首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new crocodylomorph tooth assemblage from the Lower Member of the Douiret Formation (uppermost Jurassic–lowermost Cretaceous) in southeastern Tunisia is described. These teeth have been grouped into five morphotypes based on their diagnostic morphological features. The sample includes teeth, which have not been reported until now, such as non-Machimosaurini teleosauroid teeth, and labiolingually compressed tooth crowns with cutting edges devoid of serrations. Certain minor morphometric differences have been interpreted as ontogenetic or being possibly related to the position of the teeth in the jaws. Three trophic entities have subsequently been defined on the basis of the morphological characteristics of the teeth, and a possible niche partitioning between at least three crocodylomorph taxa is highlighted for the first time in the Tataouine Basin. On the other hand, the stratigraphic context of the Douiret Formation is thoroughly discussed in order to show how stratigraphic uncertainties could significantly impact previous attempts at reconstructing the macroevolutionary history of Crocodylomorpha. The latter should be treated with caution when the stratigraphic context of the fossil bearing formation remains a subject of debate.  相似文献   

2.
Aerobic microorganisms able to biodegrade benzene, toluene, ethylbenzene, xylene (BTEX) have been isolated from an area contaminated by petroleum products. The activity of the isolated communities was tested under both laboratory and field conditions. Benzene, toluene, ethylbenzene and xylene were added to the cultures as the sole carbon source, at a concentration of 500 mg/L. In batch cultures under laboratory conditions, an 84% reduction of benzene, 86% of toluene and 82% of xylene were achieved. In cultures with ethylbenzene as the sole carbon source, the reduction was around 80%. Slightly lower values were observed under field conditions: 95% reduction of benzene and toluene, 81% of ethylbenzene and 80% of xylene. A high biodegradation activity of benzene (914 μM/L/24 h), toluene (771 μM/L/24 h), xylene (673 μM/L/24 h) and ethylbenzene (644 μM/L/24 h) was observed in the isolated communities.  相似文献   

3.
By using genome in situ hybridization (GISH) on root somatic chromosomes of allotetraploid derived from the cross Gossypium arboreum × G. bickii with genomic DNA (gDNA) of G. bickii as a probe, two sets of chromosomes, consisting of 26 chromosomes each, were easily distinguished from each other by their distinctive hybridization signals. GISH analysis directly proved that the hybrid GarboreumxG. bickii is an allotetraploid amphiploid. The karyotype formula of the species was 2n = 4x = 52 = 46m (4sat) + 6sm (4sat). We identified four pairs of satellites with two pairs in each sub-genome. FISH analysis using 45S rDNA as a probe showed that the cross G. arboreumxG. bickii contained 14 NORs. At least five pairs of chromosomes in the G sub-genome showed double hybridization (red and blue) in their long arms, which indicates that chromatin introgression from the A sub-genome had occurred.  相似文献   

4.
Rapid detection of Bacillus spores is a challenging task in food and defense industries. In situ labeling of spores would be advantageous for detection by automated systems based on single-cell analysis. Determination of antibiotic-resistance genes in bacterial spores using in situ labeling has never been developed. Most of the in situ detection schemes employ techniques such as fluorescence in situ hybridization (FISH) that target the naturally amplified ribosomal RNA (rRNA). However, the majority of antibiotic-resistance genes has a plasmidic or chromosomal origin and is present in low copy numbers in the cell. The main challenge in the development of low-target in situ detection in spores is the permeabilization procedure and the signal amplification required for detection. This study presents permeabilization and in situ signal amplification protocols, using Bacillus cereus spores as a model, in order to detect antibiotic-resistance genes. The permeabilization protocol was designed based on the different layers of the Bacillus spore. Catalyzed reporter deposition (CARD)–FISH and in situ polymerase chain reaction (PCR) were used as signal amplification techniques. B. cereus was transformed with the high copy number pC194 and low copy number pMTL500Eres plasmids in order to induce resistance to chloramphenicol and erythromycin, respectively. In addition, a rifampicin-resistant B. cereus strain, conferred by a single-nucleotide polymorphism (SNP) in the chromosome, was used. Using CARD–FISH, only the high copy number plasmid pC194 was detected. On the other hand, in situ PCR gave positive results in all tested instances. This study demonstrated that it was feasible to detect antibiotic-resistance genes in Bacillus spores using in situ techniques. In addition, in situ PCR has been shown to be more sensitive and more applicable than CARD–FISH in detecting low copy targets.  相似文献   

5.
Few reports on in situ mRNA detection in bacteria have been published, even though a major aim in environmental microbiology is to link function/activity to the identity of the organisms. This study reports a reliable approach for the in situ detection of nifH mRNA using fluorescence hybridization based on a previously described protocol for pmoA. nifH codes for a dinitrogenase reductase, a key enzyme in dinitrogen fixation. nifH mRNA was hybridized with a digoxigenin-labelled polynucleotide probe. The hybrid was detected with an anti-DIG-antibody labelled with horseradish peroxidase. Subsequently, the signal was amplified by catalyzed reporter deposition (CARD) with fluorochrome-labelled tyramides. Furthermore, the imaged organisms were identified using standard fluorescence in situ hybridization of rRNA. Thus, the approach enabled us specifically to link in situ the information from the dinitrogen fixation activity of an organism to its identity. Unexpectedly, the signals derived from nifH mRNA hybridization showed a distinct uneven pattern within the cells. This indicated that the method used could even give insights about the localization of the detected mRNA within the cell, which is a potential use of mRNA fluorescence in situ hybridization (FISH) that has not been reported up to now for bacterial cells.  相似文献   

6.
Bacterial colonization of dentine is of high relevance in cariology, endodontology and periodontology. The aim of the present in situ study was to establish recent methods for visualization and quantification of initial bacterial adherence to dentine in comparison to enamel. For this purpose, bovine enamel and dentine slabs were fixed on buccal sites of individual upper jaw splints worn by 6 subjects for 30 min, 120 min and 360 min, respectively. Adherent bacteria on the slabs were visualized and quantified with DAPI-staining (4′,6-diamidino-2-phenylindole) and fluorescence in situ hybridization (FISH) of streptococci and eubacteria using the CLSM (confocal laser scanning microscopy) as well as an epifluorescence microscope. In addition, the number of colony forming units was quantified after desorption. Representative samples were processed for SEM (scanning electron microscopy) and TEM (transmission electron microscopy). All methods clearly indicated that a significantly higher number of bacteria adhered to dentine than to enamel. Furthermore, the amount of bacteria on the dentine increased with increasing oral exposure time, but remained rather constant on the enamel. The CLSM allowed visualization of bacteria in the dentinal tubules. Bacteria were found preferentially at the openings of the dentine tubules, but were distributed randomly on the enamel.In conclusion, the adopted methods are suitable for visualization and quantification of bacterial adhesion to dentine. Even the initial bacterial colonization of dentine is much more pronounced than bacterial adherence to the enamel.  相似文献   

7.
Heterosigma akashiwo (Hada) is a fragile, fish-killing alga. Efforts to understand and prevent blooms due to this harmful species to mitigate the impact on aquaculture require the development of methods for rapid and precise identification and quantification, so that adequate warning of a harmful algal bloom may be given. Here, we report the development and application of rRNA and rDNA-targeted oligonucleotide probes for fluorescence in situ hybridization (FISH) to aid in the detection and enumeration of H. akashiwo. The designed probes were species specific, showing no cross-reactivity with four common HAB causative species: Prorocentrum micans Ehrenberg, P. minimum (Pavillard) Schiller, Alexandrium tarmarense (Lebour) Balech, and Skeletonema costatum (Greville) Cleve, or with four other microalgae, including Gymnodinium sp. Stein, Platy-monas cordiformis (Karter) Korsch, Skeletonema sp.1 Greville and Skeletonema sp.2. The rRNA-targeted probe hybridized to cytoplasmic rRNA, showing strong green fluorescence throughout the whole cell, while cells labeled by rDNA-targeted probe exhibited exclusively fluorescent nucleus. The detection protocols were optimized and could be completed within an hour. For rRNA and rDNA probes, about a corresponding 80% and 70% of targeted cells could be identified and quantified during the whole growth circle, despite the inapparent variability in the average probe reactivity. The established FISH was proved promising for specific, rapid, precise, and quantitative detection of H. akashiwo.  相似文献   

8.
Hydrothermal reaction of copper(II) bromide with either bis(4-pyridylmethyl)piperazine (bpmp) or bis(4-pyridylformyl)piperazine (bpfp) afforded layered coordination polymer solids. The racemic S,S and R,R stereochemistry dped ligands in [Cu2Br2(dped)]n (1, dped = 1,2-di(4-pyridyl)ethanediol) were formed by the in situ transformation of bpmp via putative 4-pyridylmethanol intermediates, along with concomitant reduction to monovalent copper. The structure of 1 contains [Cu2Br2]n chains comprising edge-shared [Cu3Br3] boat-conformation six-membered rings, linked into layer motifs by dped tethers with alternating stereochemistry. Lack of benzylic hydrogen atoms in bpfp causes that ligand to stay intact under the reaction conditions, generating the 2-D layered divalent copper phase [CuBr2(bpfp)]n (2).  相似文献   

9.
10.
采用基因组原位杂交(Genomic in situ hybridization,GISH)方法研究了牛筋草(Eleusine indica)AA基因组在穇子(E.coracana)染色体上的分布,并探讨了AA、BB基因组的同源关系。用超声波破碎法进行预剪切,以缺口平移法标记的牛筋草总DNA为探针,BB基因组的E.floccifolia(Forssk.)Spreng.总DNA为封阻,与AABB基因组穇子的中期染色体进行杂交。结果表明,牛筋草AA基因组分布在穇子的18条染色体上。不加封阻或加过量封阻均不能鉴别AA基因组,说明AA和BB基因组间的分化程度不大,双方共享的重复序列较多。牛筋草与E.floccifolia总DNA分别用超声波破碎2 min和3 min后,可得到峰值为300-750 bp的DNA片段,这说明不同物种的超声波破碎时间需要调整,以获得合适长度的探针。  相似文献   

11.
A novel fluorescence in situ hybridisation (FISH) method is presented that allows the combination of epifluorescence and scanning electron microscopy (SEM) to identify single microbial cells. First, the rRNA of whole cells is hybridised with horseradish peroxidase-labelled oligonucleotide probes and this is followed by catalysed reporter deposition (CARD) of biotinylated tyramides. This facilitates an amplification of binding sites for streptavidin conjugates covalently labelled with both fluorophores and nanogold particles. The deposition of Alexa Fluor 488 fluoro-nanogold–streptavidin conjugates was confirmed via epifluorescence microscopy and cells could be quantified in a similar way to standard CARD–FISH approaches. To detect cells by SEM, an autometallographic enhancement of the nanogold particles was essential, and allowed the in situ localisation of the target organisms at resolutions beyond light microscopy. Energy dispersive X-ray spectroscopy (EDS) was used to verify the effects of CARD and autometallography on gold deposition in target cells.  相似文献   

12.
Although there are several studies describing bacteria associated with marine fish, the bacterial composition associated with seahorses has not been extensively investigated since these studies have been restricted to the identification of bacterial pathogens. In this study, the phylogenetic affiliation of seahorse-associated bacteria was assessed by 16S rRNA gene sequencing of cloned DNA fragments. Fluorescence in situ hybridization (FISH) was used to confirm the presence of the predominant groups indicated by 16S rRNA analysis. Both methods revealed that Vibrionaceae was the dominant population in Artemia sp. (live prey) and intestinal content of the seahorses, while Rhodobacteraceae was dominant in water samples from the aquaculture system and cutaneous mucus of the seahorses. To our knowledge, this is the first time that bacterial communities associated with healthy seahorses in captivity have been described.  相似文献   

13.
Regenerative medicine is evolving fast, in particular since the potential of stem cells has been assessed. This evolution process requires the development of new tools capable of meeting the needs of this field of investigation. Cell delivery is a crucial issue for the success of regenerative medicine as cells should be easily seeded, expanded and introduced on site with maintenance of their phenotype and their capability to develop into a neo tissue/organ. On a material standpoint, cell delivery system should meet the preceding needs but also permit an easy introduction at the site and remain without hampering tissue development. As is shown in this review, polysaccharide hydrogels, and in particular in situ forming ones, are materials with a high application potential in regenerative medicine.  相似文献   

14.
Previous studies from this laboratory have dealt with the purification and biochemical characterization of ornithine decarboxylase (ODC) from Entamoeba histolytica. Enzyme compartmentalization has been described as a major mechanism in the regulation of polyamine metabolism. However, the subcellular location of ODC in the human parasite has remained unresolved. To examine this issue, we cloned the full-length gene (Ehodc) encoding for the parasite enzyme, whose open reading frame encodes for a peptide of 412 amino acids with an estimated molecular mass of 46 kDa that exhibits similarity to other ODCs. Heterologous overexpression of the gene allowed us to purify the recombinant protein (rEhODC) by metal affinity chromatography. The purified polypeptide was used to raise heteroclonal antibodies that were utilized to localize the enzyme in situ by immunofluorescence and confocal microscopy. EhODC was observed to be associated with the plasma membrane, in vesicles close to the plasma membrane and in the EhkOs organelle.  相似文献   

15.
3-Hydroxypropionaldehyde (3HPA) is an important C3 chemical that can be produced from renewable glycerol by resting whole cells of Lactobacillus reuteri. However the process efficiency is limited due to substrate inhibition, product-mediated loss of enzyme activity and cell viability, and also formation of by-products. Complex formation of 3HPA with sodium bisulfite and subsequent binding to Amberlite IRA-400 was investigated as a means of in situ product recovery and for overcoming inhibition. The adsorption capacity and -isotherm of the resin were evaluated using the Langmuir model. The resin exhibited maximum capacity of 2.92 mmol complex/g when equilibrated with 45 mL solution containing an equilibrium mixture of 2.74 mmol 3HPA-bisulfite complex and 2.01 mmol free 3HPA. The dynamic binding capacity based on the breakthrough curve of 3HPA and its complex on passing a solution with 2.49 mmol complex and 1.65 mmol free 3HPA was 2.01 mmol/g resin. The bound 3HPA was desorbed from the resin using 0.20 M NaCl with a high purity as a mixture of complexed- and free 3HPA at a ratio of 0.77 mol/mol. Fed-batch biotransformation of glycerol (818.85 mmol) with in situ 3HPA complexation and separation on the bisulfite-functionalized resin resulted in an improved process with consumption of 481.36 mmol glycerol yielding 325.54 mmol 3HPA at a rate of 17.13 mmol/h and a yield of 68 mol%. Also, the cell activity was maintained for at least 28 h.  相似文献   

16.
Acanthamoeba granulomatous encephalitis is a serious human infection with fatal consequences. The most distressing aspect of Acanthamoeba granulomatous encephalitis is the limited improvement in mortality. The underlying neurobiology is at present not well understood and treatment options are often of limited efficacy. There is therefore a real need to obtain more knowledge regarding the pathogenesis and pathophysiology of Acanthamoeba granulomatous encephalitis and to develop new chemotherapeutic approaches. However, the difficulties in using mammalian models to study this infection have hindered our search for therapeutic interventions. Recent availability of the blood-brain barrier, in vitro and use of locust as an in vivo model will undoubtedly allow us to investigate disease pathogenesis, mechanisms of parasite traversal across the blood-brain barrier and new drug therapies. It is argued that the models described here can offer several advantages in terms of speed, cost, technical convenience, and ethical acceptance. Furthermore, they are extremely valuable tools to discriminate molecules participating from both sides of the host-parasite interaction and will generate potentially useful leads in the identification of new potential drugs, as well as testing drug toxicity.  相似文献   

17.
In recent years, in situ protein synthesis microarray technologies have enabled protein microarrays to be created on demand just before they are needed. In this paper, we utilized the TUS-TER immobilization technology to allow label-free detection with real-time kinetics of protein–protein interactions using surface plasmon resonance imaging (SPRi). We constructed an expression-ready plasmid DNA with a C-terminal TUS fusion tag to directionally immobilize the in situ synthesized recombinant proteins onto the surface of the biosensor. The expression plasmid was immobilized on the polyethylene imine-modified gold surface, which was then coupled with a cell-free expression system on the flow cell of the SPRi instrument. The expressed TUS fusion proteins bind on the surface via the immobilized TER DNA sequence with high affinity (∼3–7 × 10−13 M). The expression and immobilization of the recombinant in situ expressed proteins were confirmed by probing with specific antibodies. The present study shows a new low cost method for in situ protein expression microarrays that has the potential to study the kinetics of protein–protein interactions. These protein microarrays can be created on demand without the problems of stability associated with protein arrays used in the drug discovery and biomarker discovery fields.  相似文献   

18.
Sponges (Porifera) are aquatic, sessile filter feeders. As such they are permanently exposed to bacteria in the seawater. Molecular data recovered from sponges by PCR shows a high diversity in bacterial DNA. Hence, sponges are considered to live in close association with a diverse and abundant bacterial community. To recover the spatial distribution of bacteria in sponges we retrieved histological sections of Aplysina aerophoba fixed in situ. By combining signals from fluorescence in situ hybridization (FISH), light microscopy and scanning electron microscopy we revealed a detailed histological picture of the spatial organization of the sponge microbial association within the sponges. Our histological results confirm a high abundance of cyanobacteria inside A. aerophoba while other living bacteria are almost absent. This detailed insight into sponge microbiology could only be achieved by the combination of careful sample preparation and different microscopical and histological methods. It also shows the need to confirm molecular datasets in situ and with a high spatial resolution.  相似文献   

19.
This in silico and in vitro comparative study was designed to evaluate the effectiveness of some biurets (K1 to K8) and glucantime against Leishmania major and Leishmania infantum promastigotes. Overall, eight experimental ligands and glucantime were docked using AutoDock 4.3 program into the active sites of Leishmania major and Leishmania infantum pteridine reductase 1, which were modeled using homology modeling programs. The colorimetric MTT assay was used to find L. major and L. infantum promastigotes viability at different concentrations of biuret derivatives in a concentration and time-dependent manner and the obtained results were expressed as 50% and 90% of inhibitory concentration (IC50 and IC90). In silico method showed that out of eight experimental ligands, four compounds were more active on pteridine reductase 1. K3 was the most active against L. major promastigotes with an IC50 of 6.8 μM and an IC90 of 40.2 μM, whereas for L. infantum promastigotes was K8 with IC50 of 7.8 μM. The phenylethyl derivative (K7) showed less toxicity (IC50s > 60 μM) in both Leishmania strains. Glucantime displayed less growth inhibition in concentration of about 20 μM. In silico and especially docking results in a recent study were in accordance with the in vitro activity of these compounds in presented study and compound K3, K2 and K8 showed reasonable levels of selectivity for the Leishmania pteridine reductase 1.  相似文献   

20.
Super-resolution microscopy encompasses a suite of cutting edge microscopy methods able to surpass the resolution limits of light microscopy. The recent commercial availability of super-resolution microscopy is advancing many fields of biology. In this crystal ball forward look, we briefly examine the perspectives of combining super-resolution microscopy and fluorescence in situ hybridization (FISH). We strongly believe, based on first evidence presented here, that using super-resolution microscopy in environmental microbiology has the potential to reshape the way we analyze the results obtained with FISH, by improving both the localization and quantification of target molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号