dose. A major portion of the applied zinc accumulated in the 0 to 10 cm soil layer; the movement of zinc to lower layers was negligible. Zinc applications increased the concentration of exchangeable < complexed < amorphous sesquixoides-bound zinc > crystalline sesquioxide-bound zinc fractions. Amorphous sesquixoides bound the major portion of the applied zinc compared to other fractions. Exchangeable and amorphous sesquioxide-bound zinc fractions contributed significantly more to zinc uptake by rice, than the other fractions. DTPA extracted zinc more readily from exchangeable and complexed fractions than from sesquioxides. Application of zinc increased the DTPA extractable zinc and hence zinc uptake by plants.  相似文献   

2.
Adsorption/desorption of toluene on montmorillonite, illite, and kaolinite was studied using the batch equilibrium method. The isotherms measured fit the Freundlich equation (r2 >0.95). Montmorillonite adsorbed more toluene than illite or kaolinite; the adsorption of toluene on illite and kaolinite was not significantly different. Adsorption of toluene by montmorillonite showed an exponential increase as the ratio of toluene to clay was increased from 5 to 100. The rate studies showed that 62% of the adsorption was completed within 6 h. A rapid desorption was observed initially, followed by slow desorption after 1 h. The desorption rate decreased as the time of adsorption was increased. Almost all of the adsorbed toluene was extracted with water from the clay when the adsorption time was 0.1 h, but only 61% of the toluene could be desorbed when the adsorption time was 24 h.  相似文献   

3.
Adsorption–desorption of iodine in two forms, viz., iodide (I) and iodate (IO3), in three types of soil were investigated. The soils were: red soil developed on Quaternary red earths (REQ)— clayey, kaolintic thermic plinthite Aquult, Inceptisol soil (IS) and alluvial soil (AS)—Fluvio-marine yellow loamy soil. The isothermal curves of iodine adsorption on soils were described by Langmuir and Freundlich equation, and the maximum adsorption values (y m) were obtained from the simple Langmuir model. As compared with the iodide, the iodate was adsorbed in higher amounts by the soils tested. Among three soils, the REQ soil adsorbed more iodine (I and IO3) than the IS and AS. The distribution coefficient (K d) of iodine in the soils decreased exponentially with increasing iodine loading concentration. Desorption of iodine in soil was increased correspondingly with increasing adsorption values. The REQ soil had a greater affinity for iodine than the IS and AS at the same iodine loadings. In the pot experiment cultivated with pakchoi (Brassica chinensis L.) and added with two exogenous iodine sources, the iodide form was quickly taken up by pakchoi and caused more toxicity to the vegetable. The rate of iodine loss from soil was higher for iodide form as compared with the iodate. The iodine bioavailability was the highest but the persistence was the weakest in AS among the three soils tested, and the REQ soil showed just the opposite trend to that of the AS soil. This study is of theoretical importance to understand the relationship between iodine adsorption–desorption characteristics and their bioavailability in different soils and it also has practical implications for seeking effective alternatives of iodine biofortification to prevent iodine deficiency disorders.  相似文献   

4.
Y. B. Ma  N. C. Uren 《Plant and Soil》1996,181(2):221-226
The effects of cropping corn on the decrease in the extractability of Zn added to a calcareous soil were studied by a pot experiment and chemical extractions. The results show that the concentrations of Zn exchangeable with MgCl2 (EXC-Zn) and extractable with DTPA (DTPA-Zn) in the soils with added Zn decreased with time. The processes associated with the decrease in extractability in DTPA of Zn added to soil can be described aptly by a diffusion equation which gives the proportion of added Zn in the non-DTPA fraction as a function of the square root of incubation time. This result suggests that the diffusion of Zn cations into microporous solids is a rate-limiting reaction. The relative diffusion rate coefficients (D/r2) were found to be 1.95×10-10 and 3.34×10-10 sec-1 in the soils with added Zn of 20 and 60 mg kg-1, respectively. Compared with uncropped soil, the concentrations of DTPA-Zn in the soils with added Zn were decreased by cropping. The decrease of DTPA-Zn in the soils in the presence of corn can be attributed to both its acquisition by corn and other processes associated with the growing of corn. The activity of plant roots would appear to enhance the process of decrease in the extractability in DTPA of Zn added to the soil. The source of Zn uptake by corn was affected by the loading or activity of Zn in soil. In the soil with low available Zn, the DTPA non-extractable Zn (non-DTPA-Zn) was mobilized and taken up by corn. In the soils with high available Zn, e.g. the recently added Zn, only EXC-Zn and a part of the DTPA-Zn were taken up by corn.  相似文献   

5.
Previous studies in our laboratory have demonstrated that reducing the availability of zinc with the extracellular metal chelator DTPA (diethylenetriaminepentaacetate) enhances, rather than inhibits, the thyroid hormone induction of growth hormone mRNA in GH3 rat anterior pituitary tumor cells. To understand the actions of the chelator on cellular zinc status, we observed the effects of DTPA on 65Zn uptake and retention. DTPA reduced the uptake of 65Zn by GH3 cells from the medium, but when GH3 cells were prelabeled with 65Zn, it resulted in greater retention of the isotope. In primary hepatocytes, DTPA both reduced the uptake of 65Zn from the medium and increased efflux from prelabeled cells. To investigate this difference, we studied the effects of DTPA on radioactive zinc flux in the H4IIE (rat hepatoma), MCF-7 (human breast cancer) and Hs578Bst (nontransformed human mammary) cell lines and in rat primary anterior pituitary cells. DTPA reduced the uptake of 65Zn in all cell lines examined. DTPA increased the retention of 65Zn in prelabeled H4IIE, MCF-7 and Hs578Bst cells but reduced it in primary pituitary cells. Time course experiments showed that 65Zn efflux is shut down rapidly by DTPA in transformed cells, whereas the chelator causes greater efflux from primary hepatocytes over the first 6 h. Experiments with 14C-labeled DTPA confirmed that this chelator does not cross cell membranes, showing that it operates entirely within the medium. Expression of ZnT-1, the efflux transporter, was not affected by DTPA in H4IIE cells. Thus, zinc deprivation enhanced zinc retention in established cell lines but increased efflux from primary cells, perhaps reflecting differing requirements for this mineral.  相似文献   

6.
The adsorption, desorption and anti-ultraviolet light characteristics of the protoxin from Bacillus thuringiensis strain WG-001 on montmorillonite, kaolinite, zinc oxide and rectorite were studied. The protoxin was easily adsorbed onto minerals and the adsorption reached equilibrium within 0.5–1.0 h (except for rectorite). The adsorption isotherms of protoxin at different concentrations in sodium carbonate buffer (pH 9) followed the Langmuir (R 2 >0.97) and Freundlich (R 2 >0.95) equations. The maximum amounts of protoxin adsorbed were in the order: montmorillonite>rectorite>znic oxide>kaolinite. In the range of pH from 9 to 11 (carbonate buffer), the protoxin adsorbed decreased with increasing pH. The adsorption was not significantly affected by the temperature between 5 and 45°C. Both free and adsorbed protoxin were toxic to larvae of Heliothis armigera. The LC50 value of free and adsorbed protoxin on montmorillonite, rectorite, zinc oxide and kaolinite were 14±1.16, 1.76±0.31, 2.94±0.71, 4.78±2.08 and 1.91±0.91 µg mL?1, respectively. After 1 h of ultraviolet irradiation, the LC50 of the above samples increased by 41.4, 19.3, 16.3, 125.9 and 62.3%, respectively. The desorption of adsorbed protoxin in water ranged from 30.1 to 64.9% and from 18.5 to 48.7% in carbonate buffer.  相似文献   

7.
  • Development of alleviation strategies, which enhance plant growth under heavy metal stress, is important. Inorganic (zeolite) and organic (diethylene triamine penta‐acetic acid, DTPA) amendments affecting the alleviation of lead (Pb) stress in a calcareous soil were tested by investigating leaf nutrient uptake of tomato (Lycopersicon esculentum L.) plants.
  • Experimental quantities of lead (Pb) at 0, 50, 100 and 150 mg·kg?1 soil, zeolite (clinoptilolite) at 0%, 0.5% and 1%, and DTPA at 0, 50 and 100 mg·kg?1 soil were tested in a factorial experiment with three plant replicates.
  • According to the anova , Pb, zeolite, DTPA and their interactions significantly affected plant concentrations of nitrogen (N), potassium (K), iron (Fe), zinc (Zn), copper (Cu), manganese (Mn) and lead (Pb). With increasing DTPA concentration at different levels of zeolite and Pb, plant concentrations of macro‐ and micronutrients significantly increased. Increasing soil Pb increased leaf Pb concentration and decreased the uptake of N, K, Fe, Zn, Cu and Mn. Although with increasing Pb concentration the uptake of macro‐ and micronutrients decreased in tomato, the use of zeolite and DTPA alleviated this stress by increasing nutrient uptake compared to the control. Interestingly, however, increased levels of zeolite and DTPA led to a decreased uptake of nutrients by plants (compared with control), indicating the absorption of such nutrients by the two amendments and their partial release for further plant use.
  • Zeolite and DTPA may alleviate the negative effects of soil Pb on tomato growth by decreasing nutrient leaching and increasing plant nutrient uptake.
  相似文献   

8.
The application of surfactant Tween 80 was investigated to accelerate the anaerobic degradation of HCHs (α-, β-, γ- and δ-hexachlorocyclohexane) and DDX (p,p′-DDT, o,p′-DDT, p,p′-DDE and p,p′-DDD) in aged soil from a former organochlorine pesticide manufacturing plant under saturated condition with low liquid/solid ratio (liquid/solid ratio = 0.50). The surfactant Tween 80 did not facilitate the degradation of HCHs and DDX in the soil used in this experiment. Subsequent desorption experiment results also showed that the surfactant Tween 80 did not increase the pollutant desorption from the soil. The results in this study are not in accordance with the results reported in previous literature. This difference might be due to the fact that the soils used in this experiment were polluted by HCHs and DDX for more than 20 years, and soil aging reduced the desorption of HCHs and DDX in soil. Furthermore, the surfactants might be adsorbed by soils in low liquid/solid ratio condition.  相似文献   

9.
Ground rubber contains 15?C20 g Zn kg?1 but very low levels of Cd and could serve as an inexpensive byproduct Zn fertilizer. The aim of this investigation was to test Zn release in a soil treated with ground tire rubber and rubber ash compared with commercial Zn fertilizer and a laboratory grade zinc sulfate. A Zn-deficient soil was chosen from wheat fields in Isfahan province, central Iran, and the ground rubber, rubber ash and fertilizer-Zn and laboratory ZnSO4 were added at 0.5 and 2 mg Zn kg?1; 0.5 kg ha?1 would usually correct Zn deficiency in such pot tests. The soil DTPA-extractable Zn was then measured with time and the results were described examining first order, Elovich, power function and parabolic diffusion kinetics models. In the pot experiment, corn (Zea mays L.) plants were exposed to three rates of Zn (0, 20, 40 mg Zn kg?1) from two different sources (ZnSO4 and ground rubber). Ground rubber was applied as 2?C3 mm and <1 mm diameter particles. Zinc treatments were mixed with the soils before planting. At harvest, concentrations of Zn, Pb, and Cd in roots and shoots of corn were measured. Results showed that ground rubber and rubber ash significantly increased the concentration of DTPA-Zn in the soil and this increase was higher than achieved with the commercial Zn fertilizer. At the lower Zn application rate, Zn release followed parabolic diffusion, while at the higher rate the kinetics of release followed power function and Elovich models. There was an increase in Zn concentration of corn shoot and roots by adding of Zn regardless the source of applied Zn. With increase in the rate of rubber used, the shoot Zn uptake increased. The Pb concentration of shoot and Cd concentrations of shoot and roots were low (less than 0.02 mg kg?1) in all treatments. The results showed that the soil DTPA Zn decreases over time if the soil is amended with a soluble form of Zn whereas the reverse was observed if the Zn is added as ground rubber which only gradually transforms. Thus ground rubber and rubber ash offer strong value as Zn fertilizer for Zn deficient soils.  相似文献   

10.
Summary Adsorption of phosphate by the anion-exchange resin Dowex-2 was investigated. The resin adsorbed small quantities of P from solution quantitatively. The rate of P-adsorption by resin agitated in solution was proportional to the P-concentration in solution, and was independent of the rate of diffusion of adsorbed P in the resin. When 1 g of soil was shaken continuously with 1 g of resin in 100 ml of water, the rate of P-adsorption by the resin was controlled by the rate of P-release from the soil. Quantities of P adsorbed from soil by resin after different lengths of time were less than those equilibrated with P32 during the same time intervals. The curves showing quantity of P adsorbed vs. time could be satisfactorily described by the hypothesis that there were three simultaneous reactions differing in rate, each reaction being first-order with respect to P. The same was true of the P32-equilibration data, except that the rate of the slowest reaction was apparently independent of time. In a group of 16 soils, the correlation between P adsorbed by the resin in 2 hours and P-availability to plants in the greenhouse, measured by the isotope-dilution method of Fried and Dean, was 0.95. The corresponding correlation between P extracted by the 0.25N HCl — 0.03N NH4F extractant of Bray and Kurtz was 0.91.Joint contribution from the Iowa Agricultural Experiment Station and the Eastern Soil and Water Management Section, U.S. Department of Agriculture. Journal Paper No. J-2639 of the Iowa Agricultural Experiment Station, Ames, Iowa. Project No. 1183.Graduate Assistants, Professor of Soils, and Associate Professor of Chemistry, respectively.  相似文献   

11.
Guivarch  A.  Hinsinger  P.  Staunton  S. 《Plant and Soil》1999,211(1):131-138
Uptake by roots from contaminated soil is one of the key steps in the entry of radiocaesium into the food chain. We have measured the uptake by roots of radiocaesium and its transfer to shoots of a heathland grass, sheep fescue (Festuca ovina L.) from two contrasting agricultural soils, a sandy podzol and a clayey calcareous soil. A culture device which keeps the roots separate from the soil was used thus allowing rhizosphere soil to be obtained easily and enhancing the effect of root action. Biomass production and 137Cs in shoots and roots were recorded. Cs adsorption was studied on both the initial, nonrhizosphere soil and on rhizosphere soil in dilute soil suspension. Cs desorption was measured by resuspending subsamples of contaminated soil in solutions containing various concentrations of stable Cs. The proportion of Cs fixed, i.e. not readily desorbable, was calculated by comparison of the adsorption and desorption isotherms. Uptake by roots varied considerably between soils and did not appear to be diffusion limited. Root-to-shoot transfer did not differ for the two soils studied. Root action considerably enhanced Cs adsorption on the soils, particularly the in sandy podzol with a low Cs affinity. The value of Kd was increased by up to an order of magnitude. A large proportion of adsorbed Cs was found to be fixed, the Kd was up to seven times greater on desorption than adsorption, indicating that up to 80% of adsorbed Cs was not readily exchangeable. Root action had little effect on the fixed fraction. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
The amount of zinc adsorbed onto the cell surface of the unicellular green algae Scenedesmus subspicatus Hodat and Chlamydomonas variabilis Dangeard was operationally defined by extraction with EDTA; it was a function of the concentration of free ionic zinc remaining in the growth medium, rather than that of the total (free plus complexed) zinc concentration, and could be described by Langmuir isotherms. Conditional adsorption equilibrium constants for zinc were 0.123 and 0.039 L ·μmol?1 for S. subspicatus and C. variabilis, respectively. A portion of the zinc adsorbed onto C. variabilis was released into solution after 1 h of contact with the metal, providing a possible tolerance mechanism for this alga; the division rate of C. variabilis was not altered by up to 12 μmol Zn2+· L?1, although the cell yield obtained during the stationary phase was significantly decreased. The amount of transported or cellular zinc, for both algal species, was operationally defined as the zinc remaining with the cell after EDTA-extraction; it was a linear function of the free ionic zinc concentration remaining in solution, suggesting that the zinc transported into the cell was not derived from the total adsorbed fraction, although the latter may contain some zinc originating from specific sites leading to zinc transport.  相似文献   

13.
Desorption of pyrene was studied in freshly-amended and 120 d-aged samples of six different soils using a Tenax-assisted method in order to evaluate the influence of soil properties and aging time on desorption. The correlations between desorption percentage (P d ), rapid desorption rate constant (k rap ), and biota to soil accumulation factor (BSAF) were analyzed. Results showed that in soils with a relatively high soil organic matter (SOM) content (> 1% in this study), P d and k rap decreased with the increase of SOM content both in freshly amended and aged soils. This suggests that SOM is the key component for sorption organic pollutants by providing highly active combination sites, where the combined pollutant becomes difficult to desorb. In soils with a relatively low SOM content (< 1%), clay minerals played an important role through offering nanopores to entrap pollutant molecules, making it difficult for these molecules to diffuse out. Aging significantly reduced the rate and extent of pyrene desorption. It is reasonable to deduce that, during aging, some of the pyrene molecules moved from “readily desorbing sites” to “relatively slower desorbing sites,” which led to a reduction of desorption. Ln P d showed a linear relationship with ln BSAF for both freshly-amended and aged soils, and ln k rap only in aged soils. In freshly-amended soils, rapid desorption in some soils is too quick to be the limiting step for bioaccumulation, and, therefore, the elevation BSAF became insignificant when k rap was larger than 3 × 10 ? 3 h ? 1 .  相似文献   

14.
Adhikari  Tapan  Rattan  R. K. 《Plant and Soil》2000,220(1-2):235-242
The Barber-Cushman mechanistic nutrient uptake model which has been utilized extensively to describe and predict nutrient uptake by crop plants at different stages of crop growth was evaluated for its ability to predict the Zn uptake by rice seedlings. Uptake of the nutrient is, therefore, determined by the rate of nutrient supply to the root surface by mass flow and diffusion. Inter root competition and time dependent root density are accounted for by soil volume that delivers nutrients. The radii of these cylinders decline with increasing density. Since mass flow and diffusion each supply zinc to the root, the process can be described mathematically using the model of Barber-Cushman (1984). The 11 parameters of the model for the uptake by rice cultivars were measured by established experimental techniques. Zinc uptake at different growth stages predicted by the model was compared to measured zinc uptake by rice cultivars grown on sandy loam soil in a green house. Predicted zinc uptake was significantly correlated with observed uptake r 2=0.99**. Sensitivity analysis was also used to investigate the impact of changes in soil nutrient supply, root morphological and root uptake kinetic parameters on simulated nutrient uptake. Overall results of sensitivity analysis indicate that the half distance between root axes, rate of root growth and water flux affect the uptake of zinc particularly at their higher values rather than at lower values and DaZn is the most sensitive parameter for zinc uptake at its lower values.  相似文献   

15.
黄杰勋  莫建民  李非里  盛光遥 《生态学报》2013,33(12):3639-3647
农业土壤和黑碳(BC)两种不同的吸附剂吸附苯酚平衡后分离,每组一部分不做处理,另一部分通过加入无酚灭菌溶液脱附平衡后分离,制备得到在不同吸附位点上吸附有苯酚的两类不同类型的4种吸附苯酚的吸附剂,研究了在不同Pseudomonasputida ATCC 11172菌密度条件下吸附在这4种吸附剂上的苯酚的脱附行为.结果表明,土壤及BC对苯酚的吸附均呈现明显的非线性,可用Freundlich模型描述.吸附态的苯酚能否被微生物利用取决于微生物及吸附剂的性质,BC具有发达的微孔结构,微孔小于假单胞菌细胞尺寸,导致假单胞菌无法直接利用吸附在BC上的苯酚;土壤基本无微孔结构,微生物较易与吸附的苯酚发生表面接触,直接利用吸附态苯酚.BC和土壤上的吸附态苯酚的脱附行为能用三元位点模型很好地描述,模型计算结果表明BC上的苯酚脱附主要受慢速脱附和极慢速脱附控制,微生物降解速率受脱附控制,降解可加速BC上的慢速脱附和极慢速脱附;土壤上的苯酚脱附主要受快速脱附控制,微生物降解不受脱附速率限制,对土壤上的脱附行为基本无影响.  相似文献   

16.
Summary Because zinc deficiency is a widespread disorder of wetland rice and copper deficiency may occur with it, 0.05M HCl was compared with 0.1M HCl, EDTA and DTPA as an extractant for available zinc and copper. It was also compared with the reflux method for boron assay.Thirty-three wetland rice soils were analyzed for zinc and copper by the four methods. Rice was grown on the flooded soils, scored visually for zinc deficiency, and the plants analyzed for zinc and copper content. In the boron study, 53 soils were extracted by the reflux method and the 0.05M HCl procedure. Rice was grown on the flooded soils, scored visually for boron toxicity, and the plants analyzed for boron content.Fourteen of the 16 soils on which rice showed zinc deficiency gave <1.0 mg/kg Zn by the 0.05M HCl method but values far in excess of the critical limits by the other methods. The r values for available and plant zinc were: 0.05M HCl (0.88**); 0.1M HCl (0.55**); EDTA (0.43**); and DTPA (0.31ns).Twelve of the zinc-deficient soils gave<0.1 mg/kg Cu by the 0.05M HCl method but values exceeding the critical limits by the EDTA and DTPA methods. The r values for available and plant copper were: 0.05M HCl (0.74**), 0.1M HCl (0.64**), EDTA (0.28ns), and DTPA (0.20ns).The critical limit of 1.0 mg/kg by the 0.05M HCl extraction was confirmed for zinc deficiency and a tentative value of 0.1 mg/kg for copper deficiency proposed.The 0.05M HCl method separated boron-toxic soils from non-toxic soils and gave a better correlation (r=0.91**) between available and plant boron than the reflux extraction (r=0.84**). The toxic limit by the 0.05M HCl method was provisionally set at 4 mg/kg.  相似文献   

17.
小分子有机酸对恒电荷土壤胶体Pb2+吸附-解吸的影响   总被引:5,自引:0,他引:5  
供试土壤胶体对Pb2+吸附及吸附态Pb2+的解吸等温线均符合Freundlich和Langmuir等温式,吸附常数Ka值大小为塿土>黄绵土>黑垆土>黄褐土,其大小次序与表面总电荷密度σ0大小一致,表明了各土壤胶体对Pb2+吸附强度的大小,在小分子有机酸作用下,吸附量降低,吸附亲和力增加,柠檬酸的影响大于草酸的影响;解吸后残留Pb^2+吸附常数杨值的大小基本为塿土>黄褐土>黑垆土>黄绵土,反映了解吸残留Pb2+吸附强度的大小,与各土壤胶体有机质和游离氧化铁含量有关,在NaNO3和草酸溶液中,吸附-解吸等温线相距较远,吸附-解吸之间存在着滞后性;在柠檬酸作用下,吸附-解吸等温线基本接近,二者之间具有一定的可逆性。  相似文献   

18.
对辽宁省北部、中部及南部棕壤型菜园土15对肥、瘦地N素保持与供应性能的研究表明,绝大多数肥地及其各粒级微团聚体的全N量、NH4+吸附与解吸量均大于瘦地及其各相应粒级微团聚体的,而NH4+解吸率则相反。除了大粒级微团聚体外,肥、瘦地及其小粒级微团聚体全N储量与NH4+吸附与解吸性能均有显着差异。肥、瘦地微团聚体的NH4+吸附与解吸量均随粒径的增大而降低,解吸率则随之升高。NH4+吸附与营养物质或酶活性等大多没有显着的线性相关关系;肥地及各粒级微团聚体NH4+解吸与土壤有机质及其结合形态、全N含量、脲酶与磷酸酶活性等呈显着线性正相关,瘦地及其各相应粒级微团聚体的与营养物质含量和酶活性均无显着线性相关关系。  相似文献   

19.
Zinc deficiency is an important limiting factor in sustainable crop production and is a factor often overlooked in determining the benefits and overall success of alfalfa pastures in rotations. A field experiment was conducted to investigate the effects of zinc and alfalfa cultivars on nodulation, herbage yield, leaf drop and disease severity (Phytophthora root rot disease and common leaf spot disease) in alfalfa (Medicago sativa L.). Ten cultivars of alfalfa (Hunter River, Hunterfield, Sceptre Aurora, Genesis, Aquarius, Venus (Y8622), PL69, P5929 and PL34HQ) were tested at two levels of zinc (+Zn: 4 kg ha–1, -Zn: no zinc added) on a Zn-deficient soil (DTPA zinc of top 0–15 cm soil was 0.4 mg kg–1 soil, while 15–30 cm subsoil Zn was 0.1 mg kg–1 soil) under field conditions. Zinc application significantly increased number and dry weight of nodules, herbage yield and leaf to stem ratio of alfalfa plants. There was a significant reduction in leaf drop, and occurrence of Phytophthora root rot (caused by fungus Phytophthora megasperma f. sp. medicaginis) and common leaf spot (caused by fungus Pseudopeziza medicaginis) diseases with Zn application. Alfalfa cultivars had a differential response to low Zn. Hunter River and Hunterfield were the most affected by omitting zinc application, while Sceptre, PL34HQ and Aquarius were comparatively less affected. The present study suggest that Zn nutrition effects nodulation, leaf drop, disease occurrence and production potential of alfalfa. The alfalfa cultivars have differential ability to low Zn supply. Growing of Zn-efficient cultivars and adequate Zn nutrition may also improve the N2-fixation by alfalfa on low-Zn soils.  相似文献   

20.
Dang  Y. P.  Dalal  R. C.  Edwards  D. G.  Tiller  K. G. 《Plant and Soil》1993,155(1):247-250
Since Zn availability to plants growing in a soil is governed by quantity, intensity, buffer power, rate of Zn desorption and diffusion, an improved understanding of a number of these factors in Vertisols would facilitate a more reliable prediction of crop requirements for Zn. The DTPA-extractable Zn, a quantity factor, together with initial Zn desorption rate coefficients, accounted for 80% of the variation in relative dry matter yield of wheat grown to anthesis. In combination with these factors, desorption (buffer) power explained 92% of the variation in Zn concentration in the young mature leaf blade (YMB) of wheat. Thus, the combination of the quantity, rate of Zn desorption and buffer power better predict growth responses of wheat to applied Zn in Vertisols than the commonly-used single extraction with DTPA alone (quantity), which provides only a static measure of Zn availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号