首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The Sakaguchi color reaction for monosubstituted guanidino compounds was applied to the measurement of β-guanidinopropionate and phosphorylated β-guanidinopropionate. The phosphorylated derivative was measured as an increase in β-guanidinopropionate following incubation with 0.1n HCl in a boiling-water bath for 10 min. After feeding rats 1% of β-guanidinopropionic acid in their diet for 69 days, skeletal muscle, heart, liver, kidney, and spleen contained 5–10 μmoles of a monosubstituted guanidino compound per gram wet weight of tissue. No β-guanidinopropionate was detected in brain or testes. Phosphorylated β-guanidinopropionate was found only in skeletal muscle (27 μmoles/g) and in heart (7 μmoles/g). Creatine hydrate (2%) added to the diet containing β-guanidinopropionic acid inhibited the accumulation of phosphorylated β-guanidinopropionate in the heart and partially inhibited its accumulation in skeletal muscle.  相似文献   

2.
The treatment of rats by galactosamine (2 mmol/kg i.p.), which dramatically alters the metabolism of pyrimidine nucleotides in the liver, has been used to investigate the dynamics of pyrimidine nucleotides in the rat heart. Six hours after administration of the drug, the UTP and UDPG myocardial contents were decreased by respectively 40 and 52% while the sum of uracil nucleotides was increased by 66% and that of cytosine nucleotides by 15%. When administered 5 h after galactosamine treatment, cytidine (750 nmol/rat i.v.) induced a further increase in cytosine nucleotides (46% above control value 1 h later) without however effect on uracil nucleotides. On the other hand, the administration of uridine (250 nmol/rat, i.v. 5 h after galactosamine), while restoring UTP, UDPG and the pool of uracil nucleotides, provoked a decrease in cytosine nucleotide level (-17%). In the absence of galactosamine treatment, the administration of uridine and cytidine did not induce changes in nucleotide levels despite a rise in blood cytidine concentration. All these observations support the hypothesis that: 1. the pathway for cytosine nucleotide synthesis predominant in the heart is that utilizing preformed exogenous cytidine and 2. this pathway is mainly controlled by the intracellular concentration of UTP rather than that of CTP.  相似文献   

3.
The pH-rate profiles for the hydrolysis of uridine 5'-diphospho-alpha-D-glucose (UDPG) and uridine 5'-diphospho-alpha-D-glucuronic acid (UDPGA) in aqueous solution have been measured. The results obtained and a comparison with other data suggests that the mechanism of hydrolysis of each activated glycosyl-donor at pH 1-4 probably involves the slow ionisation, via an S(N)1 process, of the neutral molecule to a glycosyl ion and UDP. From these data, the catalytic power (k(cat)/k(uncat)) of the glycosyltransferases has been estimated for the first time to be in the order of 10(11-13).  相似文献   

4.
High-resolution liquid-chromatographic methods developed for analyzing nucleotide pools at the nanogram level in four representative species of ascomycetes (Penicillium citrinum, Aspergillus niger, Fusarium moniliforme, and Cladosporium herbarum) were used to study polysaccharide biosynthesis. Nucleotides extracted from the mycelial mat were preseparated from interfering polysaccharides, glycoproteins, and nucleic acids on a column of Biogel P-2. Resolution of 18 nucleotides from each fungal species was accomplished on AS-Pellionex-SAX, pellicular anion-exchanger by using a high-pressure liquid chromatograph. Nucleotides were identified by comparing peak retention-times, by differential u.v. absorption with two detectors in series at selected wavelenghts, and by acid or enzymic hydrolysis with product identification by liquid chromatography. Pyrimidine bases exceeded purines by at least three fold, and uridine nucleotides often constituted 60-80 mole percent of the total nucleotides; extractable cytidine nucleotides were negligible. Uridine 5'-(2- acetamido-2-deoxy-α-D-glucopyranosyl disphosphate) is the preponderant nucleotide throughout the growth cycles of all four species, amounting to 30-60% of all nucleotides present. For all four fungal species, a burst of nucleotide formation was observed after the first 48 h (15-30 μmol/g tissue), with fluctuations that eventually fell to 0.1 μmmol/g on the tenth day.  相似文献   

5.
Results from kinetic studies on the incorporation of 3H-5-uridine and 3H-8-adenosine into the acid-soluble nucleotide poor and nucleic acids by Novikoff hepatoma cells (subline N1S1-67) in suspension culture indicate that the uridine transport reaction is saturated at about 100 μM and that for adenosine at about 10 μM nucleoside in the medium, and that above 100 μM simple diffusion becomes the predominant mode of entry of both nucleosides into the cell. The Km of the transport reactions is approximately 1.3 × 10?5 M for uridine and 6 × 10?6 M for adenosine. The incorporation of these nucleosides into both the nucleotide pool and into nucleic acids seems to be limited by the rate of entry of the nucleic acid synthesis from the rate of incorporation of nucleosides. Other complicating factors are a change with time of labeling in the relative proporation of nucleoside incorporated into DNA and into the individual nucleotides of RNA, the splitting of uridine to uracil by th ecells, the deamination of adenosine kto inosine and the subsequent cleavage of inosine to hypoxanthine. Various lines of evidence are presented which indicate that the overall nucleotide pools of the cells are very small under normal growth conditions. During growth in the presence of 200 μM uridine or adenosine, however, the cells continue to convert the nucleosides into intracellular nucleotides much more rapidly than required for nucleic acid synthesis. This results in an accumulation of free uridine and adenosine nucleotides in the cells, the maximum amounts of which are at least equivalent to the amount of these nucleotides in total cellular RNA.  相似文献   

6.
Treatment of uridine diphosphate glucose (UDPG) with an enzyme of S. fragilis was found to produce about 25% of a galactose-containing compound. This compound is precipitated with mercuric ions like UDPG, and its migration in chromatography in acid-ethanol is similar. By alkaline treatment it gives, like UDPG, a doubly esterified hexose monophosphate. It is concluded that the compound is uridine diphosphate galactose, and the bearing of this finding on the mechanism of action of UDPG is discussed.  相似文献   

7.
The ability of Rickettsia prowazekii to transport potential sources of the glucose moiety of bacterial polysaccharides was determined. Transport was determined both by filtration assays and by centrifugation through nonaqueous layers. Uridine 5'-diphosphoglucose (UDPG) was transported, whereas glucose was not transported; the uptake of glucose phosphates, although greater than that for glucose, was markedly lower than the transport of UDPG. Furthermore, the activities of hexokinase and phosphoglucomutase, enzymes required for the metabolism of glucose and glucose 6-phosphate, were undetectable in rickettsial extracts. The uptake of UDPG had an extended time course and did not reach a plateau until 60 min. The maximum rate of uptake was 340 pmol/min per mg of protein, and the rate was half-maximal at a UDPG concentration of 220 microM. Measurement of true influx of UDPG was complicated by the low activity of this transport system and the metabolism of the UDPG. The uptake of labeled UDPG was markedly inhibited by a 10-fold excess of uridine monophosphate, uridine diphospho-N-acetylglucosamine, and uridine diphospho-N-acetylgalactosamine but not by a variety of other structurally related compounds.  相似文献   

8.
Abstract— Purine and pyrimidine nucleotides were measured in the brain of normal and electroshocked rats after chromatographic separation on ion-exchange resin of mono-, di- and tri-phosphorylated derivatives.
CMP, IMP and NAD did not show any significant quantitative change. Adenine nucleotides showed an abrupt change followed by a rapid return to the control value. GTP was the only purine nucleotide exhibiting a relatively slow return to its starting concentration. The greatest percentage increase after electroshock was observed in UMP, which returned to its control value only after 5 min; UDPCoenzymes (i.e. UDPA plus UDPG) showed a relatively small drop during the development of the seizure and the slowest return to the base line; UTP showed a late transistory increase above the normal level after an initial drop associated with convulsant activity.
Tritiated uridine was injected intracisternally to investigate the turnover of pyrimidine nucleotides. UTP showed the highest specific radioactivity at the earliest time, followed by UMP, UDPCoenzymes and CMP. It was found that convulsant activity is associated with dramatic changes in the specific radioactivity of pyrimidine nucleotides.  相似文献   

9.
Abstract: Evidence that neurosteroids are potent modulators of the action of GABA at GABAA receptors has prompted the investigation of the mechanism that controls brain neurosteroid synthesis by glial cell mitochondria in vivo. In vitro studies suggest that the interaction of the diazepam binding inhibitor (DBI)—a polypeptide that is abundant in steroidogenic cells—with glial mitochondrial DBI receptors (MDRs) is a crucial step in the physiological regulation of neurosteroid biosynthesis. MDRs bind 4-chlorodiazepam (4′-CD), N,N-di-n-hexyl-2-(4-fluorophenyl)-indol-3-acetamide (FGIN-1–27), and the isoquinoline carboxamide PK 11195 with high affinity, and these ligands have been used to investigate whether the stimulation of glial MDRs increases brain pregnenolone production in vivo. Adrenalectomized and castrated (A-C) male rats (to eliminate peripheral sources of pregnenolone) were pretreated with trilostane (to prevent pregnenolone metabolism to progesterone), and the pregnenolone content in brain regions dissected after fixation with a 0.8-s exposure to microwave irradiation focused to the head was determined by HPLC followed by specific radioimmunoassay. The forebrain and cerebellum of A-C rats contained 4–7 ng of pregnenolone/g of tissue, and the olfactory bulb contained 10–14 ng/g. These concentrations of brain pregnenolone are only 30–40% lower than those of shamoperated rats. In contrast, the plasma pregnenolone content of sham-operated rats was 2–3 ng/ml, but it was only 0.15–0.20 ng/ml in the plasma of A-C rats. In A-C rats, treatment with the MDR ligands 4-CD and FGIN-1–27 increased the pregnenolone content in the brain but failed to change the plasma or peripheral tissue content of this steroid. The effect of 4′-CD on brain pregnenolone content was maximal (70–100% increase) at the dose of 18 μmol/kg, 5–10 min after intravenous injection. The effect of oral administration of FGIN-1–27 on brain pregnenolone content was maximal (80–150% increase) at doses of 400–800 μmollkg and peaked at ~ 1 h. That this effect of FGIN-1–27 was mediated by the MDR was documented by pre-treatment with the MDR partial agonist PK 11195 (100 μmol/kg, i.p.). PK 11195 did not affect basal brain pregnenolone content but prevented the accumulation of brain pregnenolone induced by FGIN-1–27. FGIN-1–27 and 4-CD failed to increase the brain concentration of dehydre epiandrosterone in A-C rats. These data suggest that glial cell MDRs play a role in neurosteroid biosynthesis in vivo.  相似文献   

10.
Control of Colanic Acid Synthesis   总被引:2,自引:0,他引:2       下载免费PDF全文
The nucleotide pools of certain mucoid, colanic acid-synthesizing strains of Escherichia coli, Salmonella typhimurium, and Aerobacter cloacae were examined, and in all cases the nucleotide sugars uridine-5'-diphosphate glucose (UDPG), uridine-5'-diphosphate galactose (UDPGal), guanosine-5'-diphosphate fucose (GDPF), and uridine-5'-diphosphate glucuronic acid (UDPGA) were detected. It is postulated that these nucleotide sugars are precursors in the synthesis of colanic acid. The levels of these nucleotide sugars and of the enzymes involved in their synthesis were examined in a number of mucoid strains and compared with the levels found in certain strains which were repressed in the synthesis of colanic acid, only becoming mucoid when grown in the presence of p-fluorophenylalanine (PFA). The levels of UDPG and UDPGal and the enzymes involved in their synthesis were substantially the same in both mucoid and repressed types, but the levels of UDPGA and GDPF and of some of the enzymes involved in their synthesis were much higher in mucoid strains. When repressed strains were grown in the presence of PFA, the levels of UDPGA and GDPF approached those found in mucoid strains. The existence of an operon, containing genes coding for certain key enzymes involved in colanic acid synthesis has been suggested.  相似文献   

11.
Measurement of acetylcholine turnover rate in discrete areas of rat brain   总被引:6,自引:0,他引:6  
The turnover rate of ACh was estimated in brain stem, two cortical areas and striatum of rat brain. The turnover rate was highest in the striatum (1.3 μmoles/g/hr); lowest in brain stem (0.092 μmoles/g/hr); and intermediate values were observed in limbic and occipital cortex. The highest ACh concentrations were measured in striatum, those in brain stem were intermediate but in the two cortical areas the ACh concentrations were the lowest. The results of the turnover estimations with the finite difference method yielded values similar to those obtained with the procedure described in this paper. Moreover, once the baseline was established, this method could be reliably used to estimate turnover rate using a single infusion time. The latter simplication would be very useful to compare ACh turnover rate in drug studies.  相似文献   

12.
A study of nucleotides and nucleotide sugars in mature oocytes of Bufo arenarum has been performed. Two samples of oocytes from ovulations of ten females each were analyzed by ion-exchange chromatography and the following nucleotides and nucleotide sugars found2: NAD, UDPGNAc, UDPGalNAc, UDPG, UDP, NADP, CTP, UTP, UDPGA, ADP, GDP, GTP, and ATP. The nucleotides and sugar-nucleotides were identified on the basis of chemical, enzymic, and chromatographic analysis. To minimize the decomposition of unstable substances, the extraction was performed with trichloroacetic acid in the cold, the contact of the sample with the acid was minimal and ammonium chloride was used for the elution from the Dowex 1-resin. In order to detect compounds present in minute amounts, very large samples were used (60,000 to 120,000 oocytes). A nucleotide of complex structure, which binds weakly to the column, was detected in the two samples analyzed.  相似文献   

13.
Uridine 5′-(5-thio-α-d-glucopyranosyl pyrophosphate), UDPTG, is an efficient substrate for yeast uridine 5′-(d-glucopyranosyl pyrophosphate), UDPG, pyrophosphorylase. Km for UDPTG with the pyrophosphorylase is 0.2 mm and the analog reacts with a maximal velocity 96% that of UDPG. UDPTG is also a substrate for yeast UDP-galactose 4-epimerase. Although not a substrate for bovine liver UDPG dehydrogenase, UDPTG is a potent, mixed-type inhibitor with respect to both UDPG and nicotinamide adenine dinucleotide (NAD). UDPTG is synthesized in 30% yield from 5-thio-d-glucopyranose and in 85% yield from 5-thio-α-d-glucopyranose 1-phosphate by using mixtures of commercially available enzymes. The pKa of the uracil moiety in UDPTG is the same as that in UDPG, and UDPTG appears to be similar to UDPG in the extent of secondary structural order. UDPTG, however, is more highly acid-labile than UDPG.  相似文献   

14.
André Rossi 《Life sciences》1975,16(7):1121-1132
Uridine is rapidly incorporated into the free pyrimidine nucleotides of the isolated perfused rabbit heart. The initial uptake depends on the concentration of precursor, following a Menten-Michaelis like pattern (apparent Km 5 μM).In a dose of 20 μmole.l−1, amounts of labelled uridine corresponding to about a third of the pool of uracil nucleotides are incorporated during the first half hour of administration. Then the rate or uridine uptake decreases with time while the uracil nucleotide pool size increases.  相似文献   

15.
Uridine, a pyrimidine nucleoside essential for the synthesis of RNA and biomembranes, has several trophic functions in the central nervous system, that involve a physiological regulation of pyrimidine nucleotides and phospholipids content, and a maintenance of brain metabolism under ischemia, or pathological situations. The understanding of uridine production in the brain is therefore of fundamental importance. Brain has a limited capacity to synthesize ex novo the pyrimidine ring, and a reasonable source of brain uridine is UTP. The kinetics of UTP breakdown, as catalysed by post-mitochondrial brain extracts and membrane preparations reported herein suggests that in normoxic conditions uridine is locally generated in brain exclusively in the extracellular space, and that any uptaken uridine is salvaged to UTP. It is now well established that cytosolic UTP can be released to interact with a subset of P2Y receptors, inducing a variety of molecular and cellular effects, leading to neuroprotection, while uridine is uptaken via an equilibrative or a Na+-dependent transport system, to exert its trophic effects in the cytosol. An ATP driven uridine–UTP cycle can be envisaged, based on the strictly compartmentalized processes of uridine salvage to UTP and uridine generation from UTP, in which uptaken uridine is anabolised to UTP in the cytosol, and converted back to uridine in extracellular space.  相似文献   

16.
Maize scutellum slices incubated in water utilized sucrose at a maximum rate of 0.12,μmol/min per g fr. wt of slices. When slices were incubated in DNP, there was a three-fold increase in the rate of sucrose utilization. Sucrose breakdown in higher plants can be achieved by pathways starting with either invertase or sucrose synthase (SS). Invertase activity in scutellum homogenates was found only in the cell wall fraction, indicating that SS was responsible for sucrose breakdown in vivo. SS in crude scutellum extracts broke down sucrose to fructose and UDPG at 0.39,μmol/min per g fresh wt of slices. The UDPG formed was not converted to UDP + glucose, UMP + glucose-1-P, UDP + glucose-1-P or broken down by any other means by the crude extract in the absence of PPi. In the presence of PPi, UDPG was broken down by UDPG pyrophosphorylase which had a maximum activity of 26 μmol/min per g fr. wt of slices. Levels of PPi in the scutellum could not be measured using the UDPG pyrophosphorylase: phosphoglucomutase: glucose-6-P dehydrogenase assay because they were too low relative to glucose-6-P which interferes in the assay. An active inorganic pyrophosphatase was present in the scutellum extract which could prevent the accumulation of PPi in the cytoplasm. ATP pyrophosphohydrolase, which hydrolyses ATP to AMP and PPi, was found in the soluble portion of the scutellum extract. The enzyme activity was increased by fructose-2,6-bisP and Ca2+. In the presence of both activators, enzyme activity was 1.1 μmol/min per g fr. wt of slices, a rate sufficient to supply PPi for the breakdown of UDPG. These results indicate that sucrose breakdown in maize scutellum cells occurs via the SS: UDPG pyrophosphorylase pathway.  相似文献   

17.
A simple and rapid technique of measuring pyrophosphates in plasma, urine, and bone tissue is described, using the UDPG-pyrophosphorylase reaction and fluorimetrical determination of NADPH formed in a combined system of phosphorylation and reduction. This very specific method avoids the separation of Pi2 by column chromatography, and its very great sensitivity enables measurement on a final sample corresponding to 0.2 ml of plasma, with a precision of about 3%.The mean plasma PPi concentration (±SE of mean) was 3.53 ± 0.19 μmoles/liter (SE=0.93), or 0.207 ± 0.006 mg Pi/liter. The normal range for this population (99% confidence limit) is therefore between 1.10 and 5.90 μmoles/liter or 0.068 – 0.366 mg Pi/liter. Analysis of the variation of the duplicate measurements shows a very small divergence of 3.4% or ±0.12 μm.Normal 24 hr urinary excretion is 53.0 ± 6.8 μmoles with 99% confidence limits of 10.0 and 96.0 μmoles.The average PPi concentration in calvaria of 20 10-day-old rats is 3.685 ± 0.16 nmoles/mg fresh weight.  相似文献   

18.
Two different enantioselective chiral chromatographic methods were developed and validated to investigate the disposition of the β1-receptor antagonist atenolol in blood and in brain extracellular fluid of rats (tissue dialysates). System A for the plasma samples was a one-column chromatographic system with a Chiral CBH column with an aqueous buffer as mobile phase into which cellobiose was added for selective regulation of the retention of the internal standard, (S)-metoprolol. The plasma samples were analysed after a simple extraction procedure. The limit of quantitation was 0.2 μg/ml for the atenolol enantiomers. The repeatability of the medium concentration quality control plasma sample (6.0 μg rac-atenolol/ml) was 11–18% for the enantiomers. The dynamic linear range of the plasma samples was 0.5–20 μg/ml. For system B, since atenolol is an extremely hydrophilic drug, the tissue dialysate sample required a much more sensitive system as compared to the plasma samples. A coupled column system was used for peak compression of the enantiomers in the eluate after the separation on the Chiral CBH column, hence increasing the detection sensitivity. The limit of quantification was 0.045 μg/ml for the atenolol enantiomers in artificial CSF. The repeatability of the medium concentration quality control samples (0.1 and 4.0 μg rac-atenolol/ml in artificial CSF and Hepes Ringer, respectively) was 2.8–9.3% for the two enantiomers. The dynamic linear range of the brain samples was 0.05–1.0 and 0.5–20 μg/ml in artificial CSF and Hepes Ringer, respectively. Chirality 9:329–334, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
Effects of various factors including incubation time, water content of airdried cells, concentration and pH of KH2PO4–K2HPO4 mixture, d-glucose concentration, MgSO4 concentration, GMP concentration, cell concentration, aeration and various kinds of carbohydrates on the fermentative production of GDP-mannose, GDP and GTP from 5′-GMP by air-dried cells of baker’s yeast were investigated. The water content of air-dried cells was the most important factor in the fermentation. When the air-dried cells of baker’s yeast (100 mg/ml) were incubated with 5′-GMP (20 μmoles/ml), d-glucose (800 μmoles/ml), potassium phosphate buffer (360 μmoles/ml, pH 7.0), and MgSO4 (20 μmoles/ml), 2-hr incubation gave GDP in 20% yield and GTP in 61.1% yield, GDP-mannose being produced in 45% yield after 8-hr incubation. The phosphorylation of 5′-AMP, 5′-dAMP, 5′-dGMP 5′-CMP and 5′-UMP was also observed in high yields under the same conditions.  相似文献   

20.
《Free radical research》2013,47(5):313-325
The placement of rubber band tourniquets upon rat hind-limbs for 5 h followed by reperfusion of the extremities results in a severe form of circulatory shock characterized by hypotension and death within 24 h of tourniquet release. Oxidative damage to muscle tissue is an early consequence of hind-limb reperfusion on tourniquet release, yet this local damage does not explain the lethal hypotensive shock state which evolves within the next 24 h. Multiple system organ failure (MSOF), of as of yet unknown causes, is usually described in relation to several shock states. It has been suggested that injured or necrotic tissue may activate neutrophils, platelets, and the coagulation system leading to embolization in remote tissues. Effective decreases in hepatic blood flow have been observed in several forms of sepsis which precedes the biochemical evidence consistent with an ischemic insult of the liver. In support of our original hypothesis, that organ failure has its genesis in a primary perfusion abnormality with secondary ischemic organ injury, herein we have assessed the possibility that oxygen-derived free radicals are generated in the liver of rats after reperfusion of their hind-limbs on release of the tourniquets. We report on the protective effects of allopurinol (ALLO) and a mixture of superoxide dismutase (SOD) catalase (CAT) and dimethylfulfoxide (DMSO) on liver free sulfhydryl content (SH), thiobarbituric acid-reactive substances (TBARS), and on the release of aspartic acid (AsT) and alanine aminotransferase (AIT) activities, and of alkaline phosphatase during a 5 h tourniquet period and after 2 h of reperfusion of the hind-limbs. During the hind-limb ischemic period hepatis tissue SH levels remained essentially constant during the first hour (6.02 ± 0.36 to 5.65 ± 0.20 μmoles/g wet tissue), and decreased significantly, over and above the normal circadian decrease of liver glutathione levels, to 4.02 ± 0.69 μmoles/g wet tissue after the third hour and remained lowered until tourniquet release. A further significant decrease (3.11 ± 0.49 μmoles/g wet tissue) was observed after 2h of reperfusion. TBARS production remained constant during the 5 h hind-limb ischemic period (168.4 ± 37.3 μmoles/g wet tissue) and rose by 55+ to 261.7 ± 55.8 μmoles/g wet tissue after 2 h of tourniquet release. ALLO, but not the SOD-CAT-DMSO combination, protected hepatic SH loss during the hind-limb ischemic insult, yet both offered protection after 2 h of tournoquet release. With regard to TBARS production, ALLO and the SOD-CAT-DMSO mixture had no effect on basal levels during the ischemic period, but both significantly reduced liver TBARS production after the two hour reperfusion period of hind limb reperfusion. Plasma AsT levels rose 8-fold from 99.4 ± 7.2 to 193 ± 17.0 U/L after the 5-hour tourniquet period, and to 844.8 ± 75.1 U/L two hours after hind-limb reperfusion. The plasma levels of AsT were significantly lower in both the ALLO and SOD-CAT-DMSO pre-treated animals. This was not the case with plasma AIT levels which increased 3-fold during the reperfusion period, but which could not be protected with these same pre-treatment protocols. Alkaline phosphatase plasma levels increased 2-fold during the same period. It is concluded that oxidative stress to the liver, as a result of himd-limb ischemia followed by reperfusion, is partly responsible for the MSOF which leads to circulatory derangements and death of rats subjected to this tourniquet shock model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号