首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation of linoleic acid with the 105,000g particle fraction of the homogenate of the broad bean (Vicia faba L.) led to the formation of the following products: 13(S)-hydroxy-9(Z),11(E)-octadecadienoic acid, 9,10-epoxy-12(Z)-octadecenoic acid (9(R),10(S)/9(S)/10(R), 80/20), 12,13-epoxy-9(Z)-octadecenoic acid (12(S),13(R)/12(R)/13(S), 64/36), and 9,10-epoxy-13(S)-hydroxy-11(E)-octadecenoic acid (9(S),10(R)/9(R),10(S), 91/9). Oleic acid incubated with the enzyme preparation in the presence of 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid or cumene hydroperoxide was converted into 9,10-epoxyoctadecanoic acid (9(R),10(S)/9(S),10(R), 79/21). Two enzyme activities were involved in the formation of the products, an omega 6-lipoxygenase and a hydroperoxide-dependent epoxygenase. The lipoxygenase, but not the epoxygenase, was inhibited by low concentrations of 5,8,11,14-eicosatetraynoic acid and nordihydroguaiaretic acid. In contrast, the epoxygenase, but not the lipoxygenase, was readily inactivated in the presence of 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid. Studies with 18O2-labeled 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid showed that the epoxide oxygens of 9,10-epoxyoctadecanoic acid and of 9,10-epoxy-13(S)-hydroxy-11(E)-octadecenoic acid were derived from hydroperoxide and not from molecular oxygen.  相似文献   

2.
The reaction of (13S,9Z,11E)-13-hydroxy-9,11-octadecadienoic acid (1a), one of the major peroxidation products of linoleic acid and an important physiological mediator, with the Fenton reagent (Fe(2+)/EDTA/H(2)O(2)) was investigated. In phosphate buffer, pH 7.4, the reaction proceeded with >80% substrate consumption after 4h to give a defined pattern of products, the major of which were isolated as methyl esters and were subjected to complete spectral characterization. The less polar product was identified as (9Z,11E)-13-oxo-9,11-octadecadienoate (2) methyl ester (40% yield). Based on 2D NMR analysis the other two major products were formulated as (11E)-9,10-epoxy-13-hydroxy-11-octadecenoate (3) methyl ester (15% yield) and (10E)-9-hydroxy-13-oxo-10-octadecenoate (4) methyl ester (10% yield). Mechanistic experiments, including deuterium labeling, were consistent with a free radical oxidation pathway involving as the primary event H-atom abstraction at C-13, as inferred from loss of the original S configuration in the reaction products. Overall, these results provide the first insight into the products formed by oxidation of 1a with the Fenton reagent, and hint at novel formation pathways of the hydroxyepoxide 3 and hydroxyketone 4 of potential (patho)physiological relevance in settings of oxidative stress.  相似文献   

3.
The fungus Gaeumannomyces graminis metabolized linoleic acid extensively to (8R)-hydroperoxylinoleic acid, (8R)-hydroxylinoleic acid, and threo-(7S,8S)-dihydroxylinoleic acid. When G. graminis was incubated with linoleic acid under an atmosphere of oxygen-18, the isotope was incorporated into (8R)-hydroxylinoleic acid and 7,8-dihydroxylinoleic acid. The two hydroxyls of the latter contained either two oxygen-18 or two oxygen-16 atoms, whereas a molecular species that contained both oxygen isotopes was formed in negligible amounts. Glutathione peroxidase inhibited the biosynthesis of 7,8-dihydroxylinoleic acid. These findings demonstrated that the diol was formed from (8R)-hydroperoxylinoleic acid by intramolecular hydroxylation at carbon 7, catalyzed by a hydroperoxide isomerase. The (8R)-dioxygenase appeared to metabolize substrates with a saturated carboxylic side chain and a 9Z-double bond. G. graminis also formed omega 2- and omega 3-hydroxy metabolites of the fatty acids. In addition, linoleic acid was converted to small amounts of nearly (65% R) racemic 10-hydroxy-8,12-octadecadienoic acid by incorporation of atmospheric oxygen. An unstable metabolite, 11-hydroxylinoleic acid, could also be isolated as well as (13R,13S)-hydroxy-(9E,9Z), (11E)-octadecadienoic acids and (9R,9S)-hydroxy-(10E), (12E,12Z)-octadecadienoic acids. In summary, G. graminis contains a prominent linoleic acid (8R)-dioxygenase, which differs from the lipoxygenase family of dioxygenases by catalyzing the formation of a hydroperoxide without affecting the double bonds of the substrate.  相似文献   

4.
Many of the pathological effects of lipid peroxidation are mediated by aldehydes generated through fragmentation of lipid peroxides. Among these aldehydes, the γ-hydroxy- and γ-oxo-α,β-alkenals, e.g., 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE), are especially prone to modifying proteins and DNA through covalent adduction. In addition the "mirror image" γ-hydroxy- and γ-oxo-α,β-alkenal phospholipids can serve as high-affinity ligands for biological receptors triggering pathology. Therefore, the mechanisms by which these aldehydes are generated in vivo are under intense scrutiny. We now report observations supporting the intermediacy of a unique pseudo-symmetrical diepoxycarbinyl radical that accounts for the coproduction of HNE, ONE, and their mirror image analogues 9-hydroxy-12-oxo-10(E)-dodecenoic acid and 9-keto-12-oxo-10-dodecenoic acid upon fragmentation of 13-hydroperoxy-cis-9,10-epoxyoctadeca-11-enoic acid.  相似文献   

5.
The biotransformation of [2-14C](±)9, 10-dihydrojasmonic acid (DJA) was studied in excised shoots of 6-day-old barley seedlings after 72 h. From the ethyl acetate extract, some minor metabolites were isolated and purified by DEAE-Sephadex A-25 chromatography, thin-layer chromatography (TLC), C18-cartridges, and high-performance liquid chromatography (HPLC). The structural identification of these metabolites was performed by gas chromatography-mass spectrometry (GC-MS), circular dichroism (CD), and amino acid analysis, and the following amino acid conjugates were found:N-[(–)9,10-dihydrojasmonoyl]valine,N-[(–)9,10-dihydrojasmonoyl]isoleucine,N-[9,10-dihydrojasmonoyl]leucine,N-[11-hydroxy-9,10-dihydrojasmonoyl]valine,N-[11-hydroxy-9,10-dihydrojasmonoyl]isoleucine,N-[12-hydroxy-9,10-dihydrojasmonoyl]isoleucine; and the cucurbic acid-related compoundsN-{[3-hydroxy-2(4-hydroxypentyl)-cyclopent-1-yl]-acetyl}isoleucine andN-{[3-hydroxy-2(5-hydroxypentyl)-cyclopent-1-yl]-acetyl}isoleucine. The results suggest conjugation with isoleucine and valine, as well as preferential hydroxylation at position C-11 or hydrogenation at position C-6, as being important steps in the metabolism of (±)DJA in barley shoots.  相似文献   

6.
A full length cDNA encoding a new cytochrome P450-dependent fatty acid hydroxylase (CYP94A5) was isolated from a tobacco cDNA library. CYP94A5 was expressed in S. cerevisiae strain WAT11 containing a P450 reductase from Arabidopsis thaliana necessary for catalytic activity of cytochrome P450 enzymes. When incubated for 10 min in presence of NADPH with microsomes of recombinant yeast, 9,10-epoxystearic acid was converted into one major metabolite identified by GC/MS as 18-hydroxy-9,10-epoxystearic acid. The kinetic parameters of the reaction were Km,app = 0.9 +/- 0.2 microM and Vmax,app = 27 +/- 1 nmol x min(-1) x nmol(-1) P450. Increasing the incubation time to 1 h led to the formation of a compound identified by GC/MS as 9,10-epoxy-octadecan-1,18-dioic acid. The diacid was also produced in microsomal incubations of 18-hydroxy-9,10-epoxystearic acid. Metabolites were not produced in incubations with microsomes of yeast transformed with a control plasmid lacking CYP94A5 and their production was inhibited by antibodies raised against the P450 reductase, demonstrating the involvement of CYP94A5 in the reactions. The present study describes a cytochrome P450 able to catalyze the complete set of reactions oxidizing a terminal methyl group to the corresponding carboxyl. This new fatty acid hydroxylase is enantioselective: after incubation of a synthetic racemic mixture of 9,10-epoxystearic acid, the chirality of the residual epoxide was 40/60 in favor of 9R,10S enantiomer. CYP94A5 also catalyzed the omega-hydroxylation of saturated and unsaturated fatty acids with aliphatic chain ranging from C12 to C18.  相似文献   

7.
The oxidation of linoleic acid in incubation mixtures containing extracts of barley lipoxygenase and hydroperoxide isomerase, and the production of these enzymes in quiescent and germinated barley, were investigated. The ratio of 9-hydroperoxylinoleic acid to 13-hydroperoxylinoleic acid was higher for incubation mixtures containing extracts of quiescent barley than for mixtures containing extracts of germinated barley; production of 13-hydroperoxylinoleic acid from germinated barley exceeded that of quiescent barley. Hydroperoxy metabolites of linoleic acid were converted to 9-hydroxy-10-oxo-cis-12-octadecenoic acid, 13-hydroxy-10-oxo-trans-11-octadecenoic acid, and small amounts of 11-hydroxy-12,13-epoxy-cis-9-octadecenoic acid and 11-hydroxy-9,10-epoxy-cis-13-octadecenoic acid whether quiescent or germinated barley was the enzyme source; a fifth product, 13-hydroxy-12-oxo-cis-9-octadecenoic acid was formed only when germinated barley was the enzyme source.  相似文献   

8.
In barley leaves, the application of jasmonates leads to dramatic alterations of gene expression. Among the up-regulated gene products lipoxygenases occur abundantly. Here, at least four of them were identified as 13-lipoxygenases exhibiting acidic pH optima between pH 5.0 and 6.5. (13S,9Z,11E,15Z)-13-hydroxy-9,11,15-octadecatrienoic acid was found to be the main endogenous lipoxygenase-derived polyenoic fatty acid derivative indicating 13-lipoxygenase activity in vivo. Moreover, upon methyl jasmonate treatment > 78% of the fatty acid hydroperoxides are metabolized by hydroperoxide lyase activity resulting in the endogenous occurrence of volatile aldehydes. (2E)-4-Hydroxy-2-hexenal, hexanal and (3Z)- plus (2E)-hexenal were identified as 2,4-dinitro-phenylhydrazones using HPLC and identification was confirmed by GC/MS analysis. This is the first proof that (2E)-4-hydroxy-2-hexenal is formed in plants under physiological conditions. Quantification of (2E)-4-hydroxy-2-hexenal, hexanal and hexenals upon methyl jasmonate treatment of barley leaf segments revealed that hexenals were the major aldehydes peaking at 24 h after methyl jasmonate treatment. Their endogenous content increased from 1.6 nmol.g-1 fresh weight to 45 nmol.g-1 fresh weight in methyl-jasmonate-treated leaf segments, whereas (2E)-4-hydroxy-2-hexenal, peaking at 48 h of methyl jasmonate treatment increased from 9 to 15 nmol.g-1 fresh weight. Similar to the hexenals, hexanal reached its maximal amount 24 h after methyl jasmonate treatment, but increased from 0.6 to 3.0 nmol.g-1 fresh weight. In addition to the classical leaf aldehydes, (2E)-4-hydroxy-2-hexenal was detected, thereby raising the question of whether it functions in the degradation of chloroplast membrane constituents, which takes place after methyl jasmonate treatment.  相似文献   

9.
The biotransformation of [2-14C](±)9, 10-dihydrojasmonic acid (DJA) was studied in excised shoots of 6-day-old barley seedlings after 72 h. From the ethyl acetate extract, some minor metabolites were isolated and purified by DEAE-Sephadex A-25 chromatography, thin-layer chromatography (TLC), C18-cartridges, and high-performance liquid chromatography (HPLC). The structural identification of these metabolites was performed by gas chromatography-mass spectrometry (GC-MS), circular dichroism (CD), and amino acid analysis, and the following amino acid conjugates were found:N-[(?)9,10-dihydrojasmonoyl]valine,N-[(?)9,10-dihydrojasmonoyl]isoleucine,N-[9,10-dihydrojasmonoyl]leucine,N-[11-hydroxy-9,10-dihydrojasmonoyl]valine,N-[11-hydroxy-9,10-dihydrojasmonoyl]isoleucine,N-[12-hydroxy-9,10-dihydrojasmonoyl]isoleucine; and the cucurbic acid-related compoundsN-{[3-hydroxy-2(4-hydroxypentyl)-cyclopent-1-yl]-acetyl}isoleucine andN-{[3-hydroxy-2(5-hydroxypentyl)-cyclopent-1-yl]-acetyl}isoleucine. The results suggest conjugation with isoleucine and valine, as well as preferential hydroxylation at position C-11 or hydrogenation at position C-6, as being important steps in the metabolism of (±)DJA in barley shoots.  相似文献   

10.
Guava (Psidium guajava) hydroperoxide lyase (HPL) preparations were incubated with [1-(14)C](9Z,11E,13S,15Z)-13-hydroperoxy-9,11,15-octadecatrienoic acid for 1 min at 0 degrees C, followed by rapid extraction/trimethylsilylation. Analysis of the trimethylsilylated products by gas chromatography-mass spectrometry and radio-high-performance liquid chromatography revealed a single predominant (14)C-labelled compound, identified by its (1)H-nuclear magnetic resonance, ultraviolet and mass spectra as the trimethylsilyl ether/ester of (9Z,11E)-12-hydroxy-9,11-dodecadienoic acid. Longer time incubations afford smaller yield of this enol due to its partial tautomerization into (9Z)-12-oxo-9-dodecenoic acid. The data obtained demonstrate that formation of (9Z)-12-oxo-9-dodecenoic acid in the HPL reaction is preceded by unstable enol oxylipin, and further suggest that hemiacetals are the true products of HPL catalysis.  相似文献   

11.
湖北旋覆花化学成分的研究(英文)   总被引:1,自引:0,他引:1  
从湖北旋覆花(Inula hupehensis)地上部分分离得到19个化合物,经波谱数据分析分别鉴定为9-羟基-百里香酚(1),8,10-去氢-β-羟基-百里香酚(2),2-羟基-4-甲基苯乙酮(3),8,9-双羟基-9-百里香酚(4),10-羟基-8,9-双氧亚异丙基百里香酚(5),8,10-二羟基-9-异丁酰百里香酚(6),8-羟基-9-异丁酰-10-(2-甲基丁酰)百里香酚(7),8,9,10-三羟基百里香酚(8),8-羟基-9,10-二异丁酰百里香酚(9),neoechinulin A(10),3-醛基吲哚(11),3-羟乙酰基吲哚(12),丁香酸(13),4,6-二羟基-2-甲氧基苯乙酮(14),7-甲氧基-8-羟基香豆素(15),6-甲氧基山奈酚(16),(+)-正丁香酯素(17),β-棕榈精(18)和豆甾醇(19)。除了化合物8和9外,其他化合物均为首次从该植物中分离得到。  相似文献   

12.
The desaturase inhibitory activity of the cyclopropenyl alcohols 9,10-methylene-9-tetradecen-1-ol (9-MTOL), 10,11-methylene-10-tetradecen-1-ol (10-MTOL) and 11,12-methylene-11-tetradecen-1-ol (11-MTOL), which are structural analogs of 10,11-methylene-10-tetradecenoic acid (10-MTA), is reported. At equimolar ratios with respect to the different substrates, the three compounds completely inhibited the three desaturation reactions involved in the biosynthesis of Spodoptera littoralis sex pheromone. The dose-dependence of inhibition was determined for 10-MTA and its alcohol derivative. Both compounds inhibited the transformation of perdeuterated palmitic acid into perdeuterated (Z)-11-hexadecenoic acid and that of (E)-11-tridecenoic acid into (Z,E)-9,11-tridecadienoic acid with similar IC(50) values. The overall results presented in this work support scattered data that neither the free carboxyl groups nor their acyl-CoA esters are a requisite for inhibition of desaturases. Since the synthesis of cyclopropenols is much more convenient than that of cyclopropene fatty acids, this finding is of economical relevance regarding the putative use of cyclopropene derivatives in pest control.  相似文献   

13.
The methanol extract of Ehretia dicksonii provided (10E, 12Z, 15Z)-9-hydroxy-10,12,15-octadecatrienoic acid methyl ester (1) which was isolated as an anti-inflammatory compound. Compound 1 suppressed 12-Otetradecanoyl-phorbol-13-acetate (TPA)-induced inflammation on mouse ears at a dose of 500 microg (the inhibitory effect (IE) was 43%). Linolenic acid methyl ester did not inhibit this inflammation at the same dose. However, the related compounds of 1, (9Z,11E)-13hydroxy-9,11-octadecadienoic acid (5) and (9Z,llE)13-oxo-9,11-octadecadienoic acid (6), showed potent activity (IE500 microg of 63% and 79%, respectively). Compounds 1, 4 ((9Z, 12Z, 14E)-16-hydroxy-9,12,14-octadecatrienoic acid), 5 and 6 also showed inhibitory activity toward soybean lipoxygenase at a concentration of 10 microg/ml.  相似文献   

14.
Four steroidal alkaloids from the leaves of Buxus sempervirens   总被引:1,自引:0,他引:1  
Four new steroidal alkaloids, N20-formylbuxaminol E [(20S)-16alpha-hydroxy-20-(formylamino)-3beta-(dimethylamino)-9,10 -seco-buxa-9(11),10(19)-diene] (1), O16-syringylbuxaminol E [(20S)-16alpha-syringoyl-3beta-(dimethylamino)-20-(amino)-9, 10-seco-buxa-9(11),10(19)-diene] (2), N20-acetylbuxamine G [(20S)-20-(acetylamino)-3beta-(methylamino)-9,10-seco-buxa-9(11),1 0(19)-diene] (3) and N20-acetylbuxamine E [(20S)-20-(acetylamino)-3beta-(dimethylamino)-9,10-seco-buxa-9(11) ,10(19)-diene] (4) were isolated from the leaves of Buxus sempervirens. Their structures were determined mainly on the basis of 2D NMR studies.  相似文献   

15.
Seeds of broad bean (Vicia faba L.) contain a hydroperoxide-dependent fatty acid epoxygenase. Hydrogen peroxide served as an effective oxygen donor in the epoxygenase reaction. Fifteen unsaturated fatty acids were incubated with V. faba epoxygenase in the presence of hydrogen peroxide and the epoxy fatty acids produced were identified. Examination of the substrate specificity of the epoxygenase using a series of monounsaturated fatty acids demonstrated that (Z)-fatty acids were rapidly epoxidized into the corresponding cis-epoxy acids, whereas (E)-fatty acids were converted into their trans-epoxides at a very slow rate. In the series of (Z)-monoenoic acids, the double bond position as well as the chain length influenced the rate of epoxidation. The best substrates were found to be palmitoleic, oleic, and myristoleic acids. Steric analysis showed that most of the epoxy acids produced from monounsaturated fatty acids as well as from linoleic and α-linolenic acids had mainly the (R),(S) configuration. Exceptions were C18 acids having the epoxide group located at C-12/13, in which cases the (S),(R) enantiomers dominated. 13(S)-Hydroxy-9(Z),11(E)-octadecadienoic acid incubated with epoxygenase afforded the epoxy alcohol 9(S),10(R)-epoxy-13(S)-hydroxy-11(E)-octadecenoic acid as the major product. Smaller amounts of the diastereomeric epoxy alcohol 9(R),10(S)-epoxy-13(S)-hydroxy-11(E)-octadecenoic acid as well as the α,β-epoxy alcohol 11(R),12(R)-epoxy-13(S)-hydroxy-9(Z)-octadecenoic acid were also obtained. The soluble fraction of homogenate of V. faba seeds contained an epoxide hydrolase activity that catalyzed the conversion of cis-9,10-epoxyoctadecanoic acid into threo-9,10-dihydroxyoctadecanoic acid.  相似文献   

16.
We have carried out a study of the reaction of 13-hydroperoxy-9-cis,11-trans-octadecadienoic acid (linoleic acid hydroperoxide) with hematin. The major products are erythro-11-hydroxy-12,13-epoxy-9-octadecenoic acid, threo-11-hydroxy-12,13-epoxy-9-octadecenoic acid, 9,12,13-trihydroxy-10-octadecenoic acid, 13-keto-9,11-octadecadienoic acid, and 13-hydroxy-9,11-octadecadienoic acid. Several minor products have also been identified, including 9-hydroxy-12,13-epoxyoctadecenoic acid, 11-hydroxy-9,10-epoxy-12-octadecenoic acid, 9-hydroxy-10,12-octadecadienoic acid, and 9-keto-10,12-octadecadienoic acid. Oxygen labeling studies indicate that the observed products arise by at least two pathways. In the major pathway, hematin reduces 13-hydroperoxy-9,11-octadecadienoic acid by one electron to an alkoxyl radical that cyclizes to an adjacent double bond to form an epoxy allylic radical. The allylic radical either couples to the hydroxyl radical coordinated to hematin or diffuses from the solvent cage and couples to O2, forming a peroxyl radical. In the minor pathway, the hydroperoxide is oxidized by one electron to a 13-peroxyl radical that undergoes beta-scission to a pentadienyl radical and O2. Exchange of hydroperoxide-derived O2 for dissolved O2 occurs at this stage followed by coupling of O2 to either terminus of the pentadienyl radical. Both pathways of hydroperoxide metabolism generate significant quantities of peroxyl radicals that epoxidize the isolated double bonds of dihydroaromatic molecules. The products of hydroperoxide reaction with hematin and the oxygen labeling patterns are very similar to the products of unsaturated fatty acid hydroperoxide metabolism by platelets, aorta, and lung. Our results not only provide a mechanism for the formation of a series of mammalian metabolites of linoleic and arachidonic acids but also offer an estimate of the yield of peroxyl radicals generated during the process.  相似文献   

17.
Peroxygenase-catalyzed epoxidation of oleic acid in preparations of cereal seeds was investigated. The 105,000g particle fraction of oat (Avena sativa) seed homogenate showed high peroxygenase activity, i.e. 3034 [plus or minus] 288 and 2441 [plus or minus] 168 nmol (10 min)-1 mg-1 protein in two cultivars, whereas the corresponding fraction obtained from barley (Hordeum vulgare and Hordeum distichum), rye (Secale cereale), and wheat (Triticum aestivum) showed only weak activity, i.e. 13 to 138 nmol (10 min)-1 mg-1 protein. In subcellular fractions of oat seed homogenate, peroxygenase specific activity was highest in the 105,000g particle fraction, whereas lipoxygenase activity was more evenly distributed and highest in the 105,000g supernatant fraction. Incubation of [1-14C]linoleic acid with the 105,000g supernatant of oat seed homogenate led to the formation of several metabolites, i.e. in order of decreasing abundance, 9(S)-hydroxy-10(E),12(Z)-octadecadienoic acid, 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acid, cis-9,10-epoxy-12(Z)-octadecenoic acid [mainly the 9(R),10(S) enantiomer], cis-12,13-epoxy-9(Z)-octadecenoic acid [mainly the 12(R),13(S) enantiomer], threo-12,13-dihydroxy-9(Z)-octadecenoic acid, and 12(R),13(S)-epoxy-9(S)-hydroxy-10(E)-octadecenoic acid. Incubation of linoleic acid with the 105,000g particle fraction gave a similar, but not identical, pattern of metabolites. Conversion of linoleic acid into 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acid, a naturally occurring oxylipin with antifungal properties, took place by a pathway involving sequential catalysis by lipoxygenase, peroxygenase, and epoxide hydrolase.  相似文献   

18.
Allene oxide cyclase: a new enzyme in plant lipid metabolism   总被引:10,自引:0,他引:10  
The mechanism of the biosynthesis of 12-oxo-10,15(Z)-phytodienoic acid (12-oxo-PDA) from 13(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid in preparations of corn (Zea mays L.) was studied. In the initial reaction the hydroperoxide was converted into an unstable allene oxide, 12,13(S)-epoxy-9(Z),11,15(Z)-octadecatrienoic acid, by action of a particle-bound hydroperoxide dehydrase. A new enzyme, allene oxide cyclase, catalyzed subsequent cyclization of allene oxide into 9(S),13(S)-12-oxo-PDA. In addition, because of its chemical instability, the allene oxide underwent competing nonenzymatic reactions such as hydrolysis into alpha- and gamma-ketol derivatives as well as spontaneous cyclization into racemic 12-oxo-PDA. (+/-)-cis-12,13-Epoxy-9(Z)-octadecenoic acid and (+/-)-cis-12,13-epoxy-9(Z),15(Z)-octadecadienoic acid, in which the epoxy group was located in the same position as in the allene oxide substrate, served as potent inhibitors of corn allene oxide cyclase. On the other hand, the isomeric (+/-)-cis-9,10-epoxy-12(Z)-octadecenoic acid had little inhibitory effect. Allene oxide cyclase was present in the soluble fraction of corn homogenate and had a molecular weight of about 45,000 as judged by gel filtration. The enzyme activity was detected in several plant tissues, the highest levels being observed in potato tubers and in leaves of spinach and white cabbage.  相似文献   

19.
In barley leaves, 13-lipoxygenases (13-LOXs) are induced by salicylate (SA) and jasmonate. Here, we show by metabolic profiling that upon SA treatment, free linolenic acid and linoleic acid accumulate in a 10:1 ratio reflecting their relative occurrence in leaf tissues. Furthermore, 13-LOX-derived products are formed and specifically directed into the reductase branch of the LOX pathway leading mainly to the accumulation of (13S,9Z,11E,15Z)-13-hydroxy-9, 11,15-octadecatrienoic acid (13-HOT). Under these conditions, no accumulation of other products of the LOX pathway has been found. Moreover, exogenously applied 13-HOT led to PR1b expression suggesting for the time a role of hydroxy polyenoic fatty acid derivatives in plant defense reactions.  相似文献   

20.
Nitration of unsaturated fatty acids is a (patho)physiologically important pathway of lipid modification induced by nitric oxide-derived species. We report herein on the unexpected chain rearrangement undergone by (13S,9Z,11E)-13-hydroxyoctadeca-9,11-dienoic acid (1), a linoleic acid metabolite, when exposed to nitrating agents of biological relevance. At pH 7.4 and at room temperature, reaction of 1 with peroxynitrite (ONOO-) as well as Fe2+-EDTA/H2O2/NO2- and horseradish peroxidase/H2O2/NO2- led to the formation of two nitration products, which could be isolated as the methyl esters and were identified as diastereoisomeric methyl (12S)-10,11-epoxy-12-hydroxy-9-nitromethylheptadecanoates by extensive 1H, 13C, 15N NMR and MS analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号