首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although often preserved in the fossil record, mandibular dental roots are rarely used for evolutionary studies. This study qualitatively and quantitatively characterizes the three-dimensional morphology of hominoid dental roots. The sample comprises extant apes as well as two fossil species, Khoratpithecus piriyai and Ouranopithecus macedoniensis. The morphological differences between extant genera are observed, quantified and tested for their potential in systematics. Dental roots are imaged using X-ray computerized tomography, conventional microtomography and synchrotron microtomography. Resulting data attest to the high association between taxonomy and tooth root morphology, both qualitatively and quantitatively. A cladistic analysis based on the dental root characters resulted in a tree topology congruent with the consensus phylogeny of hominoids, suggesting that tooth roots might provide useful information in reconstructing hominoid phylogeny. Finally, the evolution of the dental root morphology in apes is discussed.  相似文献   

2.
A mandible of Rangwapithecus gordoni from the early Miocene site of Songhor, Kenya, provides additional information about this relatively poorly known taxon. The R. gordoni sample is small, being composed of dental and a few gnathic parts. The fossil described here provides examples of previously unknown dental and mandibular anatomy, and confirms former reassignments of isolated anterior teeth based on less certain evidence. The phylogenetic status of Rangwapithecus, its distribution, and paleobiology are briefly reviewed. Rangwapithecus shows a suite of dental and gnathic features that warrants its generic distinction from Proconsul. Derived features shared with Nyanzapithecus and Turkanapithecus indicate that it is an early member of the subfamily Nyanzapithecinae. Its molar morphology suggests a considerable component of folivory in its diet. A review of the hypodigm shows Rangwapithecus to be restricted to Songhor. This distribution parallels that of Limnopithecus evansi, and is mirrored by Limnopithecus legetet and Micropithecus clarki suggesting that Songhor may have differed ecologically from other more or less contemporary sites in the region.  相似文献   

3.
A distal tibia, YGSP 1656, from the early Late Miocene portion of the Chinji Formation in Pakistan is described. The fossil is 11.4 million years old and is one of only six postcranial elements now assigned to Sivapithecus indicus. Aspects of the articular surface are cercopithecoid-like, suggesting some pronograde locomotor activities. However, YGSP 1656 possesses an anteroposteriorly compressed metaphysis and a mediolaterally thick medial malleolus, ape-like features functionally related to orthograde body postures and vertical climbing. YGSP 1656 lacks specializations found in the ankle of terrestrial cercopithecoids and thus Sivapithecus may have been primarily arboreal. Nevertheless, the morphology of this tibia is unique, consistent with other interpretations of Sivapithecus postcranial functional morphology that suggest the locomotion of this ape lacks a modern analog. Based on the limited postcranial remains from S. indicus, we hypothesize that this taxon exhibited substantial body size dimorphism.  相似文献   

4.
Abstract: We describe a new, exceptionally well‐preserved fossil bird recovered from marine deposits of the Early Eocene Fur Formation of Denmark. Morsoravis sedilis gen. et sp. nov. is known by a single specimen that consists of a three‐dimensional skull, vertebral column, ribs, pelvis, and left hindlimb and associated parts of the right hindlimb. Comparisons based on overall morphology and particularly characters of the skull, vertebrae and pelvis indicate that the new specimen is morphologically similar to charadriiform birds (the shorebirds and relatives). This similarity is also expressed by a phylogenetic analysis of higher neornithine (modern birds) taxa, which supports a close relationship between the new fossil and modern charadriiforms. The morphology of the hindlimbs, in particular, shows that the new fossil corresponds to a new taxon that is distinguishable from modern charadriiform clades. One interesting aspect of its morphology is the presence of hindlimb specializations that are most commonly found among perching birds – these suggest that ecologically the new Danish fossil bird may have differed from the wading habits typical of most charadriiforms.  相似文献   

5.
The specialized grasping feet of primates, and in particular the nature of the hallucal grasping capabilities of living strepsirrhines and tarsiers (i.e., ‘prosimians’), have played central roles in the study of primate origins. Prior comparative studies of first metatarsal (Mt1) morphology have documented specialized characters in living prosimians that are indicative of a more abducted hallux, which in turn is often inferred to be related to an increased ability for powerful grasping. These include a well-developed peroneal process and a greater angle of the proximal articular surface relative to the long axis of the diaphysis. Although known Mt1s of fossil prosimians share these characters with living non-anthropoid primates, Mt1 morphology in the earliest crown group anthropoids is not well known. Here we describe two Mt1s from the Fayum Depression of Egypt - one from the latest Eocene (from the ∼34 Ma Quarry L-41), and one from the later early Oligocene (from the ∼29-30 Ma Quarry M) - and compare them with a sample of extant and fossil primate Mt1s. Multivariate analyses of Mt1 shape variables indicate that the Fayum specimens are most similar to those of crown group anthropoids, and likely belong to the stem catarrhines Catopithecus and Aegyptopithecus specifically, based on analyses of size. Also, phylogenetic analyses with 16 newly defined Mt1 characters support the hypotheses that “prosimian”-like Mt1 features evolved along the primate stem lineage, while crown anthropoid Mt1 morphology and function is derived among primates, and likely differed from that of basal stem anthropoids. The derived loss of powerful hallucal grasping as reflected in the Mt1 morphology of crown anthropoids may reflect long-term selection for improved navigation of large-diameter, more horizontal branches at the expense of movement in smaller, more variably inclined branches in the arboreal environment.  相似文献   

6.
A revision of Chamaeleo caroliquarti Moody and Ro?ek is presented. The comparisons of the holotypic left dentary with those of specimens subsequently assigned to C. caroliquarti and of the Recent species of Chamaeleo, Furcifer and Calumma is carried out. It is shown that the type dentaries of C. caroliquarti include two different morphotypes with the absence of unique features. Within the Recent chameleons, the exact determination of the individual species merely on the basis of the dentaries is impossible. The holotypic dentary of C. caroliquarti is basically identical with that of C. calyptratus. However, the same morphology of the dentary as present in C. caroliquarti is also present in other species of different genera such as Calumma globifer and Furcifer pardalis. The paratypic dentaries of C. caroliquarti have a different morphology to the holotype and are indistinguishable from that in the Recent C. chamaeleon. On the other hand, a new species of the genus Chamaeleo, C. andrusovi, is described on the basis of isolated cranial elements, which possess clear autapomorphic features. This material comes from the Lower Miocene (Ottnangian) zone MN 4 in the Dolnice locality of the Czech Republic, and it differs from Recent and fossil chameleons in the following combination of characters: (1) its typically developed strongly pustular ornamentation and its distribution on the external surfaces of the skull roofing bones; (2) the frontoparietal suture is digitiform with a well-developed, anteriorly directed mesial spine, and (3) the parietal bone narrows posteriorly at its midlength, it is not bowed dorsally and it does not contribute posteriorly to a dorsal sagittal crest. This new material expands our knowledge of the cranial anatomy of Lower Miocene chameleons.  相似文献   

7.
8.
9.
The cranial morphology of the extinct murid genus Stephanomys, previously known only by dental remains, is described here on the basis of partial skulls of three species of Pliocene age. Important cranial characters of the genus are a robust rostrum, a high zygoma, a wide zygomatic arch, a narrow interorbit, a large orbit, and an optic foramen in the backward position. In addition to some dental characters, Stephanomys shares most of these cranial traits with the extinct Malpaisomys from the Canary Islands. Some of these traits may be linked to the development of large eyes and life in a rocky environment. The peculiar dental pattern of Stephanomys (stephanodonty) is also present in some recent murids (Oenomys and Thamnomys) having a different skull morphology. A comparison with nine other extant genera of murids verified the relationship among Malpaisomys, Stephanomys, and Acomys, supporting our previous conclusion. Phenetic and cladistic analyses of 17 cranial and 23 dental characters show that skull morphology is phylogenetically informative but highly convergent and incongruent with other partial evidence based on dental and biochemical characters. The combined analyses of skull and teeth illustrate a case of mosaic evolution in murids.  相似文献   

10.
11.
《Geobios》2014,47(1-2):39-44
It is generally believed that the skull CCEC-161821 of Acinonyx pardinensis from Saint-Vallier, an Early Pleistocene French locality, is similar to that of the modern cheetah, in contrast to several other Late Pliocene and Early Pleistocene Old World felids with cheetah-like teeth, assigned either to Acinonyx Brookes, 1828, or to Sivapanthera Kretzoi, 1929. Morphological comparisons and morphometric analysis of the fossil and recent material show that the Acinonyx pardinensis from Saint-Vallier, although dentally similar to the modern cheetah, is not cheetah-like in its skull shape. All those Late Pliocene and Early Pleistocene forms can also be included in Acinonyx, implying that the characteristic skull shape of the modern form is probably a recent acquisition.  相似文献   

12.
Ninoziphius platyrostris, from the late Neogene of Peru, is one of the best‐known fossil beaked whales (Odontoceti: Ziphiidae), with a holotype including the skull with ear bones, mandibles, teeth, and postcranial elements. Furthermore, based on several characters, including a complete functional upper and lower dentition, it is usually considered as one of the most archaic ziphiids. However, the poorly preserved dorsal portion of the holotype skull has led to unresolved phylogenetic relationships. With the addition of two newly prepared skulls from the same Peruvian locality we redescribed N. platyrostris. In the light of recent ziphiid discoveries, an emended diagnosis of the species is proposed here. In our cladistic analysis Ninoziphius is the most basal stem ziphiid. Newly observed or reassessed morphological traits allow functional and ecological considerations. The morphology of the oral apparatus suggests that Ninoziphius was less specialized for suction feeding than most extant ziphiids. Tooth wear in the holotype may indicate benthic feeding. Although the vertebral column of Ninoziphius corresponds to less developed locomotor abilities for deep dives, its cranial morphology does not provide definitive arguments for an echolocation system less efficient than in deep diving extant ziphiids. Finally, the phylogenetic tree produced was used to detail the evolutionary history of several major ziphiid features (dental reduction, development of mandibular tusks, and increased body size). © 2013 The Linnean Society of London  相似文献   

13.
14.
The occurrence of a large number of fossil woods having resemblance in anatomical features with the modern palm genus, Phoenix L in Deccan Intertrappean fossil flora of Maastrichtian-Danian age (i. e. Late Cretaceous and Earliest Tertiary (65-67 my)) indicates the most primitive record of date palm. Present discovery of biocompounds from fossil wood of Phoenix collected from Deccan Intertrappean having affinity with the biocompounds known from modern plant further exemplify the earliest documentation of Phoenix in Indian peninsula.  相似文献   

15.
The nearly pristine remains of Antillothrix bernensis, a capuchin-sized (Cebus) extinct platyrrhine from the Dominican Republic, have been found submerged in an underwater cave. This represents the first specimen of an extinct Caribbean primate with diagnostic craniodental and skeletal parts in association, only the second example of a skull from the region, and one of the most complete specimens of a fossil platyrrhine cranium yet discovered. Cranially, it closely resembles living cebines but is more conservative. Dentally, it is less bunodont and more primitive than Cebus, with crowns resembling Saimiri (squirrel monkeys) and one of the oldest definitive cebines, the late Early Miocene Killikaike blakei from Argentina. The tricuspid second molar also resembles the enigmatic marmosets and tamarins, whose origins continue to present a major gap in knowledge of primate evolution. While the femur is oddly short and stout, the ulna, though more robust, compares well with Cebus. As a member of the cebid clade, Antillothrix demonstrates that insular Caribbean monkeys are not monophyletically related and may not be the product of a single colonizing event. Antillothrix bernensis is an intriguing mosaic whose primitive characters are consistent with an early origin, possibly antedating the assembly of the modern primate fauna in greater Amazonia during the La Venta horizon. While most Greater Antillean primate specimens are quite young geologically, this vanished radiation, known from Cuba (Paralouatta) and Jamaica (Xenothrix) as well as Hispaniola, appears to be composed of long-lived lineages like several other mainland clades.  相似文献   

16.
17.
《Palaeoworld》2023,32(1):116-123
The oldest fossils assigned to Athyrium (mostly based on the sorus morphology) comprise fronds and spores from the Lower Cretaceous of Northeast Asia. However, most molecular dating suggests that extant Athyrium diverged from its sister genus during the Eocene or later, implying that the Cretaceous fossils probably belong to another polypodiaceous taxon. By examining the sorus morphology of extant genera related to the family Athyriaceae, we found that the primary diagnostic feature for assigning the Cretaceous fossils to Athyrium, i.e., the sorus shape, is common to the entire extant family, or plesiomorphic for the genus. As the fronds are more commonly preserved than the reproductive parts, we compared the fossil frond morphology with those of living taxa of the family that is divided into two types. The Cretaceous fossil we examined here bears the frond’s costal groove characters on adaxial side, which is more closely related to that of the Deparia-clade instead of the clade including Athyrium and other genera of the family. The observation is further confirmed by the cladistic analysis using morphological characters. The systematic position of the Early Cretaceous “Athyrium” was resolved as a stem member of the total Athyriaceae using a tip-dating approach with the Fossilized Birth-Death model in a Bayesian framework. Our study suggests that Early Cretaceous fossils previously assigned to Athyrium require taxonomic revision.  相似文献   

18.
Dolichocebus is known from the type skull encased in a concretion, numerous isolated teeth, parts of two mandibles, and a talus. The specimens come from the Trelew Member (early Miocene, Colhuehuapian South American Land Mammal Age) of the Sarmiento Formation near the village of Gaiman, Chubut Province, Argentina, dated to about 20Ma. We describe all Dolichocebus fossil material using conventional surface anatomy and micro-CT data from the cranium. The new material and newly imaged internal anatomy of the skull demonstrate that anatomical characters hitherto supposed to support a phyletic link between Dolichocebus and either callitrichines (marmosets, tamarins, and Callimico) or Saimiri (squirrel monkeys) are either indeterminate or absent. To more fully explore the phyletic position of Dolichocebus, we undertook a comprehensive phylogenetic analysis. We examined 268 characters of the cranium and dentition of 16 living platyrrhine genera, some late Oligocene and early Miocene platyrrhines, Tarsius, some Eocene and Oligocene stem anthropoids, and several extant catarrhines. These analyses consistently indicate that Dolichocebus is a stem platyrrhine, as are late Oligocene Branisella and early Miocene Tremacebus, Soriacebus, and Carlocebus. Platyrrhine evolution often is conceived of as a single ancient adaptive radiation. Review of all available phyolgenetic data suggests a more layered evolutionary pattern, with several independent extinct clades filling modern platyrrhine niche space, and modern platyrrhine families and subfamilies appearing over a nine-million-year interval in the Miocene. The outcome of these analyses highlights the pervasiveness of homoplasy in dental and cranial characters. Homoplasy is a real evolutionary phenomenon that is present at all levels of biological analysis, from amino-acid sequences to aspects of adult bony morphology, behavior, and adaptation.  相似文献   

19.
Huehuecuetzpalli mixtecus gen. et sp. nov. is characterized by a combination of characters unlike those of any of the previously described Late Jurassic or Early Cretaceous lizards. It has most of the synapomorphies common to modern squamates, but still retains primitive features rare in living taxa. Autapomorphic characters include an anteroposteriorly elongated premaxilla that results in the elongation of the snout and the apparent retraction of the external nares. A small rounded postfrontal and a parietal foramen on the frontoparietal suture suggest affinities with iguanians, but the retention of divided premaxillae, amphicoelous vertebrae, thoracolumbar intercentra, entepicondylar foramen, and a second distal tarsal supports the hypothesis that Huehuecuetzpalli has a more basal position relative to the extant squamates. Although its appearance is late in the fossil record of lizards, Huehuecuetzpalli is the first report of a basal squamate. It provides important information on early transformation of characters in lizard evolution. Many primitive characters present in some modern squamates are usually explained by paedomorphosis; however, these characters are common in early lizards suggesting that derived states may have been fixed later in lizard evolution. If Huehuecuetzpalli is an iguanian, then it would be the earliest known representative of this lineage and extends their fossil record into the Albian. This paper presents an extensive review of the characters and character states used in previously published cladistic analyses of the Squamata.  相似文献   

20.
This represents the first study of the soricid community from the Early Pliocene site of Langebaanweg (LBW) which is represented by four species, two of which belong to the soricid genus Myosorex (Forest shrew). Using geometric morphometrics the two Myosorex fossil species are compared with each other, and the extant western and eastern Cape species: Myosorex varius, M. cafer and M. longicaudatus. In addition, the results from an analysis of a number of non-metric characters and linear measurements on the fossil species are presented. The mandibles of the fossil species are characterized by extremely broad teeth, ascending rami which are relatively gracile and differ in shape and size from modern species, and the existence of a number of primitive features of the mandibles and teeth. This evidence is interpreted as indicating that the two LBW Myosorex species represent an archaic lineage now extinct in southern Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号