首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
BACKGROUND AND AIMS: It is stated in many recent publications that nitrate (NO3-) acts as a signal to regulate dry matter partitioning between the shoot and root of higher plants. Here we challenge this hypothesis and present evidence for the viewpoint that NO3- and other environmental effects on the shoot:root dry weight ratio (S:R) of higher plants are often related mechanistically to changes in shoot protein concentration. METHODS: The literature on environmental effects on S:R is reviewed, focusing on relationships between S:R, growth and leaf NO3- and protein concentrations. A series of experiments carried out to test the proposal that S:R is dependent on shoot protein concentration is highlighted and new data are presented for tobacco (Nicotiana tabacum). KEY RESULTS/EVIDENCE: Results from the literature and new data for tobacco show that S:R and leaf NO3- concentration are not significantly correlated over a range of environmental conditions. A mechanism involving the relative availability of C and N substrates for growth in shoots can explain how shoot protein concentration can influence shoot growth and hence root growth and S:R. Generally, results in the literature are compatible with the hypothesis that macronutrients, water, irradiance and CO2 affect S:R through changes in shoot protein concentration. In detailed studies on several species, including tobacco, a linear regression model incorporating leaf soluble protein concentration and plant dry weight could explain the greater proportion of the variation in S:R within and between treatments over a wide range of conditions. CONCLUSIONS: It is concluded that if NO3- can influence the S:R of higher plants, it does so only over a narrow range of conditions. Evidence is strong that environmental effects on S:R are often related mechanistically to their effects on shoot protein concentration.  相似文献   

2.
Relations between shoot to root dry weight ratio (S : R), total plant dry weight (DW), shoot and plant N concentration and leaf soluble protein concentration were examined for pea ( Pisum sativum L.), common bean ( Phaseolus vulgaris L.) and wheat ( Triticum aestivum L.) under different nutrient deficiencies. A regression model incorporating leaf soluble protein concentration and plant DW could explain greater than 80% of the variation in S : R within and between treatments for pea supplied different concentrations of NO3 or NH4+ in solid substrate; pea and bean supplied different concentrations of N, P, K and Mg in liquid culture; and wheat supplied different concentrations of N, P, K, Mg, Ca and S in liquid culture. Addition of shoot or plant N concentration to the model explained little more of the variation in S : R. It is concluded that results are consistent with the proposal that macronutrient effects on S : R are primarily mediated through their effects on protein synthesis and growth.  相似文献   

3.
Root to shoot ratio of crops as influenced by CO2   总被引:1,自引:0,他引:1  
Crops of tomorrow are likely to grow under higher levels of atmospheric CO2. Fundamental crop growth processes will be affected and chief among these is carbon allocation. The root to shoot ratio (R:S, defined as dry weight of root biomass divided by dry weight of shoot biomass) depends upon the partitioning of photosynthate which may be influenced by environmental stimuli. Exposure of plant canopies to high CO2 concentration often stimulates the growth of both shoot and root, but the question remains whether elevated atmospheric CO2 concentration will affect roots and shoots of crop plants proportionally. Since elevated CO2 can induce changes in plant structure and function, there may be differences in allocation between root and shoot, at least under some conditions. The effect of elevated atmospheric CO2 on carbon allocation has yet to be fully elucidated, especially in the context of changing resource availability. Herein we review root to shoot allocation as affected by increased concentrations of atmospheric CO2 and provide recommendations for further research. Review of the available literature shows substantial variation in R:S response for crop plants. In many cases (59.5%) R:S increased, in a very few (3.0%) remained unchanged, and in others (37.5%) decreased. The explanation for these differences probably resides in crop type, resource supply, and other experimental factors. Efforts to understand allocation under CO2 enrichment will add substantially to the global change response data base.Abbreviations R:S root to shoot ratio, dry weight basis  相似文献   

4.
BACKGROUND AND AIMS: Growth of bedding plants, in small peat plugs, relies on nutrients in the irrigation solution. The object of the study was to find a way of modifying the nutrient supply so that good-quality seedlings can be grown rapidly and yet have the high root : shoot ratios essential for efficient transplanting. METHODS: A new procedure was devised in which the concentrations of nutrients in the irrigation solution were modified during growth according to changing plant demand, instead of maintaining the same concentrations throughout growth. The new procedure depends on published algorithms for the dependence of growth rate and optimal plant nutrient concentrations on shoot dry weight W(s) (g m(-2)), and on measuring evapotranspiration rates and shoot dry weights at weekly intervals. Pansy, Viola tricola 'Universal plus yellow' and petunia, Petunia hybrida 'Multiflora light salmon vein' were grown in four independent experiments with the expected optimum nutrient concentration and fractions of the optimum. Root and shoot weights were measured during growth. KEY RESULTS: For each level of nutrient supply W(s) increased with time (t) in days, according to the equation DeltaW(s)/Deltat=K(2)W(s)/(100+W(s)) in which the growth rate coefficient (K(2)) remained approximately constant throughout growth. The value of K(2) for the optimum treatment was defined by incoming radiation and temperature. The value of K(2) for each sub-optimum treatment relative to that for the optimum treatment was logarithmically related to the sub-optimal nutrient supply. Provided the aerial environment was optimal, R(sb)/R(o) approximately W(o)/W(sb) where R is the root : shoot ratio, W is the shoot dry weight, and sb and o indicate sub-optimum and optimum nutrient supplies, respectively. Sub-optimal nutrient concentrations also depressed shoot growth without appreciably affecting root growth when the aerial environment was non-limiting. CONCLUSION: The new procedure can predict the effects of nutrient supply, incoming radiation and temperature on the time course of shoot growth and the root : shoot ratio for a range of growing conditions.  相似文献   

5.
氮素营养对小麦根冠协调生长的调控   总被引:25,自引:3,他引:22  
在植物生长箱通过溶液培养方式,对不同氮素条件下不同抗旱性的小麦品种西农1043和小偃6号的幼苗根苗生长特性进行了研究,结果表明在不同氮素浓度下,氮肥用量的提高对地上部干重和叶片气体交换参数表现为增效效应,当用量增至一定程度时,地上部干重和叶片气体交换参数均呈下降趋势,只是各自的适宜用量存在差异。培养介质氮素浓度低时,有利于小麦根系干重累积,培养介质氮素浓度高时,不利于根系干重累积。西农1043和小偃6号根长分布基本相似,水分利用效率随着根冠比的增大而降低。小麦根冠比的增加并不利于叶片水分利用效率的提高,而叶片光合作用最优的根冠比为0.5左右。  相似文献   

6.
Growth and shoot: root ratio of seedlings in relation to nutrient availability   总被引:30,自引:2,他引:28  
Ericsson  Tom 《Plant and Soil》1995,168(1):205-214
The influence of mineral nutrient availability, light intensity and CO2 on growth and shoot:root ratio in young plants is reviewed. Special emphasis in this evaluation is given to data from laboratory experiments with small Betula pendula plants, in which the concept of steady-state nutrition has been applied.Three distinctly different dry matter allocation patterns were observed when growth was limited by the availability of mineral nutrients: 1, Root growth was favoured when N, P or S were the major growth constraints. 2, The opposite pattern obtained when K, Mg and Mn restricted growth. 3, Shortage of Ca, Fe and Zn had almost no effect on the shoot:root ratio. The light regime had no effect on dry matter allocation except at very low photon flux densities (< 6.5 mol m-2 day-1), in which a small decrease in the root fraction was observed. Shortage of CO2, on the other hand, strongly decreased root development, while an increase of the atmospheric CO2 concentration had no influence on dry matter partitioning. An increased allocation of dry matter to below-ground parts was associated with an increased amount of starch in the tissues. Depletion of the carbohydrate stores occurred under all conditions in which root development was inhibited. It is concluded that the internal balance between labile nitrogen and carbon in the root and the shoot system determines how dry matter is being partitioned in the plant. The consistency of this statement with literature data and existing models for shoot:root regulation is examined.  相似文献   

7.
Plants of Cirsium vulgare (Savi) Ten. were cultivated under five different nitrogen regimes in order to investigate the effects of nitrogen supply on the storage processes in a biennial species during its first year of growth. External N supply increased total biomass production without changing the relationship between ‘productive plant compartments’ (i.e. shoot plus fine roots) and ‘storage plant compartments’ (i.e. structural root dry weight, which is defined as the difference between tap root biomass and the amount of stored carbohydrates and N compounds). The amount of carbohydrates and N compounds stored per unit of structural tap root dry weight was not affected by external N availability during the season, because high rates of N supply increased the concentration of N compounds whilst decreasing the carbohydrate concentration, and low rates of N supply had the opposite effect. Mobilization of N from senescing leaves was not related to the N status of the plants. The relationship between nitrogen compounds stored in the tap root and the maximum amount of nitrogen in leaves was an increasing function with increasing nitrogen supply. We conclude that the allocation between vegetative plant growth and the growth of storage structures over a wide range of N availability seems to follow predictions from optimum allocation theory, whereas N storage responds in a rather plastic way to N availability.  相似文献   

8.
氮素和水分是荒漠生态系统的两个主要限制因子, 研究两者对荒漠植物的效应有助于深入了解荒漠生态系统对全球变化的响应。该文选择准噶尔盆地荒漠地区两种常见的一年生植物涩荠(Malcolmia africana)和钩刺雾冰藜(Bassia hyssopifolia), 设置0、0.18和0.72 g N·m -2·week -13个施氮浓度和湿润与干旱两个土壤水分处理, 研究模拟氮沉降增加和干旱对其生长和光合生理的影响。结果表明: (1)两种植物的根长、根重、叶片数、叶面积、总生物量和冠根比均随着施氮浓度的增加而增加, 干旱能够抑制氮对植物生长的促进作用, 但是, 氮的增加同时也能部分缓解干旱对植物生长的影响。与钩刺雾冰藜相比, 涩荠的根长、生物量和冠根比更易受氮增加和干旱的影响。(2)两种植物的最大净光合速率、叶绿素含量、可溶性蛋白含量随着氮浓度增加而增加, 但涩荠和钩刺雾冰藜对氮增加和干旱的生理响应也有所不同, 涩荠的响应更加敏感。两种植物对氮沉降和干旱胁迫响应的差异可能是其生活型等生物学特性差异所引起。通过对两种一年生植物的生长和光合生理分析表明, 在古尔班通古特沙漠, 春季丰富的降水和氮素增加将有利于涩荠和钩刺雾冰藜的生长和生产力的增加, 相对地下生长, 地上部分增加更显著。当干旱季节来临时, 氮的增加又能够在一定程度上降低干旱对这两种植物的负效应, 说明其对干旱具有一定的生态补偿作用。  相似文献   

9.
Maize seedlings were grown for 10 to 20 days in either nutrient solution or in soils with or without fertilizer supply. Air temperature was kept uniform for all treatments, while root zone temperature (RZT) was varied between 12 and 24°C. In some treatments the basal part of the shoot (with apical shoot meristem and zone of leaf elongation) was lifted up to separate the indirect effects of root zone temperature on shoot growth from the direct effects of temperature on the shoot meristem.Shoot and root growth were decreased by low RZT to a similar extent irrespective of the growth medium (i.e. nutrient solution, fertilized or unfertilized soil). In all culture media Ca concentration was similar or even higher in plants grown at 12 as compared to 24°. At lower RZT concentrations of N, P and K in the shoot dry matter decreased in unfertilized soil, whereas in nutrient solution and fertilized soil only the K concentration decreased.When direct temperature effects on the shoot meristem were reduced by lifting the basal part of the shoot above the temperature-controlled root zone, shoot growth at low RZT was significantly increased in nutrient solution and fertilized soil, but not in unfertilized soil. In fertilized soil and nutrient solution at low RZT the uptake of K increased to a similar extent as plant growth, and thus shoot K concentration was not reduced by increasing shoot growth rates. In contrast, uptake of N and P was not increased, resulting in significantly decreased shoot concentrations.It is concluded that shoot growth at suboptimal RZT was limited both by a direct temperature effect on shoot activity and by a reduced nutrient supply through the roots. Nutrient concentrations in the shoot tissue at low RZT were not only influenced by availability in the substrate and dilution by growth, but also by the internal demand for growth.  相似文献   

10.
THORNTON  B. 《Annals of botany》1991,68(6):569-576
Overwintering, rooted basal internodes of Molinia caerulea (L.)Moench were taken from the field and subjected to four nutritiontreatments [an adequate (high) and suboptimal (low) level ofnitrogen (N) x an adequate (high) and suboptimal (low) levelof phosphorus (P)] and three degrees of defoliation (12 treatmentsin total). Growth parameters were studied using both non-destructivemeasurements and destructive harvesting. High N supply and highP supply increased both the number of tillers and mass of eachtiller. Interactions between the effects of N and P did occurfor several growth variables; in general this was due to anabsence of a response to P supply at low N. Defoliation reducedthe dry weight of basal internodes and roots produced and temporarilyreduced leaf dry weight per tiller. There were no effects ofdefoliation on tillering. Interactions of defoliation with bothN supply and P supply were observed. Leaf extension rate wasincreased by defoliation at low, but not high N, and the adverseeffects of defoliation on root dry weight and root/shoot (R/S)ratios were proportionally greater at low N. The results arediscussed in relation to other investigations which have reportedcontrasting aspects of Molinia growth in response to both nutrientsand defoliation. Molinia caerulea, purple moor grass, nitrogen, phosphorus, defoliation  相似文献   

11.
应用封闭式生长室系统,研究了CO2浓度升高对红桦(Betula albosinensis)幼苗的根/冠、粗根和细根的干质量、非结构性碳水化合物类含量、碳含量和碳/氮、氮和磷的含量及氮磷吸收量的影响。结果表明:CO2浓度升高使红桦幼苗粗根和细根的干质量增加,同时根/冠值显著升高,表明CO2浓度升高使红桦幼苗生物量向根系的分配增加;与对照相比,粗根的还原糖、蔗糖和总可溶性糖含量显著增加,而在细根中没有显著变化;粗根、细根的淀粉和总的非结构性碳水化合物含量显著增加;CO2浓度升高下粗根和细根的碳含量有升高的趋势但未达到显著水平,同时氮含量降低,碳/氮值升高;氮的吸收量在粗根和细根中均无显著变化。上述结果表明,CO2浓度升高下红桦幼苗根系氮含量下降是由非结构性碳水化合物(主要是淀粉)含量升高和(或)根系生物量增加产生的稀释效应引起的。  相似文献   

12.
Growth, sun/shade acclimation and nitrogen nutrition were examined in Tradescantia fluminensis to gain greater understanding of why this species is so successful in New Zealand native forest remnants. Over a two year period, the rate of shoot extension of T. fluminensis in a New Zealand mixed mahoe (Melicytus ramiflorus) coastal forest remnant showed a similar pattern to monthly mean values for mean daily air temperature and day length. Growth at the shoot apex was balanced by death at the shoot base. During the first year, nitrate (NO3-)content of the plant in the field was always > 250 mu mol per g dry weight. On high NO3- supply in pot experiments, in a glasshouse or outdoors, total plant dry weight increased with increased relative irradiance from 1 to 30-50% (open ground photosynthetically active radiation = 100% relative irradiance). Changes in shoot to root dry weight ratio (S:R), specific leaf area (SLA) and leaf chlorophyll, carotenoid and protein content associated with decreased irradiance from 50 to 1% were similar to those associated with increased distance into the forest remnant and are discussed in relation to shade acclimation. Values for S:R (>30.1) and SLA (approximate to 900 cm(2) per g dry weight) were extremely high at low irradiance. These results support earlier conclusions that irradiance level is likely to be the primary factor limiting the extent of colonisation of forest remnants by T. fluminensis. Under glasshouse conditions, the growth response of T. fluminensis to different ammonium and NOS concentrations was similar to that previously reported for herbaceous species capable of rapid growth. Leaf nitrate reductase activity was within the range previously reported for fast growing species. Tradescantia fluminensis accumulated substantial amounts of NO3- in shoots with no depression in growth. This NO3- was utilised when nitrogen became limiting to growth. An 'invasion strategy' of T. fluminensis into N.Z. native forest remnants is proposed.  相似文献   

13.
Nodule numbers are regulated through systemic auto‐regulatory signals produced by shoots and roots. The relative effects of shoot and root genotype on nodule numbers together with relationships to organ biomass, carbon (C) and nitrogen (N) status, and related parameters were measured in pea (Pisum sativum) exploiting natural genetic variation in maturity and apparent nodulation intensity. Reciprocal grafting experiments between the early (Athos), intermediate (Phönix) and late (S00182) maturity phenotypes were performed and Pearson's correlation coefficients for the parameters were calculated. No significant correlations were found between shoot C/N ratios and plant morphology parameters, but the root C/N ratio showed a strong correlation with root fresh and dry weights as well as with shoot fresh weight with less significant interactions with leaf number. Hence, the root C/N ratio rather than shoot C/N had a predominant influence on plant morphology when pea plants are grown under conditions of symbiotic nitrogen supply. The only phenotypic characteristic that showed a statistically significant correlation with nodulation intensity was shoot length, which accounted for 68.5% of the variation. A strong linear relationship was demonstrated between shoot length and nodule numbers. Hence, pea nodule numbers are controlled by factors related to shoot extension, but not by shoot or root biomass accumulation, total C or total N. The relationship between shoot length and nodule numbers persisted under field conditions. These results suggest that stem height could be used as a breeding marker for the selection of pea cultivars with high nodule numbers and high seed N contents.  相似文献   

14.
不同甘氨酸浓度对无菌水培番茄幼苗生长和氮代谢的影响   总被引:5,自引:0,他引:5  
植物不但能吸收矿质氮(NH+4-N、NO-3-N),而且也能直接吸收有机态氮,如氨基酸、小分子蛋白质等.为探讨有机态氮浓度对番茄幼苗生长和氮代谢的影响,无菌水培条件下采用2个番茄品种(申粉918、沪樱932)设置4种不同浓度(0、1.5、3.0、6 0mmol·L-1)的甘氨酸态氮(Gly-N),研究了番茄幼苗干物质重、吸氮量、氮代谢相关产物和氮代谢关键酶活性.结果表明,无菌水培条件下,随营养液中Gly浓度的增加,番茄植株干物质重、总氮量、地上部和根系游离氨基酸、可溶性蛋白、地上部可溶性糖含量增加.与无氮对照相比,各处理均显著降低了番茄地上部淀粉含量(P<0.05),而Gly浓度对根系淀粉含量无显著影响.随营养液中Gly浓度的增加,番茄地上部和根系的硝酸还原酶(NR)、谷氨酸脱氢酶(NADH-GDH)、丙转氨酶(GPT)和谷草转氨酶(GOT)活性均提高.无氮对照的NR活性与1.5 mmol·L-1 Gly处理之间差异不显著,而与3.0 mmol·L-1和6.0 mmol·L-1 Gly两处理之间差异显著(P<0.05);1.5 mmol·L-1 Gly和3.0 mmol·L-1 Gly两个处理之间的地上部NADH-GDH、GPT和GOT活性差异不显著.Gly浓度与番茄植株干物质重、总氮量呈显著正相关(R2>0.905* *),这表明两个番茄品种均能直接吸收利用甘氨酸.沪樱932吸收Gly的能力显著大于申粉918(P<0.05).因此,Gly-N可以成为番茄生长的良好氮源,其生理效应受Gly浓度的影响;不同品种番茄对Gly的吸收利用能力不同.  相似文献   

15.
Root growth has a fundamental role in nitrogen (N) use efficiency. Nevertheless, little is known about how modern breeding progress has affected root growth and its responses to N supply. The root and shoot growth of a core set of 11 representative Chinese maize (Zea mays L.) hybrids released between 1973 and 2009 were investigated under high N (4 mmol L−1, HN) and low N (0.04 mmol L−1, LN) levels in a solution culture system. Compared with LN, HN treatment decreased root dry weight (RDW), the root: shoot ratio (R/S), and the relative growth rate for root dry weight (RGRroot), but increased the total root length (TRL) and the total lateral root length (LRL). The total axial root length (ARL) per plant was reduced under HN, mostly in hybrids released before the 1990s. The number of seminal roots (SRN) was largely unaffected by different N levels. More recently released hybrids showed higher relative growth rates in the shoot under both HN and LN. However, the roots only showed increased RGR under HN treatment. Correspondingly, there was a positive linear relationship with the year of hybrid release for TRL, LRL and ARL under HN treatment. Together, these results suggest that while shoot growth of maize has improved, its root growth has only improved under high N conditions over the last 36 years of selective breeding in China. Improving root growth under LN conditions may be necessary to increase the N use efficiency of maize.  相似文献   

16.
The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a strong decrease in the absorption of root: shoot dry weight ratio and a reduction in shoot growth. On the other hand, compensatory growth and an increased N uptake rate in the remaining roots were observed. Despite the limited long-distance transport pathway in the mesocotyl with restriction of shoot-borne root growth, N cycling within these plants was higher than those in control plants, implying that xylem and phloem flow velocities via the mesocotyl were considerably higher than in plants with an intact root system. The removal of the seminal roots in addition to restricting shoot-borne root development did not affect whole plant growth and N uptake, except for the stronger compensatory growth of the primary roots. Our results suggest that an adequate N supply to maize plant is maintained by compensatory growth of the remaining roots, increased N uptake rate and flow velocities within the xylem and phloem via the mesocotyl, and reduction in the shoot growth rate.  相似文献   

17.
A greenhouse experiment was conducted in order to understand the adaptation responses to different water and N conditions, and further explore if additional N supply could improve the water-use efficiency (WUE) and adaptability of Sophora davidii seedlings under dry conditions. Two-month-old seedlings were subjected to a completely random design with three water (80, 40 and 20% water field capacity (FC)) and three N supply (N0: 0, Nl: 92 and Nh:184 mg N kg−1 soil) regimes. Drought stress dramatically decreased seedlings height, basal diameter, leaf number, leaf area, root length, and biomass production. An increase in below-ground biomass was observed indicating a higher root/shoot ratio (R/S) under drought stress conditions, and drought further decreased relative water content (RWC) and WUE. On the other hand, S. davidii seedlings exhibited strong responses to N supply, but the responses were inconsistent with the various N supply levels. Low N supply (Nl) increased seedlings height, basal diameter, leaf number, leaf area, and biomass production, but decreased root length. In contrast, high N supply (Nh) decreased or had little effect on these growth characteristics. N supply increased leaf percentages, but decreased fine root percentages. In addition, Nl rather than the other two N treatments increased leaf area ratio (LAR), leaf/fine root mass ratio (L/FR), R/S and RWC under severe drought stress (20% FC), even though these parameters could increase with the Nh treatment under well-watered condition (80% FC). Moreover, Nl also increased WUE under three water conditions, but Nh had little effect on WUE under drought stress conditions (40% FC and 20% FC). The results suggested that water and N co-limited the growth of S. davidii seedlings, and the seedlings exhibited great positive responses to Nl in this study. Appropriate or low N supply, therefore, would be recommended to stimulate growth, enhance WUE, alleviate drought stress, and consequently contribute to S. davidii seedling establishment under dry condition, but excess N supply should be avoided.  相似文献   

18.
During their life cycle, plants must be able to adapt to wide variations in the supply of soil nitrogen (N). Changes in N availability, and in the relative concentrations of NO3 and NH4 +, are known to have profound regulatory effects on the N uptake systems in the root, on C and N metabolism throughout the plant, and on root and shoot morphology. Optimising the plant’s responses to fluctuations in the N supply requires co-ordination of the pathways of C and N assimilation, as well as establishment of the appropriate allocation of resources between root and shoot growth. Achieving this integration of responses at the whole plant level implies long-distance signaling mechanisms that can communicate information about the current availability of N from root-to-shoot, and information about the C/N status of the shoot in the reverse direction. In this review we will discuss recent advances which have contributed to our understanding of these long-range signaling pathways.  相似文献   

19.
Doubling the atmospheric CO2 concentration from 350 to 700 μ1 1?1 increased the relative growth rate (RGR) of hydroponically grown Urtica dioica L. and Plantago major ssp. pleiosperma Pilger only for the first 10–14 days. Previous experiments with P. major led to the conclusion that RGR did not respond in proportion to the rate of photosynthesis. The present paper is focussed on the analysis of the impact of changes in leaf morphology, dry matter partitioning, dry matter chemical composition and ontogenetic drift on this discrepancy. Soon after the start of the treatment, carbohydrate concentrations were higher at elevated CO2: a reaction that was largely due to starch accumulation. An increase in the percentage of leaf dry matter and decreases in the specific leaf area (SLA) and the shoot nitrogen concentration were correlated with an increase in the total nonstructural carbohydrate concentration (TNC). A combination of accumulation of soluble sugars and starch and ontogenetic drift explains the decrease in SLA at the elevated CO2 level. A similar ontogenetic effect of elevated CO2 was observed on the specific root length (SRL). Other variables such as shoot nitrogen concentration and percentage leaf dry matter were not affected by correction of data for TNC levels. The net diurnal fluctuation of the carbohydrate pool in P. major was equal for both CO2 concentrations, indicating that the growth response to elevated CO2 may be ruled by variables other than photosynthesis, as for instance sink strength. Elevated CO2 did not greatly influence the partitioning of nitrogen between soluble and insoluble, reduced N and nitrate, nor the allocation of dry matter between leaf. stem and root. The finding that the root to shoot ratio (R/S) was not affected by elevated CO2 implies that, in order to maintain a balanced activity between roots and shoot, no shift in partitioning of dry matter upon doubling of the atmospheric CO2 concentration is required. Our data on R/S are in good agreement with the response of R/S to high CO2 predicted by models based on such a theorem.  相似文献   

20.
A real-time polymerase chain reaction (PCR) method was applied to quantify the nifH gene pool in cucumber shoot and root and to evaluate how nitrogen (N) supply and plant age affect the nifH gene pool. In shoots, the relative abundance of the nifH gene was affected neither by different stages of plant growth nor by N supply. In roots, higher numbers of diazotrophic bacteria were found compared with that in the shoot. The nifH gene pool in roots significantly increased with plant age, and unexpectedly, the pool size was positively correlated with N supply. The relative abundance of nifH gene copy numbers in roots was also positively correlated (r = 0.96) with total N uptake of the plant. The data suggest that real-time PCR-based nifH gene quantification in combination with N-content analysis can be used as an efficient way to perform further studies to evaluate the direct contribution of the N2-fixing plant-colonizing plant growth promoting bacteria to plant N nutrition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号