首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: The effect of in vivo enzymatic digestion (IVED), in vitro xylanase digestion (IVXD), metabolic analogues, surfactants and polyethylene glycol (PEG) on laccase production from Ganoderma sp. kk-02 was studied. METHODS AND RESULTS: An acidic laccase producing Ganoderma sp. kk-02 produced 16.0 U ml(-1) and 365.0 U g(-1) of laccase, when grown under submerged (SmF) and solid state (SSF) fermentation conditions, respectively. Modification of the substrate (wheat bran) molecular architecture by IVED and IVXD increased subsequent laccase production from Ganoderma sp. kk-02 by 1.31-fold (21.0 U ml(-1)) (SmF); 2.21-fold (810.0 U g(-1)) (SSF) and 1.10-fold (18.0 U ml(-1)) (SmF); 1.78-fold (650.0 U g(-1)) (SSF) when compared with untreated wheat bran. Further enhancement in laccase yield under SmF and SSF was obtained when IVED treated wheat bran was used in conjunction with amino acids [DL-tryptophan, 2.66-fold (56.0 U ml(-1)) SmF; 2.86-fold (2324.0 U g(-1)) SSF], vitamins [biotin, 1.71-fold (36.0 U ml(-1)) SmF; 3.06-fold (2483.0 U g(-1)) SSF], surfactants [Tween-40, 1.85-fold (39.0 U ml(-1)) SmF; 2.25-fold (1828.0 U g(-1)) SSF], and PEG [PEG 6000, 1.93-fold (40.0 U ml(-1)) SmF; 1.58-fold (1284.0 U g(-1)) SSF]. CONCLUSIONS: The IVED of substrate (wheat bran) facilitated hyper laccase production in presence of additives from Ganoderma sp. kk-02. SIGNIFICANCE AND IMPACT OF THE STUDY: The study highlights a new methodology viz. IVED for concomitant and economic production of diverse enzymes using the same substrate. The hyper laccase levels obtained could improve the economic competitiveness of environmentally benign processes applied in varied industries. The work also provides an insight into the regulation of complex metabolic pathways governing the expression of extra cellular proteins from white-rot fungi.  相似文献   

2.
The present article deals with the studies on the effect of media ingredients, such as carbon, nitrogen, inorganic phosphates, surfactants, and metal salts, on phytase enzyme production by Aspergillus niger CFR 335 in submerged (SmF) and solid-state fermentations (SSF). The results obtained showed a 1.5-fold higher enzyme yield in the presence of sucrose in both SmF and SSF, while peptone was found to be a favorable nitrogen source for SmF. Sodium dihydrogen phosphate (NaH2PO4) favored 34% higher enzyme yield than the control, which was followed by 19% higher activity in potassium dihydrogen phosphate (KH2PO4) in SSF at 0.015% w/v. The addition of Tween-20 in SmF showed a maximum yield of 12.6 U/mL while, SDS suppressed the growth of the fungus. None of the surfactants favored the enzyme yield in SSF. Calcium chloride (CaCl2) was extensively efficient in stimulating more than 55% higher phytase production in SmF at 0.01% v/v. In SSF, none of the metal salts stimulated phytase production.  相似文献   

3.
Studies were carried out on the production of pectinases using deseeded sunflower head by Aspergillus niger DMF 27 and DMF 45 in submerged fermentation (SmF) and solid-state fermentation (SSF). Higher titres of endo- and exo-pectinases were observed when medium was supplemented with carbon (4% glucose for SmF and 6% sucrose for SSF) and nitrogen (ammonium sulphate, 0.3% for both SmF and SSF) sources. Green gram husk proved to be relatively a better supplement to attain higher yield of endo-pectinase (11.7 U/g) and exo-pectinase (30.0 U/g) in solid-state conditions. Maximum production of endo-pectinase (19.8 U/g) and exo-pectinase (45.9 U/g) by DMF 45 were recorded in SSF when compared to endo-pectinase (18.9 U/ml) and exo-pectinase (30.3 U/ml) by DMF 27 in SmF under optimum process conditions.  相似文献   

4.
AIMS: Protease production by Streptomyces sp. 594 in submerged (SF) and solid-state fermentation (SSF) using feather meal, an industrial poultry residue, and partial characterization of the crude enzyme. METHODS AND RESULTS: Streptomyces sp. 594 produced proteases in SF (7.2 +/- 0.2 U ml(-1)) and SSF (15.5 +/- 0.41 U g(-1)), with pH increase in both media. Considering protease activity, values obtained in the liquid extract after SSF (6.3 +/- 0.17 U ml(-1)) were lower than those from SF. The proteases, which belong to serine and metalloproteinase classes, were active over a wide range of pH (5.0-10.0) and high temperatures (55-80 degrees C). Strain 594 was also able to degrade feather in agar and liquid media. Keratinase activity (80 U l(-1)) also confirmed the keratin degrading capacity of this streptomycete. CONCLUSIONS: Proteases produced using residues from poultry industry have shown interesting properties for industrial purposes. SIGNIFICANCE AND IMPACT OF THE STUDY: As far as we are concerned, this is the first contribution towards the production of thermophilic protease by a streptomycete in SSF using a keratinous waste.  相似文献   

5.
Aspergillus niger produces extracellular beta-fructofuranosidase under submerged (SmF) and solid state fermentation (SSF) conditions. After UV mutagenesis of conidiospores of A. niger, 2-deoxyglucose (10 g/l) resistant mutants were isolated on Czapek's minimal medium containing glycerol as a carbon source and the mutants were examined for improved production of beta-fructofuranosidase in SmF and SSF conditions. One of such mutant DGRA-1 overproduced beta-fructofuranosidase in both SmF and SSF conditions. In SmF, the mutant DGRA-1 showed higher beta-fructofuranosidase productivity (110.8 U/l/hr) than the wild type (48.3 U/l/hr). While in SSF the same strain produced 322 U/l/hr of beta-fructofuranosidase, 2 times higher than that of wild type (154.2 U/l/hr). In SmF, both wild type and mutants produced relatively low level of beta-fructofuranosidase in medium containing sucrose with glucose than from the sucrose medium. However in SSF, the DGRA-1 mutant grown in sucrose and sucrose+ glucose did not show any difference with respect to beta-fructofuranosidase production. These results indicate that the catabolite repression of beta-fructofuranosidase synthesis is observed in SmF whereas in SSF such regulation was not prominent.  相似文献   

6.
7.
A solid‐state fermentation (SSF) system for production of an industrially important enzyme laccase by Pleurotus ostreatus was developed by using potato dextrose yeast extract medium and polyurethane foam as a supporting material. The maximum laccase production in the SSF system was as high as 3×105 U/L. Addition of inducers, such as copper and ferulic acid, further enhanced the laccase production in SSF. Moreover, the time required for the maximum laccase production was reduced to 6 days compared to 10 days reported earlier. The improvement achieved by the SSF system was investigated by comparing it to a submerged fermentation system (SmF), both experimentally and by using a standard theoretical model along with a parameter sensitivity analysis. Laccase production in SSF was found to be twice of that in SmF. One of the main reasons for higher laccase production in SSF compared to SmF was possibly due to the presence of higher proteolytic activity in SmF. Strong proteolytic activity in SmF presumably caused subsequent laccase degradation, which lowered the ultimate laccase production in SmF compared to SSF.  相似文献   

8.
The kinetics of β-fructofuranosidase (Ffase) production by Aspergillus niger in submerged (SmF) and solid-state fermentation (SSF) systems was investigated. The maximum productivity of Ffase (81.8 U/l per h) was obtained in SSF for 72 h while it was 18.3 U/l per h in SmF for 120 h. The productivity of extra cellular Ffase produced in SSF was 5-fold higher than in SmF. Optimization of fermentation medium for Ffase production was carried out using De Meo's fractional factorial design with seven components such as (NH4)2SO4, KH2PO4, FeSO4, MgSO4 · 7H2O, sucrose, urea and yeast extract. The media designed for SmF after two steps of optimization supported the growth of A. niger and higher productivity of Ffase (58.3 U/l per h) than with the medium before optimization. The optimized medium of SmF when used in SSF, did not improve the Ffase productivity and therefore medium for SSF was optimized independent of SmF. After two optimization steps, the media was defined for SSF which supported the growth and high level of Ffase productivity (149.1 U/l per h) in SSF compared to the medium before optimization (81.8 U/l per h) and optimized medium for SmF (58.3 U/l per h). Our results suggested that the optimized media for SmF and SSF for the production of Ffase have to be different.  相似文献   

9.
Thermophilic organisms produce thermostable enzymes, which have a number of applications, justifying the interest in the isolation of new thermophilic strains and study of their enzymes. Thirty-four thermophilic and thermotolerant fungal strains were isolated from soil, organic compost, and an industrial waste pile based on their ability to grow at 45°C and in a liquid medium containing pectin as the only carbon source. Among these fungi, 50% were identified at the genus level as Thermomyces, Aspergillus, Monascus, Chaetomium, Neosartoria, Scopulariopsis, and Thermomucor. All isolated strains produced pectinase during solid-state fermentation (SSF). The highest polygalacturonase (PG) activity was obtained in the culture medium of thermophilic strain N31 identified as Thermomucor indicae-seudaticae. Under SSF conditions on media containing a mixture of wheat bran and orange bagasse (1 : 1) at 70% of initial moisture, this fungus produced the maximum of 120 U/ml of exo-PG, while in submerged fermentation (SmF) it produced 13.6 U/ml. The crude PG from SmF was more thermostable than that from SSF and exhibited higher stability in acidic pH.  相似文献   

10.
Different carbon (C) sources, mainly carbohydrates and lipids, have been screened for their capacity to support growth and lipase production by Penicillium restrictum in submerged fermentation (SmF) and in solid-state fermentation (SSF). Completely different physiological behaviors were observed after the addition of easily (oleic acid and glucose) and complex (olive oil and starch) assimilable C sources to the liquid and solid media. Maximal lipolytic activities (12.1 U/mL and 17.4 U/g) by P. restrictum were obtained with olive oil in SmF and in SSF, respectively. Biomass levels in SmF (12.2–14.1 mg/mL) and SSF (7.0–8.0 mg/g) did not varied greatly with the distinct C sources used. High lipase production (12.3 U/g) using glucose was only attained in SSF, perhaps due to the ability of this fermentation process to minimize catabolite repression.  相似文献   

11.
Five strains each of Gibberella fujikuroi and Fusarium monoliforme were screened to select G. fujikuroi P-3, a strain capable of giving consistent production of gibberellic acid (GA(3)) by solid state fermentation (SSF). The comparative production of GA(3) by SSF and submerged fermentation (SmF) indicated better productivity with the former technique. The accumulation of GA(3) was 1.626 times higher in the case of SSF. On the basis of available carbohydrates in the media, the percent conversions were 0.096 and 0.156 in SmF and SSF, respectively. The use of coarse wheat bran of the particle size of 0.3-0.4 cm resulted in an increase of 2.5 times in the yield of GA(3). The enrichment of commercial wheat bran with soluble starch gave enhanced accumulation to an extent of 3.5 times. The relation between GA(3) production and cell growth in SSF was similar to that encountered in SmF. The consistent and improved yields to a tune of 1.22 g GA(3) per kilogram dry moldy bran (DMB) establish the potential and feasibility of SSF for the production of GA(3) by G. fujikuroi P-3. On preliminary cost analysis, a net savings of about 60% and 50% on fermentation medium cost and the expenditure on down-stream processing, respectively, as compared to the presently employed SmF technique was evident.  相似文献   

12.
Summary The characteristics of Bifidobacterium bifidum grown in solid state fermentation (SSF) system (water content of media 54.5 and 68.8%) was compared with the submerged fermentation (SmF) system (water content of medium: 89.8%). Besides lactic acid (lactate) and acetic acid (acetate), the bacterium was able to secrete propionic acid (propionate) and butyric acid (butyrate) under SSF conditions. However, it only produced lactate and acetate under SmF conditions. The ratio of lactate to acetate was 1.26–1.62:1 in SSF but it was 1:2 in SmF. A higher content of C16:0 and C18:1 as well as a lower content of C18:0 cell membrane fatty acids were observed in SSF than in SmF. There was a lower growth rate, a lower viable count and a longer logarithmic growth phase for B. bifidum cultivated in SSF than in SmF.  相似文献   

13.
Amyloglucosidase (AMG) was produced by Aspergillus niger in solid-state fermentation (SSF), submerged fermentation (SmF) and an aqueous, two-phase system of polyethyleneglycol (PEG) and salt. In SSF, a fed-batch mode of operation gave a yield of 64 U/ml compared with 44 U/ml in batch mode. Similar trends were observed for SmF, where fed-batch cultivation gave a yield of 102 U/ml compared with 66 U/ml in batch. Shorter cultivation times (66 h) were required for SmF than for SSF (96 h). In the aqueous, two-phase cultivation, the productivity and yield of AMG were both twice those in the control fermentation.M. Ramadas is with the Department of Biochemistry, Faculty of Medicine, University of Jaffna, Kokuvil, Sri Lanka. O. Holst and B. Mattiasson are with the Department of Biotechnology, Chemical Center, Lund University, Box 124, S-221 00 Lund, Sweden  相似文献   

14.
Forty microbial strains isolated from raw milk samples and black and green olives were grown in MP5 (mineral pectin 5) medium containing 0.5% lemon pectin. All strains synthesized an extracellular polygalacturonase. Rhodotorula sp. ONRh9 (0.44 U x mL(-1)) and Leuconostoc sp. LLn1 (0.16 U x mL(-1)), which had a more active polygalacturonase in MP5 medium, were studied in MAPG5 medium containing polygalacturonic acid. Highest biomass and polygalacturonase production by these two strains were observed for polygalacturonic acid concentrations of 10 g x L(-1) (Rhodotorula sp. ONRh9) and 5 g x L(-1) (Leuconostoc sp. LLn1) and for initial pH values of 6 (Rhodotorula sp. ONRh9) and 5.5 (Leuconostoc sp. LLn1). The two strains grown in fermenters in MAPG5 medium generated the following results: with controlled initial pH, Rhodotorula sp. produced maximum biomass (DO) and polygalacturonase (PG) after 20 h (DO, 3.86; PG, 0.24 U x mL(-1)) of growth, and this level was sustained until the end of the culture; Leuconostoc sp. LLn1 synthesized more cells and polygalacturonase between 4 h (DO, 1.80; PG, 0.17 U x mL(-1)) and 24 h (DO, 3.90; PG, 0.27 U x mL(-1)) of culture. With uncontrolled initial pH, the cultures produced maximum biomass and polygalacturonase after 20 h (DO, 3.30; PG, 0.26 U x mL(-1)) for Rhodotorula sp. ONRh9 and 10 h (DO, 2.84; PG, 0.17 U x mL(-1)) for Leuconostoc sp. LLn1.  相似文献   

15.
《Fungal biology》2020,124(8):723-734
Aspergillus is used for the industrial production of enzymes and organic acids, mainly by submerged fermentation (SmF). However, solid-state fermentation (SSF) offers several advantages over SmF. Although differences related to lower catabolite repression and substrate inhibition, as well as higher extracellular enzyme production in SSF compared to SmF have been shown, the mechanisms undelaying such differences are still unknown. To explain some differences among SSF and SmF, the secretome of Aspergillus brasiliensis obtained from cultures in a homogeneous physiological state with high glucose concentrations was analyzed. Of the regulated proteins produced by SmF, 74% were downregulated by increasing the glucose concentration, whereas all those produced by SSF were upregulated. The most abundant and upregulated protein found in SSF was the transaldolase, which could perform a moonlighting function in fungal adhesion to the solid support. This study evidenced that SSF: (i) improves the kinetic parameters in relation to SmF, (ii) prevents the catabolite repression, (iii) increases the branching level of hyphae and oxidative metabolism, as well as the concentration and diversity of secreted proteins, and (iv) favors the secretion of typically intracellular proteins that could be involved in fungal adhesion. All these differences can be related to the fact that molds are more specialized to growth in solid materials because they mimic their natural habitat.  相似文献   

16.
Lentinus edodes and Pleurotus species from various origins were compared for the first time for their ability to produce lignocellulolytic enzyme in solid-state (SSF) and submerged (SF) fermentation of various plant raw material. Fungi cultivation in identical culture conditions revealed wide differences among both species and strains of the same species. The yields of CMCase (62.3Uml(-1)), xylanase (84.1 U ml(-1)), FPA (5.9 U ml(-1)), and laccase (4103 Ul(-1)) are the best so far obtained with the strains of oyster mushrooms. The study pointed out that the nature of lignocellulosic material and the method of fungi cultivation are factors determining the expression of lignocellulolytic potential of fungi as well as the ratio of individual enzymes in enzyme complex. SSF of tree leaves is favorable for laccase and MnP secretion by the majority L. edodes and Pleurotus strains, whereas SF provides better production of hydrolytic enzymes.  相似文献   

17.
Mutants of Penicillium janthinellum NCIM 1171 were evaluated for cellulase production using both submerged fermentation (SmF) and solid state fermentation (SSF). Mutant EU2D-21 gave highest yields of cellulases in both SmF and SSF. Hydrolysis of Avicel and cellulose were compared using SmF and SSF derived enzyme preparations obtained from EU2D-21. Surprisingly, the use of SSF derived preparation gave less hydrolysis compared to SmF derived enzymes. This may be due to inactivation of β-glucosidase at 50 °C in SSF derived enzyme preparations. SmF derived enzyme preparations contained both thermostable and thermosensitive β-glucosidases where as SSF derived enzyme preparations contained predominantly thermosensitive β-glucosidase. This is the first report on less thermostability of SSF derived β-glucosidase which is the main reason for getting less hydrolysis.  相似文献   

18.
Pectinase production studies were carried out in submerged and solid-state conditions from deseeded sunflower head employing Aspergillus niger. The two potential strains of A. niger, DMF 27 for submerged and DMF 45 for solid-state were isolated by multi-step screening technique based on coefficient of pectolysis and capability of pectinase production. Process variables such as size of inoculum, pH, temperature, particle size and moisture content were optimized with an aim to achieve the maximum production of pectinases. The increased level of pectinase production was recorded at pH 5.0 and temperature 34 degrees C in submerged and solid-state conditions. The optimum inoculum size was 1x10(5)ml(-1) for submerged and 1x10(7)g(-1) for solid-state conditions. Five hundred micrometer particle size and 65% moisture content of the substrate were optimum for the maximum production of pectinases in solid-state condition. Under optimum conditions, maximum production of exo-pectinase was 34.2U/g in SSF and endo-pectinase was 12.6U/ml in SmF.  相似文献   

19.
In the used media mainly consisting of steam-exploded wheat straw, the straw, which could replace expensive veratryl alcohol, might act not only as nutrient, but also as inducer of lignin enzymes. The activities of the enzymes lignin peroxidase (LiP) and manganese peroxidase (MnP) in solid-state fermentation (SSF) were far higher than in submerged fermentation (SmF). Under optimal conditions of SSF, the maximum activities of the enzymes Lip and MnP were 2600 and 1375 U/L, respectively. Thus, this would pave the way for production and application of lignin enzymes on a large scale.  相似文献   

20.
The tannase-producing efficiency of liquid-surface fermentation (LSF) and solid-state fermentation (SSF) vis-à-vis submerged fermentation (SmF) was investigated in a strain of Aspergillus niger, besides finding out if there was a change in the activity pattern of tannase in these fermentation processes. The studies on the physicochemical properties were confined to intracellular tannase as only this form of enzyme was produced by A. niger in all three fermentation processes. In LSF and SmF, the maximum production of tannase was observed by 120 h, whereas in SSF its activity peaked at 96 h of growth. SSF had the maximum efficiency of enzyme production. Tannase produced by the SmF, LSF and SSF processes had similar properties except that the one produced during SSF had a broader pH stability of 4.5-6.5 and thermostability of 20 degrees-60 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号