首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In productively infected cells, a fraction of large-tumor antigen (T antigen) is tightly bound to replicating simian virus 40 (SV40) minichromosomes and does not dissociate at salt concentrations of greater than 1 M NaCl. We present electronmicrograms demonstrating the presence of T antigen on the replicated sections of replicating SV40 minichromosomes. We also show that the fraction of tightly bound T antigen is recognized by antibodies from mouse tumor serum and, more specifically, by a particular T-antigen-specific monoclonal antibody, PAb 1630. A second T-antigen-specific monoclonal antibody, PAb 101, does not react with the T-antigen fraction remaining on replicating SV40 chromatin at high salt concentrations. We used an in vitro replication system which allows, via semiconservative DNA replication, the completion of in vivo-initiated replicative intermediate DNA molecules. We show that monoclonal antibody PAb 1630, but not monoclonal antibody PAb 101, inhibits viral DNA replication. We discuss the possibility that SV40 T antigen may play a role in chain elongation during SV40 chromatin replication.  相似文献   

2.
The use of classical smallpox vaccines based on vaccinia virus (VV) is associated with severe complications in both naive and immune individuals. Modified vaccinia virus Ankara (MVA), a highly attenuated replication-deficient strain of VV, has been proven to be safe in humans and immunocompromised animals, and its efficacy against smallpox is currently being addressed. Here we directly compare the efficacies of MVA alone and in combination with classical VV-based vaccines in a cynomolgus macaque monkeypox model. The MVA-based smallpox vaccine protected macaques against a lethal respiratory challenge with monkeypox virus and is therefore an important candidate for the protection of humans against smallpox.  相似文献   

3.
4.
Toll-like receptor signaling inhibits hepatitis B virus replication in vivo   总被引:26,自引:0,他引:26  
Toll-like receptors (TLR) play a key role in innate immunity. To examine the ability of diverse TLRs to modulate hepatitis B virus (HBV) replication, HBV transgenic mice received a single intravenous injection of ligands specific for TLR2, TLR3, TLR4, TLR5, TLR7, and TLR9. All of the ligands except for TLR2 inhibited HBV replication in the liver noncytopathically within 24 h in a alpha/beta interferon-dependent manner. The ability of these TLR ligands to induce antiviral cytokines at the site of HBV replication suggests that TLR activation could represent a powerful and novel therapeutic strategy for the treatment of chronic HBV infection.  相似文献   

5.
6.
7.
Pathogenic parental rabies virus and apathogenic variant virus were shown to differ in their ability to infect neurons in vivo and neuroblastoma cells in vitro. After intracerebral inoculation, the distribution of infected neurons in the brain was similar for both viruses, but the rate of spread throughout the brain, the number of infected neurons, and the degree of cellular necrosis were much lower in the case of apathogenic virus. After adsorption to mouse neuroblastoma cells, apathogenic virus was less rapidly internalized than pathogenic virus, and cell-to-cell spread of apathogenic variant virus was completely prevented by the addition of rabies virus-neutralizing antibody, whereas the spread of pathogenic virus was not affected.  相似文献   

8.
Two pathogenetically distinct disease manifestations are distinguished in a murine model of primary rabies virus infection with the Evelyn-Rokitnicky-Abelseth strain, rabies virus neuritic paralysis (RVNP) and fatal encephalopathogenic rabies. RVNP develops with high incidence in immunocompetent mice after intraplantar infection as a flaccid paralysis restricted to the infected limb. The histopathologic correlate of this monoplegia is a degeneration of the myelinated motor neurons of the peripheral nerve involved. While, in this model, fatal encephalopathogenic rabies develops only after depletion of the CD4 subset of T lymphocytes and without contribution of the CD8 subset, RVNP is identified as an immunopathological process in which both the CD4 and CD8 subsets of T lymphocytes are critically implicated.  相似文献   

9.
Viral myocarditis is a disease with a high morbidity and mortality. The pathogenesis of this disease remains poorly characterized, with components of both direct virus-mediated and secondary inflammatory and immune responses contributing to disease. Apoptosis has increasingly been viewed as an important mechanism of myocardial injury in noninfectious models of cardiac disease, including ischemia and failure. Using a reovirus murine model of viral myocarditis, we characterized and targeted apoptosis as a key mechanism of virus-associated myocardial injury in vitro and in vivo. We demonstrated caspase-3 activation, in conjunction with terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling and annexin binding, in cardiac myocytes after myocarditic viral infection in vitro. We also demonstrated a tight temporal and geographical correlation between caspase-3 activation, histologic injury, and viral load in cardiac tissue after myocarditic viral infection in vivo. Two pharmacologic agents that broadly inhibit caspase activity, Q-VD-OPH and Z-VAD(OMe)-FMK, effectively inhibited virus-induced cellular death in vitro. The inhibition of caspase activity in vivo by the use of pharmacologic agents as well as genetic manipulation reduced virus-induced myocardial injury by 40 to 60% and dramatically improved survival in infected caspase-3-deficient animals. This study indicates that apoptosis plays a critical role in mediating cardiac injury in the setting of viral myocarditis and is the first demonstration that caspase inhibition may serve as a novel therapeutic strategy for this devastating disease.  相似文献   

10.
狂犬病毒抗体ELISA检测试剂盒的改进研究   总被引:4,自引:0,他引:4  
为了提高狂犬病毒抗体检测的灵敏度和特异性,采用狂犬病毒单克隆抗体包被酶标板,再分别加入重组的狂犬病毒糖蛋白或细胞培养抗原做固相层的方法(抗体捕捉法),用传统的间接ELISA法做对照,按常规方法检测抗狂犬病毒抗体。结果显示,抗体捕捉法的非特异性反应低于间接法,而灵敏度达到0.51U水平,高于间接法。在800份临床标本检测中,检出率明显高于间接法。用15份阳性血清作小鼠中和试验,并和抗体捕捉ELISA法比较具有高度的一致性。试验结果充分表明,该方法优于传统的ELISA间接法。因此可作为临床注射狂犬疫苗后检测血清中狂犬病毒抗体的常规方法。  相似文献   

11.

Background

Although cervico-vaginal epithelial cells of the female lower genital tract provide the initial defense system against HIV-1 infection, the protection is sometimes incomplete. Thus, enhancing anti-HIV-1 humoral immunity at the mucosal cell surface by local expression of anti-HIV-1 broadly neutralizing antibodies (BnAb) that block HIV-1 entry would provide an important new intervention that could slow the spread of HIV/AIDS.

Methods and Findings

This study tested the hypothesis that adeno-associated virus (AAV)-BnAb gene transfer to cervico-vaginal epithelial cells will lead to protection against HIV-1. Accordingly, a recombinant AAV vector that encodes human b12 anti-HIV gp120 BnAb as a single-chain variable fragment Fc fusion (scFvFc), or “minibody” was constructed. The secreted b12 minibody was shown to be biologically functional in binding to virus envelope protein, neutralizing HIV-1 and importantly, blocking transfer and infectivity of HIV-1bal in an organotypic human vaginal epithelial cell (VEC) model. Furthermore, cervico-vaginal epithelial stem cells were found to be efficiently transduced by the optimal AAV serotype mediated expression of GFP.

Conclusion

This study provides the foundation for a novel microbicide strategy to protect against sexual transmission of HIV-1 by AAV transfer of broadly neutralizing antibody genes to cervico-vaginal epithelial stem cells that could replenish b12 BnAb secreting cells through multiple menstrual cycles.  相似文献   

12.
Pokeweed antiviral protein (PAP) is a glycosidase of plant origin that has been shown to depurinate some viral RNAs in vitro. We have demonstrated previously that treatment of Brome mosaic virus (BMV) RNAs with PAP inhibited their translation in a cell-free system and decreased their accumulation in barley protoplasts. In the current study, we map the depurination sites on BMV RNA3 and describe the mechanism by which replication of the viral RNA is inhibited by depurination. Specifically, we demonstrate that the viral replicase exhibited reduced affinity for depurinated positive-strand RNA3 compared with intact RNA3, resulting in less negative-strand product. This decrease was due to depurination within the intergenic region of RNA3, between ORF3 and 4, and distant from the 3′ terminal core promoter required for initiation of negative-strand RNA synthesis. Depurination within the intergenic region alone inhibited the binding of the replicase to full-length RNA3, whereas depurination outside the intergenic region permitted the replicase to initiate negative-strand synthesis; however, elongation of the RNA product was stalled at the abasic nucleotide. These results support a role of the intergenic region in controlling negative-strand RNA synthesis and contribute new insight into the effect of depurination by PAP on BMV replication.  相似文献   

13.
Zhou D  Zhang Y  Li Q  Chen Y  He B  Yang J  Tu H  Lei L  Yan H 《Journal of virology》2011,85(21):11090-11097
Measles virus (MV) is still an imposing threat to public health. The matrix (M) protein has been shown not only to function as a structure block in the assembled MV virions, but also to regulate viral RNA synthesis, playing an important role in MV's replication and assembly. In the present study, we generated a panel of IgG monoclonal antibodies (MAbs) against M protein and successfully obtained one IgA MAb (5H7) from the IgG panel. Employing the polarized Vero cells grown in the two-chamber transwell model, we investigated whether M-specific 5H7 IgA MAb could suppress MV's replication and assembly. The data presented indicate that, while failing to show the activities of traditional neutralization and immune exclusion, M-specific IgA MAb was able to effectively inhibit viral replication by intracellular neutralization (78%), supporting the notion that the M protein is important for MV assembly and replication and implying that the M protein was an effective target antigen. The data also showed that MV had a long entry and assembly phase during viral replication, providing an extended window for IgA intervention. The colocalization of M proteins and M-specific 5H7 IgA MAbs demonstrated that the intracellular neutralization was due to the direct binding of the M-specific 5H7 IgA MAbs to the M proteins. In summary, the present study has added another example showing that IgA antibodies targeting internal viral antigens could proactively participate in mucosal immune protection by intracellular neutralization and has provided evidence that M protein might be included as a target antigen in future MV vaccine design.  相似文献   

14.
Influenza A virus seasonal outbreaks and occasional pandemics represent a global health threat. The high genetic instability of this virus permits rapid escape from the host immune system and emergence of resistance to antivirals. There is thus an urgent need to develop novel approaches for efficient treatment of newly emerging strains. Based on a sequence alignment of representatives from every subtype known to infect humans, we identified nucleic acid regions that are conserved amongst these influenza A populations. We then engineered SOFA-HDV-Ribozymes as therapeutic tools recognizing these conserved regions to catalytically cleave the corresponding viral mRNA targets. The most promising ribozymes were chosen based on an initial in silico screening, and their efficacy was assessed using in vitro cleavage assays. Further characterization of their antiviral effect in cell culture and in mice led to the gradual identification of prophylactic SOFA-HDV-Ribozyme combinations, providing proof-of-principle for the potential of this novel strategy to develop antivirals against genetically highly variable viruses.  相似文献   

15.
16.
17.
Apoptotic cell death induced by kainic acid (KA) in cultures of rat cerebellar granule cells (CGC) and in different brain regions of Wistar rat pups on postnatal day 21 (P21) was studied. In vitro , KA (100–500 μM) induced a concentration-dependent loss of cell viability in MTT assay and cell death had apoptotic morphology as studied by chromatin staining with propidium iodide (PI). In vivo , twenty-four hours after induction of status epilepticus (SE) by an intraperitoneal KA injection (5 mg/kg) we quantified apoptotic cells in hippocampus (CA1 and CA3), parietal cortex and cerebellum using PI staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) technique. We report that dantrolene, a specific ryanodine receptor antagonist, was able to significantly reduce the apoptotic cell death in CGC cultures and in hyppocampal CA1 and parietal cortex regions. Our finding can be valuable for neuroprotective therapy strategies in patients with repeated generalized seizures or status epilepticus.  相似文献   

18.
Bovine transfer factor (TFd) specific to herpes simplex virus (HSV)1 or to HSV2 was prepared by immunizing calves with the corresponding virus. The TFd preparations were then injected into Swiss mice in an attempt to protect them against a subsequent lethal challenge with HSV1 or HSV2 virus. It was thus shown that injection of anti-HSV TFd protects the mice against the corresponding HSV virus, whereas the injection of a nonspecific TFd (anti-CMV) fails to protect against a challenge with HSV1. Furthermore, a dose-response effect was observed, since potent TFd preparations were ineffective when they were used at one-fifth of the original concentration. It seems, therefore, that animal models may be used to assay the potency of TFd preparations specific for herpes viruses.  相似文献   

19.
Andes virus (ANDV) is a highly pathogenic South American hantavirus that causes hantavirus pulmonary syndrome (HPS). A high case fatality rate, the potential for human-to-human transmission, the capacity to infect via aerosolization, and the absence of effective therapies make it imperative that a safe, fast-acting, and effective ANDV vaccine be developed. We generated and characterized a recombinant vesicular stomatitis virus (VSV) vector expressing the ANDV surface glycoprotein precursor (VSVΔG/ANDVGPC) as a possible vaccine candidate and tested its efficacy in the only lethal-disease animal model of HPS. Syrian hamsters immunized with a single injection of VSVΔG/ANDVGPC were fully protected against disease when challenged at 28, 14, 7, or 3 days postimmunization with a lethal dose of ANDV; however, the mechanism of protection seems to differ depending on when the immunization occurs. At 28 days postimmunization, a lack of detectable ANDV RNA in lung, liver, and blood tissue samples, as well as a lack of seroconversion to the ANDV nucleocapsidprotein in nearly all animals, suggested largely sterile immunity. The vaccine was able to generate high levels of neutralizing anti-ANDV G(N)/G(C) antibodies, which seem to play a role as a mechanism of vaccine protection. Administration of the vaccine at 7 or 3 days before challenge also resulted in full protection but with no specific neutralizing humoral immune response, suggesting a possible role of innate responses in protection against challenge virus replication. Administration of the vaccine 24 h postchallenge was successful in protecting 90% of hamsters and again suggested the induction of a potent antiviral state by the recombinant vector as a potential mechanism. Overall, our data suggest the potential for the use of the VSV platform as a fast-acting and effective prophylaxis/postexposure treatment against lethal hantavirus infections.  相似文献   

20.
Flaviviruses include the most prevalent and medically challenging viruses. Persistent infection with flaviviruses of epithelial cells and hepatocytes that do not undergo cell death is common. Here, we report that, in epithelial cells, up-regulation of autophagy following flavivirus infection markedly enhances virus replication and that one flavivirus gene, NS4A, uniquely determines the up-regulation of autophagy. Dengue-2 and Modoc (a murine flavivirus) kill primary murine macrophages but protect epithelial cells and fibroblasts against death provoked by several insults. The flavivirus-induced protection derives from the up-regulation of autophagy, as up-regulation of autophagy by starvation or inactivation of mammalian target of rapamycin also protects the cells against insult, whereas inhibition of autophagy via inactivation of PI3K nullifies the protection conferred by flavivirus. Inhibition of autophagy also limits replication of both Dengue-2 and Modoc virus in epithelial cells. Expression of flavivirus NS4A is sufficient to induce PI3K-dependent autophagy and to protect cells against death; expression of other viral genes, including NS2A and NS4B, fails to protect cells against several stressors. Flavivirus NS4A protein induces autophagy in epithelial cells and thus protects them from death during infection. As autophagy is vital to flavivirus replication in these cells, NS4A is therefore also identified as a critical determinant of flavivirus replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号