首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The action of anticonvulsant drugs, phenytoin, diazepam, clonazepam and phenobarbitone, was tested on the release of [14C]-GABA from tissue slices of rat cerebral cortex. All drugs caused a significant dose-dependent depression of the 33mM-K+-evoked release of [14C]-GABA but had little effect on the resting release of [14C]-GABA, except at high concentrations. The IC50 values for inhibition of K+-evoked release of [14C]-GABA were 4.7 × 10?5, 7 × 10?5, 28 × 10?5 and 7.9 × 10?4M for diazepam, clonazepam, phenytoin and phenobarbitone respectively. Trifluoperazine also caused a similar and complete inhibition of [14C]-GABA release with an IC50 of 1 × 10?5M. The effect of diazepam and trifluoperazine were additive. The inhibition by trifluoperazine could be overcome by addition of exogenous calmodulin, whereas that of diazepam, phenytoin or phenobarbitone was not overcome. It is proposed that the anticonvulsants tested inhibit calcium-dependent transmitter release at a site distal to the formation of a calcium-calmodulin complex, which is presumably activated by this complex. Trifluoperazine, on the other hand, acts by reducing the availability of calmodulin.  相似文献   

2.
The addition of insulin (4.0 × 10?11 M) or acetylcholine (10?6 M) to isolated hepatocytes stimulated glycogen accumulation and this stimulation was more pronounced when the medium glucose was raised from 50 to 300 mg percent. Studies with [14C]-glucose showed a two-fold stimulation in glycogen synthesis by the addition of insulin (4.0 × 10?11 M) or acetylcholine (10?6 M). A sixteen percent increase in the activity of glycogen synthase was observed in cells incubated for 10 minutes with insulin (4.0 × 10?11 M) or acetylcholine (10?6 M), whereas at one hour incubation a 40 percent increase in activity was observed with the same concentration of insulin or acetylcholine. The effects of insulin and acetylcholine were not additive.  相似文献   

3.
A superfusion system was used to study the effects of neuroexcitatory amino acids upon spontaneous and depolarization-evoked release of exogenously taken up and newly synthesized [3H]dopamine by rat striatal slices. Neither l-glutamate nor other aminoacids such as l-aspartate and d-glutamate (5 × 10?5 M) modified the spontaneous release of exogenous [3H]dopamine from rat striatal slices. In contrast, these neuroexcitatory aminoacids did potentiate spontaneous release of striatal [3H]dopamine newly synthesized from [3H]tyrosine. A different pattern of effects emerged when depolarization-evoked release of dopamine was studied. Only l-glutamate (5 × 10?6-1 × 10?4 M) potentiated dopamine release under these experimental conditions in a rather specific and stereoselective manner. In addition, similar results were obtained regardless of whether depolarization-induced release of exogenous or newly synthesized [3H]dopamine was studied. The effect of l-glutamate on depolarization-induced release depended both upon the degree of neuronal depolarization and upon the presence of external Ca2+ in the superfusion medium and it was blocked by l-glutamate diethylester. Furthermore, this effect of l-glutamate seemed quite specific with regard to regional localization within the brain as it was only demonstrated in slices from striatum and not in slices from olfactory tubercle or hippocampus. It is suggested that during depolarization a Ca2+-dependent event occurs at the striatal membrane level which changes the sensitivity of the dopamine release process to neuroexcitatory aminoacids in such a way as to render it relatively more specific and stereoselective towards l-glutamate stimulation. The findings reported have led us to propose that l-glutamic acid could play a role as a neuromodulator of dopaminergic transmission in the rat corpus striatum.  相似文献   

4.
M J Müller  H J Seitz 《Life sciences》1981,28(20):2243-2249
The effect of increasing concentration of T3 (10 × 10?12 – 2000 × 10?6 M) on O2-consumption and [14C]-alanine conversion into [14C]-CO2 and [14C]-glucose was investigated in the isolated perfused liver of hypothyroid starved rats. T3 induced within 1 h an increase (i) in the oligomycine-sensitive O2-consumption (+ 50–85 %), (ii) in the [14C]-CO2-production (+55–102 %), and (iii) in the [14C]-glucose synthesis (+ 40?80 %). These effects were dose dependent and significant at a concentration as low as 10 × 10?12 M, reported to represent the free hormone concentration in rat serum under in vivo conditions. The results demonstrate a direct and rapid stimulatory action of T3 in the physiological range on hepatic energy metabolism and glucose production. The effects could not be explained by the thyroid hormone induced nuclear activity.  相似文献   

5.
The formaldehyde method was used to examine the interaction of PGE1 with morphine, β-endorphin and Met-enkephalin on rat mast cells by their effects on IgE-mediated 14C-serotonin release. PGE1 (2×10?8?2×10?5 M) caused a dose-related inhibition of the mediator release 1 min after an antigen challenge, and morphine (3×10?7?3×10?5 M) reversed this PGE1 effect dose-dependently and stereospecifically; naloxone (2×10?4 M) antagonized this action of morphine. β-Endorphin (3×10?7?10?5 M) and Met-enkephalin (3×10?6?10?4 M) mimicked this morphine action dose-dependently and were antagonized by naloxone (2×10?4 M). These results suggest that morphine and endorphins modulate immunological mediator release from rat mast cells through opioid receptors.  相似文献   

6.
Noradrenaline, a Transmitter Candidate in the Retina   总被引:5,自引:3,他引:2  
The occurrence, metabolism, uptake, and release of noradrenaline were studied in the bovine retina with the following results. (1) Small amounts of noradrenaline occur in the retina and are restricted to the area corresponding to the inner nuclear and plexiform layers. (2) Retinal tissue can metabolise [14C]dopamine to form quantities of [14C]noradrenaline. (3) [14C]Noradrenaline can also be partly metabolised to form [14C]normetanephrine. (4) When bovine retinas were incubated with 5 × 10-7 M-[3H]noradrenaline for 20 min and processed for autoradiography, most of the label was associated with apparent nerve processes in the inner plexiform layer. Biochemical analysis showed that more than 95% of the label was noradrenaline. (5) [14C]Noradrenaline uptake saturated with increasing noradrenaline concentrations and followed Michaelis-Menten kinetics. This uptake could be accounted for by two processes, a high-affinity system with a Km1 of 5 × 10-8 M and a Vmax1 of 0.193 pmol/mg/10 min and a low-affinity system with a Km2 of 6.3 × 10-5 M and a Vmax2 of 0.109 nmol/mg/10 min. (6) Noradrenaline uptake was strongly dependent on temperature and sodium, less dependent on potassium, and independent of calcium and magnesium ions. (7) Centrally acting drugs, such as desipramine, imipramine, desmethylimipramine, and amitriptyline, inhibited noradrenaline uptake by more than 55% at the concentration of 5 × 10-5 M. These drugs at the same concentration diminished dopamine uptake by less than 30%. (8) Noradrenaline uptake is stereospecific, the (-) isomer having a greater affinity for the uptake sites than the (+) isomer. (9) [14C]Noradrenaline in the retina could be released by increasing the external potassium concentration. This release was calcium-dependent and was blocked by 20 mM-cobalt chloride. The present studies could be interpreted as supporting the idea that noradrenaline acts as a transmitter in the retina.  相似文献   

7.
The rate of [3H]dopamine binding to crude synaptic membranes from canine caudate nucleus was considerably increased by 2 mM ATP, 5′-adenylylimidodiphosphate and GTP or by 1 mM 5′-guanylyl-imidodiphosphate, while strongly inhibited by 2 mM ADP and GDP. Half maximal concentrations of [3H]dopamine to bind to the membranes were 1.11 × 10?7M and 8.75 × 10?6M in the absence of 4 mM ATP, indicating a negative cooperativity of the dopamine receptor, and 9.25 × 10?7 M in its presence. Hill coefficient was increased from 0.70 to 1.04 by addition of 4 mM ATP. The optimal concentration of ATP for [3H]dopamine binding was in the range of 0.5 to 5 mM.  相似文献   

8.
Morphine, met-enkephalin, and leu-enkephalin in a concentration of 1×10?5 M depress rapidly and reversibly the amplitude of depolarization induced by dopamine application toHelix pomatia neurons; the effect is naloxone-dependent. The amplitudes of dopamine-induced hyperpolarization and also of the depolarization and hyperpolarization responses to acetylcholine application are unchanged under these circumstances. The hypothesis of blocking of chemosensitive sodium channels by enkephalins is discussed. It is suggested that this hypothesis is true for high concentrations of morphine and enkephalins (1×10?4 to 1×10?3 M). In lower concentrations (1×10?5 M) morphine and enkephalins lead to modulation of the reponses to the action of neurotransmitters, evidently through their influence on the cyclic nucleotide system.  相似文献   

9.
Rat brain synaptosomes preincubated with [3H]5-HT. were further incubated and the release of [3H]5-HT from the preparation was studied. The spontaneous release consisted of an initial rapid phase followed by slower release. Incubation with 60 mM-KCl increased the release while 60 mw-NaCl did not affect it. The effect of KG was abolished when NaCl was omitted from the medium. The potassium-induced release was Ca2+ -dependent while that induced by tyramine (10?5-10?4M) and the spontaneous release did not depend on Ca2+. Vinblastine (10?5–2.5 X 10?4 M) caused an increase in the spontaneous release and an decrease in the potassium-induced release, while it completely inhibited the release by tyramine at 2.5 X 10?4 M. Colchicine (5 X 10?5–10?3M) and cytochalasin D (10?5, 10?4 M) failed to produce any change in the release. Cytochalasin B (10?5, 10?4M) increased the spontaneous release and decreased the potassium-induced release but it did not affect the release by tyramine. Colchicine (10?3 M). vinblastine (10?4 M) and cytochalasin B (10?4 M) did not affect significantly Na+.K+-. Mg2- and Ca2+ -ATPase activities. These results suggest that none of microtubules. microfilaments and contractile protein participates in the mechanism of [3H]5-HT release from synaptosomes, in vitro.  相似文献   

10.
Monoamine concentrations were low in the rostral area of the nucleus accumbens. Their distributions were not identical. Differences were observed in the medial area. DA concentrations were high in both medial and caudal areas. Noradrenaline (NA) and serotonin (5-HT) concentrations were considerably lower than the dopamine (DA) concentration. The NA concentration was highest in the caudal area of the nucleus accumbens and the (5-HT) concentration was highest in the ventrocaudal area. There was a rostrocaudal decrease in the 3,4-dihydroxyphenylacetic acid (DOPAC)/DA and 5-hydroxyindole-3-acetic acid (5-HIAA)/5-HT ratios. Uptake of [3H]DA and [14C]choline was lowest in the rostral area. The K+-stimulated release of [14C]acetylcholine (ACh) was also lowest rostrally, but there was no rostrocaudal difference in the K+-stimulated release of [3H]DA. These results provide further evidence of the heterogeneity of the nucleus accumbens.  相似文献   

11.
Abstract— In vitro binding experiments with 5-hydroxy[14C]tryptamine (3.3 × 10?6 M) were carried out on subcellular fractions of the cat brain. The highest specific activity was observed in some fractions of nerve-ending membranes isolated from the hypothalamus, basal ganglia, and gray areas of the mesencephalon. The specificity of this high affinity binding was demonstrated by competition with reserpine, butanolamide of lysergic acid, and desmethylimipramine. With butanol-water extraction the [14C]5-HT was found in the butanol while the gangliosides were separated in the water phase. Several experiments with thin layer and column chromatography suggest that in the organic phase the [14C]5-HT is not bound to the lipids but to a special proteolipid. This proteolipid is different from that found in myelin and has similar chromatographic properties to that previously observed in the proteolipid which binds d-[14C]tubocurarine in nerve-ending membranes of the cerebral cortex.  相似文献   

12.
The saturable and specific high-affinity uptake of [3H]serotonin ([3H]5HT) (5 × 10?8 M) was studied in slices from the hippocampus, parietal cortex, septum-preoptic area, and hypothalamus of male 2, 6, 12 and 24–32 month old C57BL/6N mice. Hippocampal [3H]5-HT uptake showed a significant biphasic relationship to age, with lower values in the 2 and 24–32 month old mice compared to 6 month old mice. No significant age effects were seen in the other regions, or in [3H]norepinephrine high-affinity uptake in the hippocampus.Studies of the high-affinity uptake mechanism in synaptosomal preparations were made in a subgroup of 12 and 24 month old mice. A micro-assay using a tissue-harvester measured high-affinity uptake on 8–30 μl of the P2 suspension (crude-synaptosomal preparation). The high-affinity uptake was linear for 4 min at 37°C and inhibited in both the adult and aged tissue by 10?5 M cold 5-HT (83 and 78% respectively), 10?5 M fluoxetine (85 and 82% respectively) and 10?3 M NaCN (57 and 57% respectively). Kinetic analysis of the [3H]5HT high-affinity uptake in the hippocampus (3 min, 37°C) revealed the same apparent Km for serotonin at both ages (6.7 x 10?8 M), but a 44% decrease in Vmax in the aged hippocampal synaptosomal high-affinity uptake compared to adults (120 vs 215 pmol of 5-HT/g-tissue/3 min).These results are discussed in relationship to the reported age effects on the intrinsic neurons of the hippocampus.  相似文献   

13.
Results from this study have indicated serotonin-sensitive adenylate cyclase activity in adult rat brain. The enzyme is localized in the synaptosomal plasma membrane and apparently has multiple activation sites for serotonin with specific activity maxima occuring at serotonin concentrations of 5 × 10?10, 5 × 10?9, 1 × 10?8, and 5 × 10?8 moles/liter. The production of cyclic AMP at these sites appears to be unaffected by 1 × 10?5M fluphenazine, while 1 × 10?5M tryptamine, methysergide, and ergonovine decreased the stimulatory effect of 1 × 10?8M 5-HT by 30 percent, 80 percent, and 57 percent respectively.  相似文献   

14.
Results from this study indicate that adult rat brain posesses guanylate cyclase activity sensitive to serotonin (5-HT) and localized in the synaptic plasma membrane. The enzyme appears to have multiple activation sites for 5-HT with specific activity maxima at the 5-HT concentrations of 5 × 10?10M and 7 × 10?8M respectively. The rates of guanosine-3′:5′-monophosphate (cyclic GMP) formation at these concentrations of 5-HT are, respectively, 170% and 307% above the endogenous or basal production rate of 2.7±0.3picomoles/minute/milligram of synaptosomal membrane protein. We have also been able to identify four distinct types (Type #1, #2, #3, and #4) of high affinity, specific binding sites for 5-HT on isolated synaptosomal membranes from rat brain. Dissociation constants of 2.6 × 10?10M, 2.5 × 10?9M, 7.0 × 10?9M, and 4.6 × 10?8M, characterize the binding of 5-HT to our sites of Type #1 through Type #4 respectively. The specific, high affinity binding was saturated at 5-HT concentrations of 5 × 10?10M for the Type #1 sites, 5 × 10?9M for our Type #2 sites, 1 × 10?8M for our Type #3 sites, and 7 × 10?8M for our Type #4 sites. The 5-HT concentrations producing saturation of our specific binding sites of Type #1 and Type #4 are virtually identical to those that elicit the two maxima of 5-HT stimulated cyclic GMP production, indicating that a membrane-bound guanylase cyclase may be closely associated with certain 5-HT receptors and/or re-uptake sites.  相似文献   

15.
The inhibitory effect of trazodone, a non tricyclic antidepressant, on 5-HT and catecholamine uptake into the synaptosomal preparation from the rat brain was compared with that of chlorimipramine. The inhibition of 5-HT uptake by trazodone is competitive with a Ki of 1.6 × 10?6 M. Trazodone inhibits 3H-5-HT, 3H-NE and 3H-DA uptake with an IC50 of 1.4 × 10?6, 3.1 × 10?4 and 5.2 × 10?4 M, respectively. Therefore trazodone is 220 and 370 times more potent in inhibiting 5-HT than NE and DA uptake, respectively. The respective IC50 values of chlorimipramine were 0.9 × 10?7, 3.6 × 10?6 and 4.0 × 10?6 M for 3H-5-HT, 3H-NE and 3H-DA.  相似文献   

16.
—The uptake of [3H]5HT, [3H]dopamine, [3H]noradrenaline and [3H]octopamine into the auricle of Helix pomatia was studied. When tissues were incubated at 25°C in media containing radioactive amines, tissue:medium ratios of about 49:1, 14:1 and 5:1 for 5-HT, dopamine, noradrenaline, and octopamine respectively were obtained after a 20–30 min incubation time. Tissues incubated at 25°C in media containing radioactive amines for 20–30 mins showed that almost all (96%) the radioactivity was present as unchanged [3H]5-HT, [3H]dopamine, [3H]octopamine or [3H]noradrenaline. The high tissue:medium ratios for 5-HT and dopamine, but not for noradrenaline and octopamine, showed saturation kinetics which were dependent upon temperature and sodium ions. From the Lineweaver–Burk plots, two uptake mechanisms for 5-HT at 25°C were resolved; the high affinity uptake process having a Km1 value of 6.0 ± 10?8m and a Vm1 value of 0.115 nmol/g/min while the lower affinity process had a Km2 value of 1.04 ± 10?6m and a Vm2 value of 0.66nmol/g/min. At 0°C a single uptake mechanism for 5-HT occurred which gave a Km value of 5.02 ± 10?8m and a Vm value of 0.0165 nmol/g/min. In the case of dopamine, the Lineweaver–Burk plot at 25°C showed a single uptake process with values for Km and Vm of 1.55 ± 10?7m and 0.086 nmol/g/min respectively. This process did not function at 0°C. The effect of various agents and ions upon the accumulation processes for all amines was also studied, and the data indicate that the same neurons probably accumulate more than one amine type. It is concluded that 5-HT and dopamine uptake in the auricle is a mechanism for inactivating these substances at 25°C and that an uptake mechanism for 5-HT also functions at 0°C. The results are discussed from the point of view of 5-HT's being the cardioexcitatory substance in the snail heart.  相似文献   

17.
An adenylyl cyclase stimulated by low concentrations of chlorpromazine was observed in homogenates of a clonal pituitary tumor cell line (GH3/C14) which releases prolactin and growth hormone. A half-maximal increase in activity of the GH3/C14 cyclase occurred in the presence of 0.5 × 10?6M chlorpromazine and a significant increase in activity was observed with a concentration of chlorpromazine as low as 10?7M. Several derivatives (7-methoxychlorpromazine, 7-hydroxychlorpromazine and 8-hydroxychlorpromazine) were found to mimic the stimulatory action of chlorpromazine on adenylyl cyclase, whereas chlorpromazine-5, N-dioxide was ineffective. Under the assay conditions used, sodium fluoride caused a four-fold increase in activity. However, dopamine at concentrations up to 2 × 10?4M was ineffective in stimulating or inhibiting the enzyme whether present alone or in combination with chlorpromazine. The ergot alkaloids, ergotamine and ergocryptine, blocked the stimulation of cyclase activity observed in the presence of chlorpromazine (10?5M). Homogenates of normal pituitaries showed no enhancement of adenylyl cyclase activity by chlorpromazine alone. However, when chlorpromazine was tested in the presence of 5′ guanylimidophosphate [GPP(NH)P], there was a significant increase in cyclase activity in the pituitary similar to that observed in the GH3/C14 preparation. These results suggest that hyperprolactinemia resulting as a side effect of phenothiazine treatment may be attributable to a direct action of these drugs to increase adenylyl cyclase activity in prolactin-producing cells of the anterior pituitary.  相似文献   

18.
Abstract— We have studied the subcellular distribution of exogenous and endogenous serotinin in slices from the hypothalamus and midbrain of several species. In a procedure which appears to label the endogenous pools, tissue slices were incubated with low concentrations of [3H]5-HT (5 × 10-8 M), for 45 min, when there was apparent equilibrium between [3H]5-HT of tissue and medium. After the tissue slices were homogenized in 0-32 M-sucrose and subjected to differential centrifugation, the distribution of exogenous and endogenous 5-HT in pellets and supernatant fluid was similar. In some experiments, the crude mitochondrial pellets were resuspended in 0-32 M-sucrose, layered on linear, continuous density gradients of sucrose (1 -5-0-32 M), and centrifuged for short times (incomplete equilibrium centrifugation). The subcellular distribution of particulate tritium, total tritium, and particulate endogenous 5-HT was the same in portions of the gradients containing synaptosomes. The peak distribution of [3H]5-HT in sucrose gradients was separable from the peak for [14C]GABA by four to five fractions; potassium (a marker for cytoplasm occluded within synaptosomes) occurred in the regions of the gradients containing most of the labelled compounds. The distribution of monoamine oxidase activity (a mitochondrial marker) overlapped the distribution of [3H]5-HT after a 15 min centrifugation but appeared in denser regions of the gradient after centrifuging for 2 h. Particles containing [3H]5-HT and [I4C]NE were slightly but consistently separable in synaptosomal fractions isolated from the hypothalamus or midbrain of rat, guinea pig and hamster.  相似文献   

19.
Low (5 × 10−9 M to 10−7 M) acetylcholine concentrations cause a calcium-independent stimulation of the initiation of DNA synthesis and proliferation of lymphoblasts which are part of rat thymocyte populations suspended in vitro. A much higher (5 × 10−5 M) acetylcholine concentration also stimulates lymphoblast DNA synthesis and proliferation, but this action is calcium-dependent. This proliferogenic response to acetylcholine is however not clearly mediated by either cyclic GMP or cyclic AMP.  相似文献   

20.
In rat striatum, nucleus accumbens and frontal cortex slices 6×10?8M of the potential neuroleptic peptide des-Tyr-γ-endorphin (DTγE) did not affect basal dopamine release but depressed K+-evoked release. Haloperidol at 5×10?6M increased both basal and K+-induced release in striatal and nucleus accumbens slices whereas it increased only basal dopamine release in frontal cortex slices. At 5×10?8M haloperidol, however, had no effect. It is concluded that DTγE may decrease dopaminergic activity in the brain by depressing depolarization-induced dopamine release, possibly via a presynaptic mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号