首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Coenzyme A (CoA-SH), a cofactor in carboxyl group activation reactions, carries out a function in nonribosomal peptide synthesis that is analogous to the function of tRNA in ribosomal protein synthesis. The amino acid selectivity in the synthesis of aminoacyl-thioesters by nonribosomal peptide synthetases is relaxed, whereas the amino acid selectivity in the synthesis of aminoacyl-tRNA by aminoacyl-tRNA synthetases is restricted. Here I show that isoleucyl-tRNA synthetase aminoacylates CoA-SH with valine, leucine, threonine, alanine, and serine in addition to isoleucine. Valyl-tRNA synthetase catalyzes aminoacylations of CoA-SH with valine, threonine, alanine, serine, and isoleucine. Lysyl-tRNA synthetase aminoacylates CoA-SH with lysine, leucine, threonine, alanine, valine, and isoleucine. Thus, isoleucyl-, valyl-, and lysyl-tRNA synthetases behave as aminoacyl-S-CoA synthetases with relaxed amino acid selectivity. In contrast, RNA minihelices comprised of the acceptor-TpsiC helix of tRNA(Ile) or tRNA(Val) were aminoacylated by cognate synthetases selectively with isoleucine or valine, respectively. These and other data support a hypothesis that the present day aminoacyl-tRNA synthetases originated from ancestral forms that were involved in noncoded thioester-dependent peptide synthesis, functionally similar to the present day nonribosomal peptide synthetases.  相似文献   

2.
The RNA world hypothesis implies that coded protein synthesis evolved from a set of ribozyme catalyzed acyl-transfer reactions, including those of aminoacyl-tRNA synthetase ribozymes. We report here that a bifunctional ribozyme generated by directed in vitro evolution can specifically recognize an activated glutaminyl ester and aminoacylate a targeted tRNA, via a covalent aminoacyl-ribozyme intermediate. The ribozyme consists of two distinct catalytic domains; one domain recognizes the glutamine substrate and self-aminoacylates its own 5'-hydroxyl group, and the other recognizes the tRNA and transfers the aminoacyl group to the 3'-end. The interaction of these domains results in a unique pseudoknotted structure, and the ribozyme requires a change in conformation to perform the sequential aminoacylation reactions. Our result supports the idea that aminoacyl-tRNA synthetase ribozymes could have played a key role in the evolution of the genetic code and RNA-directed translation.  相似文献   

3.
Accurate aminoacyl-tRNA synthesis is essential for faithful translation of the genetic code and consequently has been intensively studied for over three decades. Until recently, the study of aminoacyl-tRNA synthesis in archaea had received little attention. However, as in so many areas of molecular biology, the advent of archaeal genome sequencing has now drawn researchers to this field. Investigations with archaea have already led to the discovery of novel pathways and enzymes for the synthesis of numerous aminoacyl-tRNAs. The most surprising of these findings has been a transamidation pathway for the synthesis of asparaginyl-tRNA and a novel lysyl-tRNA synthetase. In addition, seryl- and phenylalanyl-tRNA synthetases that are only marginally related to known examples outside the archaea have been characterized, and the mechanism of cysteinyl-tRNA formation in Methanococcus jannaschii and Methanobacterium thermoautotrophicum is still unknown. These results have revealed completely unexpected levels of complexity and diversity, questioning the notion that aminoacyl-tRNA synthesis is one of the most conserved functions in gene expression. It has now become clear that the distribution of the various mechanisms of aminoacyl-tRNA synthesis in extant organisms has been determined by numerous gene transfer events, indicating that, while the process of protein biosynthesis is orthologous, its constituents are not.  相似文献   

4.
5.
Raina M  Elgamal S  Santangelo TJ  Ibba M 《FEBS letters》2012,586(16):2232-2238
In archaea and eukaryotes aminoacyl-tRNA synthetases (aaRSs) associate in multi-synthetase complexes (MSCs), however the role of such MSCs in translation is unknown. MSC function was investigated in vivo in the archaeon Thermococcus kodakarensis, wherein six aaRSs were affinity co-purified together with several other factors involved in protein synthesis, suggesting that MSCs may interact directly with translating ribosomes. In support of this hypothesis, the aminoacyl-tRNA synthetase (aaRS) activities of the MSC were enriched in isolated T. kodakarensis polysome fractions. These data indicate that components of the archaeal protein synthesis machinery associate into macromolecular assemblies in vivo and provide the potential to increase translation efficiency by limiting substrate diffusion away from the ribosome, thus facilitating rapid recycling of tRNAs.  相似文献   

6.
Translation is the process by which ribosomes direct protein synthesis using the genetic information contained in messenger RNA (mRNA). Transfer RNAs (tRNAs) are charged with an amino acid and brought to the ribosome, where they are paired with the corresponding trinucleotide codon in mRNA. The amino acid is attached to the nascent polypeptide and the ribosome moves on to the next codon. Thus, the sequential pairing of codons in mRNA with tRNA anticodons determines the order of amino acids in a protein. It is therefore imperative for accurate translation that tRNAs are only coupled to amino acids corresponding to the RNA anticodon. This is mostly, but not exclusively, achieved by the direct attachment of the appropriate amino acid to the 3'-end of the corresponding tRNA by the aminoacyl-tRNA synthetases. To ensure the accurate translation of genetic information, the aminoacyl-tRNA synthetases must display an extremely high level of substrate specificity. Despite this highly conserved function, recent studies arising from the analysis of whole genomes have shown a significant degree of evolutionary diversity in aminoacyl-tRNA synthesis. For example, non-canonical routes have been identified for the synthesis of Asn-tRNA, Cys-tRNA, Gln-tRNA and Lys-tRNA. Characterization of non-canonical aminoacyl-tRNA synthesis has revealed an unexpected level of evolutionary divergence and has also provided new insights into the possible precursors of contemporary aminoacyl-tRNA synthetases.  相似文献   

7.
1. Factors affecting aminoacyl-tRNA synthesis in vitro by cell-free preparations from bean leaves were investigated. 2. Evidence was obtained that optimum concentrations as well as correct ratios of Mg(2+) and ATP are required for aminoacyl-tRNA synthesis in the bean-leaf system. 3. The results indicated that pH is a controlling factor having differential effects on the formation of individual aminoacyl-tRNA species. The possible micro-regulatory function of pH in protein synthesis in vivo is discussed with special reference to alanyl-tRNA formation. 4. Very low rates of alanine-stimulated pyrophosphate exchange were observed in the absence of tRNA. This observation is discussed relative to proposals about the mechanism of aminoacyl-tRNA synthesis.  相似文献   

8.
The renaissance of aminoacyl-tRNA synthesis   总被引:6,自引:0,他引:6       下载免费PDF全文
Ibba M  Söll D 《EMBO reports》2001,2(5):382-387
The role of tRNA as the adaptor in protein synthesis has held an enduring fascination for molecular biologists. Over four decades of study, taking in numerous milestones in molecular biology, led to what was widely held to be a fairly complete picture of how tRNAs and amino acids are paired prior to protein synthesis. However, recent developments in genomics and structural biology have revealed an unexpected array of new enzymes, pathways and mechanisms involved in aminoacyl-tRNA synthesis. As a more complete picture of aminoacyl-tRNA synthesis now begins to emerge, the high degree of evolutionary diversity in this universal and essential process is becoming clearer.  相似文献   

9.
Anticodon sequence mutants of Escherichia coli initiator tRNA initiate protein synthesis with codons other than AUG and amino acids other than methionine. Because the anticodon sequence is, in many cases, important for recognition of tRNAs by aminoacyl-tRNA synthetases, the mutant tRNAs are aminoacylated in vivo with different amino acids. The activity of a mutant tRNA in initiation in vivo depends on (i) the level of expression of the tRNA, (ii) the extent of aminoacylation of the tRNA, (iii) the extent of formylation of the aminoacyl-tRNA to formylaminoacyl-tRNA (fAA-tRNA), and (iv) the affinity of the fAA-tRNA for the initiation factor IF2 and the ribosome. Previously, using E. coli overproducing aminoacyl-tRNA synthetases, methionyl-tRNA formyltransferase, or IF2, we identified the steps limiting the activity in initiation of mutant tRNAs aminoacylated with glutamine and valine. Here, we have identified the steps limiting the activity of mutant tRNAs aminoacylated with isoleucine and phenylalanine. The combined results of experiments involving a variety of initiation codons (AUG, UAG, CAG, GUC, AUC, and UUC) provide support to the hypothesis that the ribosome.fAA-tRNA complex can act as an intermediate in initiation of protein synthesis. Comparison of binding affinities of various fAA-tRNAs (fMet-, fGln-, fVal-, fIle-, and fPhe-tRNAs) to IF2 using surface plasmon resonance supports the idea that IF2 can act as a carrier of fAA-tRNA to the ribosome. Other results suggest that the C1xA72 base pair mismatch, unique to eubacterial and organellar initiator tRNAs, may also be important for the binding of fAA-tRNA to IF2.  相似文献   

10.
Plant mitochondria do not contain a full set of tRNA genes, and the additional tRNAs needed for protein synthesis (including tRNAAla) are imported from the cytosol. The import process appears to be highly specific for certain tRNAs, and it has been suggested that the cognate aminoacyl-tRNA synthetases may be responsible for this specificity. In order to test this, we have grown transgenic tobacco plants expressing Arabidopsis thaliana tRNAAla carrying a U70 to C70 mutation, which we have previously shown blocks aminoacylation by the plant alanyl-tRNA synthetase. Unlike the wild-type tRNAAla, the mutant tRNA is not present in the mitochondrial tRNA fraction. This is the first report of a tRNA mutation which prevents mitochondrial import and strongly supports the hypothesis that aminoacyl-tRNA synthetases are involved in this process in plants. Insertion of four bases into the anticodon loop of tRNAAla does not prevent mitochondrial import, implying that the tRNA might not need to participate in translation to be imported.  相似文献   

11.
Catalysis of sequential reactions is often envisaged to occur by channeling of substrate between enzyme active sites without release into bulk solvent. However, while there are compelling physiological rationales for direct substrate transfer, proper experimental support for the hypothesis is often lacking, particularly for metabolic pathways involving RNA. Here, we apply transient kinetics approaches developed to study channeling in bienzyme complexes to an archaeal protein synthesis pathway featuring the misaminoacylated tRNA intermediate Glu-tRNAGln. Experimental and computational elucidation of a kinetic and thermodynamic framework for two-step cognate Gln-tRNAGln synthesis demonstrates that the misacylating aminoacyl-tRNA synthetase (GluRSND) and the tRNA-dependent amidotransferase (GatDE) function sequentially without channeling. Instead, rapid processing of the misacylated tRNA intermediate by GatDE and preferential elongation factor binding to the cognate Gln-tRNAGln together permit accurate protein synthesis without formation of a binary protein-protein complex between GluRSND and GatDE. These findings establish an alternate paradigm for protein quality control via two-step pathways for cognate aminoacyl-tRNA formation.  相似文献   

12.
The speed of protein synthesis determines the growth rate of bacteria. Current biochemical estimates of the rate of protein elongation are small and incompatible with the rate of protein elongation in the living cell. With a cell-free system for protein synthesis, optimized for speed and accuracy, we have estimated the rate of peptidyl transfer from a peptidyl-tRNA in P site to a cognate aminoacyl-tRNA in A site at various temperatures. We have found these rates to be much larger than previously measured and fully compatible with the speed of protein elongation for E. coli cells growing in rich medium. We have found large activation enthalpy and small activation entropy for peptidyl transfer, similar to experimental estimates of these parameters for A site analogs of aminoacyl-tRNA. Our work has opened a useful kinetic window for biochemical studies of protein synthesis, bridging the gap between in vitro and in vivo data on ribosome function.  相似文献   

13.
Mutations in human mitochondrial tRNA genes are associated with a number of multisystemic disorders. These single nucleotide substitutions in various domains of tRNA molecules may affect different steps of tRNA biogenesis. Often, the prominent decrease of aminoacylation and/or steady-state levels of affected mitochondrial tRNA have been demonstrated in patients' tissues and in cultured cells. Similar effect has been observed for pathogenic mutations in nuclear genes encoding mitochondrial aminoacyl-tRNA-synthetases, while over-expression of mitochondrial aminoacyl-tRNA synthetases or elongation factor EF-Tu rescued mutated tRNAs from degradation. In this review we summarize experimental data concerning the possible regulatory mechanisms governing mitochondrial tRNA steady-state levels, and propose a hypothesis based on the tRNA channelling principle. According to this hypothesis, interaction of mitochondrial tRNA with proteins ensures not only tRNA synthesis, maturation and function, but also protection from degradation. Mutations perturbing this interaction lead to decreased tRNA stability.  相似文献   

14.
Accurate aminoacyl-tRNA synthesis is essential for correct translation of the genetic code in all organisms. Whereas many aspects of this process are conserved, others display a surprisingly high level of divergence from the canonical Escherichia coli model system. These differences are most pronounced in archaea where novel mechanisms have recently been described for aminoacylating tRNAs with asparagine, cysteine, glutamine and lysine. Whereas these mechanisms were initially assumed to be uniquely archaeal, both the alternative asparagine and lysine pathways have subsequently been demonstrated in numerous bacteria. Similarly, studies of the means by which archaea insert the rare amino acid selenocysteine in response to UGA stop codons have helped provide a better understanding of both archaeal and eukaryal selenoprotein synthesis. Most recently a new co-translationally inserted amino acid, pyrrolysine, has been found in archaea although again there is some suggestion that it may also be present in bacteria. Thus, whereas archaea contain a preponderance of non-canonical aminoacyl-tRNA synthesis systems most are also found elsewhere albeit less frequently.  相似文献   

15.
A procedure for separating Escherichia coli aminoacyl-tRNA from unacylated tRNA or components of the aminoacylation reaction, thereby achieving an aminoacyl-tRNA product with a very high specific activity, is described. The method utilizes the specific recognition of aminoacyl-tRNA for E. coli protein synthesis elongation factor Tu which has been immobilized on an affinity matrix. The application of the affinity procedure as a means of purifying a single aminoacyl-tRNA from an unfractionated mixture of tRNAs is also discussed.  相似文献   

16.
Distribution of the aminoacyl-tRNA synthetase activity has been studied in the normal rabbit liver cells and in the model of protein synthesis damage, i.e. under experimental myocardial infarction (EMI). The activity of a number of aminoacyl-tRNA synthetases in postmitochondrial and postribosomal extracts from rabbit liver homogenate has been determined to increase 12 h after EMI. Gel filtration of the postribosomal extract on Sepharose 6B shows that the activity of aminoacyl-tRNA synthetases is distributed among the fractions with Mr 1.82 x 10(6), 0.84 x 10(6) and 0.12 = 0.35 x 10(6). The first two fractions (high-molecular-weight aminoacyl-tRNA synthetase complexes) contain arginyl-, glutamyl-, isoleucyl-, leucyl-, lysyl- and valyl-tRNA synthetases, whereas the low-molecular-weight fraction contains alanyl-, arginyl-, glycyl-, phenylalanyl-, seryl-, threonyl-, tryptophanyl- and tyrosyl-tRNA synthetases. In a case of EMI all the aminoacyl-tRNA synthetases translocate from the complexes with Mr 1.82 x 10(6) into the complexes with Mr 0.84 x 10(6), what provided evidence for the possibility to regulate protein synthesis by changes in compartmentalization of aminoacyl-tRNA synthetases.  相似文献   

17.
《The Journal of cell biology》1984,98(4):1603-1605
Chinese hamster ovary (CHO) cells were subjected to severe amino acid starvation for histidine, leucine, methionine, asparagine, tyrosine, glutamine, valine, and lysine, using amino acid analogs or mutations in specific aminoacyl-tRNA synthetases. At protein synthetic rates of less than 5%, in all cases, the newly synthesized proteins were found on two- dimensional electrophoretic gels to consist of a few intensely labeled spots, with the exception of lysine. This pattern could also be produced by strong inhibition of cytoplasmic protein synthesis with cycloheximide, and was abolished by preincubation with the mitochondrial protein synthesis inhibitor chloramphenicol. It appears therefore that the spots represent mitochondrial protein synthesis and that animal cells must have separate aminoacyl-tRNA synthetases for mitochondrial tRNAs corresponding to all these amino acids except, possibly, for lysine.  相似文献   

18.
Aminoacyl-tRNA synthetases establish the rules of the genetic code by catalyzing attachment of amino acids to specific transfer RNAs (tRNAs) that bear the anticodon triplets of the code. Each of the 20 amino acids has its own distinct aminoacyl-tRNA synthetase. Here we use energy-transfer-dependent fluorescence from the nucleotide probe N-methylanthraniloyl dATP (mdATP) to investigate the active site of a specific aminoacyl-tRNA synthetase. Interaction of the enzyme with the cognate amino acid and formation of the aminoacyl adenylate intermediate were detected. In addition to providing a convenient tool to characterize enzymatic parameters, the probe allowed investigation of the role of conserved residues within the active site. Specifically, a residue that is critical for binding could be distinguished from one that is important for the transition state of adenylate formation. Amino acid binding and adenylate synthesis by two other aminoacyl-tRNA synthetases was also investigated with mdATP. Thus, a key step in the synthesis of aminoacyl-tRNA can in general be dissected with this probe.  相似文献   

19.
Summary The biochemical basis of suppression of a temperature-sensitive alanyl-tRNA synthetase (alaS) mutation by mutational alterations of the ribosome has been investigated. Measurement of the polyU-dependent polyphenylalanine synthesis showed that ribosomes from the suppressor strains are less active than ribosomes from the unsuppressed aminoacyl-tRNA synthetase mutant. In this system no increased translational ambiguity could be detected for the suppressor ribosomes. This fact and also the findings that the ram-1 mutation is not able to suppress the aminoacyl-tRNA synthetase mutation and that presence of the suppressor allele is not accompanied by a measureably improved alanyl-tRNA synthetase activity argue against the possibility that suppression might be due to increased translational misreading rates of the alanyl-tRNA synthetase mRNA.It has been further found that partial suppression of temperature sensitive growth of the alaS mutation can be achieved by independent ribosomal mutations leading to reduced growth rates because of a mutation to antibiotic resistance. Addition of low concentrations of a variety of antibiotics acting at the ribosomal level can also partially revert the temperature-sensitive phenotype of the alaS mutant. Although the possibility cannot be excluded that suppression is due to the stabilisation or activation of the mutant enzyme by some indirect effect of the suppressor ribosomal mutations, the following working hypothesis is favoured at the moment: It is assumed that limitation of the aminoacyl-tRNA synthetase activity in a certain range of the restrictive temperature causes growth inhibition by the premature termination of polypeptide synthesis at the ribosome or by the unbalanced synthesis of the individual cellular proteins under this condition. The mechanism of suppression by ribosomal mutations is proposed to consist of the release of this growth inhibition by the reduction of the rate of polypeptide synthesis, which would keep amino acid incorporation from exceeding the slow charging of tRNA and thus exhausting the pool of charged tRNA. In the suppressor strains, therefore, growth at the semi-restrictive temperature is no longer limited by the aminoacylation of tRNA but by the translational process at the mutated ribosome. This influence of the ribosomal mutation on the speed of translation could be directly or indirectly coupled with an effect on translational fidelity resulting in the prevention of the binding of uncharged or non-cognate charged tRNA or in the tighter binding of peptidyl-tRNA when cognate aminoacyl-tRNA is limiting.  相似文献   

20.
Previous studies have described a partially defined system for the DNA-directed in vitro synthesis of beta-galactosidase (Kung, H.F., Redfield, B., Treadwell, B.V., Eskin, B., Spears, C., and Weissbach, H. (1977) J. Biol. Chem. 252, 6889-6894). An Ehrlich ascites extract was shown in these in vitro studies to acylate Escherichia coli tRNA with 13 amino acids, and the ascites extract was used in place of the corresponding 13 E. coli aminoacyl-tRNA synthetases. The present studies indicate that the ascites extract is supplying an additional protein factor, besides the aminoacyl-tRNA synthetases, that stimulates the DNA-directed synthesis of beta-galactosidase. The protein factor has been highly purified and may be functioning by protecting mRNA against degradation. In addition, NAD or T4 DNA ligase stimulates the synthesis of beta-galactosidase in the partially defined system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号