首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The formation of binary complexes between sturgeon apoglyceralddhyde-3-phosphate dehydrogenase, coenzymes (NAD+ and NADH) and substrates (phosphate, glyceraldehyde 3-phosphate and 1,3-bisphosphoglycerate) has been studied spectrophotometrically and spectrofluorometrica-ly. Coenzyme binding to the apoenzyme can be characterized by several distinct spectroscopic properties: (a) the low intensity absorption band centered at 360 nm which is specific of NAD+ binding (Racker band); (b) the quenching of the enzyme fluorescence upon coenzyme binding; (c) the quenching of the fluorescence of the dihydronicotinamide moiety of the reduced coenzyme (NADH); (D) the hypochromicity and the red shift of the absorption band of NADH centered at 338 nm; (e) the coenzyme-induced difference spectra in the enzyme absorbance region. The analysis of these spectroscopic properties shows that up to four molecules of coenzyme are bound per molecule of enzyme tetramer. In every case, each successively bound coenzyme molecule contributes identically to the total observed change. Two classes of binding sites are apparent at lower temperatures for NAD+ Binding. Similarly, the binding of NADH seems to involve two distinct classes of binding sites. The excitation fluorescence spectra of NADH in the binary complex shows a component centered at 260 nm as in aqueous solution. This is consistent with a "folded" conformation of the reduced coenzyme in the binary complex, contradictory to crystallographic results. Possible reasons for this discrepancy are discussed. Binding of phosphorylated substrates and orthophosphate induce similar difference spectra in the enzyme absorbance region. No anticooperativity is detectable in the binding of glyceraldehyde 3-phosphate. These results are discussed in light of recent crystallographic studies on glyceraldehyde-3-phosphate dehydrogenases.  相似文献   

3.
Baek D  Jin Y  Jeong JC  Lee HJ  Moon H  Lee J  Shin D  Kang CH  Kim DH  Nam J  Lee SY  Yun DJ 《Phytochemistry》2008,69(2):333-338
  相似文献   

4.
Beta-structure in glyceraldehyde-3-phosphate dehydrogenase   总被引:1,自引:0,他引:1  
  相似文献   

5.
6.
The yields in molecules per 100 eV for active-site and sulphydryl loss from glyceraldehyde-3-phosphate dehydrogenase have been determined in nitrous-oxide-saturated, aerated and argon-saturated solutions. Molecular hydrogen peroxide produces a sulphenic acid product, which can be repaired by post-irradiation treatment with dithiothreitol. Comparison of the yields under various conditions showed that in aerated solutions both .OH and .O2-radicals inactivated the enzyme with an efficiency of about 26 per cent. However, the efficiency of .OH in air-free solutions was less, and inactivation by .H and eaq- did not appear to be appreciable. There is a correlation between SH loss and loss of active sites.  相似文献   

7.
8.
The catalytic interaction of glyceraldehyde-3-phosphate dehydrogenase with glyceraldehyde 3-phosphate has been examined by transient-state kinetic methods. The results confirm previous reports that the apparent Km for oxidative phosphorylation of glyceraldehyde 3-phosphate decreases at least 50-fold when the substrate is generated in a coupled reaction system through the action of aldolase on fructose 1,6-bisphosphate, but lend no support to the proposal that glyceraldehyde 3-phosphate is directly transferred between the two enzymes without prior release to the reaction medium. A theoretical analysis is presented which shows that the kinetic behaviour of the coupled two-enzyme system is compatible in all respects tested with a free-diffusion mechanism for the transfer of glyceraldehyde 3-phosphate from the producing enzyme to the consuming one.  相似文献   

9.
Hybridization of glyceraldehyde-3-phosphate dehydrogenase   总被引:2,自引:0,他引:2  
  相似文献   

10.
Polyglutamine domains are excellent substrates for tissue transglutaminase resulting in the formation of cross-links with polypeptides containing lysyl residues. This finding suggests that tissue transglutaminase may play a role in the pathology of neurodegenerative diseases associated with polyglutamine expansion. The glycolytic enzyme GAPDH previously was shown to tightly bind several proteins involved in such diseases. The present study confirms that GAPDH is an in vitro lysyl donor substrate of tissue transglutaminase. A dansylated glutamine-containing peptide was used as probe for labeling the amino-donor sites. SDS gel electrophoresis of a time-course reaction mixture revealed the presence of both fluorescent GAPDH monomers and high molecular weight polymers. Western blot analysis performed using antitransglutaminase antibodies reveals that tissue transglutaminase takes part in the formation of heteropolymers. The reactive amino-donor sites were identified using mass spectrometry. Here, we report that of the 26 lysines present in GAPDH, K191, K268, and K331 were the only amino-donor residues modified by tissue transglutaminase.  相似文献   

11.
Yeast glyceraldehyde-3-phosphate dehydrogenase (glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12) immobilized on CNBr-activated Sepharose 4-B has been subjected to dissociation to obtain matrix-bound dimeric species of the enzyme. Hybridization was then performed using soluble glyceraldehyde-3-phosphate dehydrogenase isolated from rat skeletal muscle. Immobilized hybrid tetramers thus obtained were demonstrated to exhibit two distinct pH-optima of activity characteristic of the yeast and muscle enzymes, respectively. The results indicate that under appropriate conditions the activity of each of the dimers composing the immobilized hybrid tetramer can be studied separately.  相似文献   

12.
The spontaneous inactivation of yeast glyceraldehyde-3-phosphate dehydrogenase was found to fit a simple two-state model at pH 8.5 and 25 degrees. The first step is a relatively rapid dissociation of the tetramer to dimers with the equilibrium largely in favor of the tetramer. In the absence of NAD+ the dimer inactivates irreversibly. The apoenzyme is quite stable with a half-life for complete activity loss proportional to the square root of the enzyme concentration. Perturbances of the protein structure (by pH, ionic strength, and specific salts), which have no effect on the tetrameric state of the molecule, result in an alteration of the cooperativity of NAD+ binding, the reactivity of the active-site sulfhydryl group, and the catalytic activity of the enzyme. Covalent modification of two of the four active-site sulfhydryl groups has profound effects on the enzymic activity which are mediated by changes in the subunit interactions. Sedimentation analysis and hybridization studies indicate that the interaction between subunits remains strong after covalent modification. Under normal physiological and equilibrium dialysis conditions the protein is a tetramer. Equilibrium dialysis studies of NAD+ binding to the enzyme at pH 8.5 and 25 degrees reveal a mixed cooperativity pattern. A model consistent with these observations and the observed half-of-the-sites reactivity is that of ligand induced sequential conformational changes which are transferred across strongly interacting subunit domains. Methods for distinguishing negatively cooperative binding patterns from mixtures of denatured enzyme and multiple species are discussed.  相似文献   

13.
The DNA-binding protein P8 from transformed hamster fibroblasts (line NIL-1-hamster sarcoma virus) has been purified to homogeneity by DNA-cellulose and phosphocellulose chromatography. The molecular weight of dissociated P8 is 36000, the same as that reported for the subunits of glyceraldehyde-3-phosphate dehydrogenase, and the mobility of these proteins in polyacrylamide gels is identical. The amino acid composition of P8 is very similar to that of glyceraldehyde-3-phosphate dehydrogenase. When assayed for glyceraldehyde-3-phosphate dehydrogenase activity the P8 preparation had a specific activity of 54.6 units/mg, a value comparable to that of the crystalline enzyme from several sources. Furthermore, serum prepared against P8 crossreacts with glyceraldehyde-3-phosphate dehydrogenase from hamster muscle. These results show that P8 is glyceraldehyde-3-phosphate dehydrogenase. The interaction of P8 from transformed fibroblasts and glyceraldehyde-3-phosphate dehydrogenase from hamster and rabbit muscle with DNA has been studied using a Millipore filtration technique. These proteins have affinity for single-stranded DNA but not for double-stranded DNA.  相似文献   

14.
15.
Oxidation of the essential cysteins of glyceraldehyde-3-phosphate dehydrogenase into the sulfenic acid derivatives was observed in the presence of ascorbate, resulting in a decrease in the dehydrogenase activity and the appearance of the acylphosphatase activity. The oxidation was promoted by EDTA, NAD(+), and phosphate, and blocked in the presence of deferoxamine. The ascorbate-induced oxidation was suppressed in the presence of catalase, suggesting the accumulation of hydrogen peroxide in the conditions employed. The data indicate the metal-mediated mechanism of the oxidation due to the presence of metal traces in the reaction medium. Physiological importance of the mildly oxidized GAPDH is discussed in terms of its ability to uncouple glycolysis and to decrease the ATP level in the cell.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号