首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acivicin inhibits gamma-glutamyl transpeptidase activity in human keratinocytes in culture. Treatment of these cells with acivicin produces a decrease in the uptake of L-[U-14C]alanine, 2-amino-[1-14C]-isobutyrate, L-[U-14C]leucine and 1-aminocyclopentane-1-[14C]carboxylate. D-[U-14C]glucose uptake is not affected by the presence of acivicin. These results support, for the first time in vitro, the hypothesis that the gamma-glutamyl cycle may be involved in amino acid uptake by human cells.  相似文献   

2.
The uptake kinetics for four amino acids (cystine, glutamine, methionine, and alanine) which are among the best gamma-glutamyl acceptors have been determined for normal human fibroblasts and for a cell line containing undetectable quantities (< 0.5% normal mean) of gamma-glutamyl transpeptidase activity. Apparent Km and V(max) for uptake for each of the four amino acids were normal in the mutant fibroblasts. Insulin increased the uptake of alpha-aminoisobutyrate as in control cells. levels of 16 amino acids were also normal in this cell strain; the intracellular concentrations of phenylalanine, cystine, and cysteine were increased. In human fibroblasts, amino acid transport appears to proceed normally in the absence of active gamma-glutamyl transpeptidase.  相似文献   

3.
In human, the two subunits of gamma-glutamyl transpeptidase (GGT) arise from a common precursor encoded by a multigene family. Until now, a single specific coding sequence for this precursor (type I) has been identified in human placenta and liver. In the present study, we have isolated from a human kidney cDNA library, a GGT specific clone (0.8 Kb). The sequence of which (type II) i) covers the carboxy terminal part of the GGT precursor, ii) exhibits 22 point mutations and a 30 bp deletion as compared to the type I GGT sequence. The sequencing of a human genomic clone reveals that this type II GGT mRNA is encoded by a different gene than the type I GGT mRNA. Both type I and type II GGT mRNAs are expressed in human liver, while almost exclusively type II GGT mRNA is detected in human kidney.  相似文献   

4.
Gamma-glutamyl transpeptidase (gamma-GTP) is suggested to act as a carrier in the group translocation of oligopeptides and possibly some amino acids across cellular membranes. It is proposed that the process may involve the repetitive transfer of gamma-glutamyl groups to acceptor peptides which are being translocated from the exterior of the cell to its interior. After group translocation of the peptides has occurred with concomitant formation of gamma-glutamyl peptide products, it is suggested that the products might then be utilized as substrate for the enzyme in order to permit the translocation of other peptides from the exterior. The system is economical and requires only that it be primed with an appropriate source of gamma-glutamyl peptides, such as glutathione. In contrast to most group translocation systems previously described, substrate-product reutilization by gamma-GTP would not be expected to accumulate peptides against a concentration gradient. Mechanisms for maintaining low intracellular concentrations of the translocated peptides are described. Studies on acceptor substrate specificity of gamma-GTP from bovine choroid plexus and rat kidney show some glycyl peptides are much better substrates than free amino acids in accord with the proposal that gamma-GTP might be primarily involved in peptide translocation. Both kinetic and topological evidence support the suggestion that repetitive transfer of gamma-glutamyl moieties by gamma-GTP could occur during group translocation of peptides and possibly some amino acids.  相似文献   

5.
Three major pathways mediate amino acid transport into mammalian cells: the A-system and the ASC-system, which require a sodium gradient across the plasma membrane, and the L-system, which has no requirement for a sodium gradient. We have found that the lymphocytes from patients with B-cell chronic lymphocytic leukemia (CLL) have a marked reduction in the L-system of amino acid transport when compared to normal human B-lymphocytes from blood or tonsils. Transport by the A- and ASC-systems was not decreased in CLL B-lymphocytes. Because of the specific defect of the sodium-independent L-system amino acid transport in CLL cells, we have examined the activity of another sodium-independent transport system, the Y+-system, in human lymphocytes. The Y+-system favors the transport of dibasic, cationic amino acids such as lysine, ornithine, and arginine, which carry a positively charged group on their side chains. Our studies indicate that there is a large nonsaturable component of amino acid transport by the Y+-system in human lymphocytes. Using a multicomponent mathematical analysis, we have determined that the saturable component of Y+-transport is similar in T- (thymus-derived) and B- (bone-marrow-derived) lymphocytes and is unimpaired in CLL B-lymphocytes. Further, fluoronitrophenylazide, which was thought to be a specific inhibitor of the Y+-system when photoactivated, also inhibits A-, and L-system transport in CLL, T-, and B-lymphocytes.  相似文献   

6.
B Omer  F Eryürek  P Oner  K Baysal 《Enzyme》1989,42(4):185-188
In the present study, rats were administered acetylsalicylic acid (ASA), at low and high doses, by means of a gastric tube for 30 days. Chronic administration of a high dose of ASA (200 mg/kg body weight) resulted in a significant increase in liver plasma membrane gamma-glutamyl transpeptidase activity, cholesterol, and phospholipid levels. The enzymatic activity and lipid levels appeared not to be affected by ASA when given at a lower dose (50 mg/kg body weight). The changes in the enzymatic activity of plasma membrane were positively correlated to membrane cholesterol content. These findings suggest that the hepatotoxicity of high doses of ASA should not be overlooked during clinical use of the drug.  相似文献   

7.
8.
9.
Summary The role of the enzyme, gamma-glutamyl transpeptidase on the uptake of amino acids by the brushborder membrane of the rat proximal tubule was examined by inhibiting it with AT-125 (l-[S, 5S]--amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid). AT-125 inhibited 98% of the activity of gamma-glutamyl transpeptidase when incubated for 20 min at 37°C with rat brushborder membrane vesicles. AT-125 given to ratsin vivo inhibited 90% of the activity of gamma-glutamyl transpeptidase in subsequently isolated brushborder membrane vesicles from these animals. AT-125 inhibition of gamma-glutamyl transpeptidase bothin vivo andin vitro had no effect on the brushborder membrane uptake of cystine. Similarly, there was no effect of gamma-glutamyl transpeptidase inhibition by AT-125 on glutamine, proline, glycine, methionine, leucine or lysine uptake by brushborder membrane vesicles. Furthermore, the uptake of cystine by isolated rat renal cortical tubule fragments, in which the complete gamma-glutamyl cycle is present, was unaffected by AT-125 inhibition of gamma-glutamyl transpeptidase. Therefore, in the two model systems studied, gamma-glutamyl transpeptidase did not appear to play a role in the transport of amino acids by the renal brushborder membrane.  相似文献   

10.
During incubations at 37 degrees C in appropriate media (buffered 0.25 M sucrose) isolated thyroid phagolysosomes degrade the thyroglobulin they contain (labelled with 131I in vivo) giving rise to trichloroacetic-acid-soluble radio-iodine. Thyroglobulin-degradation is unaffected by external pH (7 or 8) or by 20-40 mM external NaCl or KCl, while it is strongly inhibited by ionophores and protonophores. As a consequence, thyroglobulin degradation can be used as an index of the intralysosomal pH which appears to be powerfully maintained in basal conditions (no ionophore and no protonophore) by the strong impermeability of the lysosomal membranes to various compounds including ionic species MgATP which does not modify basal proteolysis prevents or minimizes the alkalinizing effects of both ionophores and protonophores. ATP can thus be concluded to promote a protonic flux inward thyroid lysosomes via the activity of a lysosomal ATP-driven proton pump regulated by the magnitude of the intralysosomal pH.  相似文献   

11.
The regulation of amino acid transport in L6 muscle cells by amino acid deprivation was investigated. Proline uptake was Na+-dependent, saturable and concentrative, and was predominantly through system A. Proline uptake was inhibited by alanine, α-amino isobutyric acid (AIB), and by α-methylamino isobutyric acid, but not by lysine or valine. At 25°C, Km of proline uptake was 0.5 mM. Amino acid-deprivation resulted in a progressive increase in the rate of proline uptake, reaching up to 6-fold stimulation after 6 hours. The basal and stimulated transport were equally Na+-dependent, and both were inhibited by competition with the same amino acids. Kinetic analysis showed that Km decreased by a factor of 2.4 and Vmax increased 1.9-fold in deprived cells. Amino acid-deprivation did not stimulate amino acid uptake through systems other than system A. This suggests that the higher Km in proline-supplemented cells is not due to release of intracellular amino acids into unstirred layers surrounding the cells. The presence of amino acids which are substrates of system A (including AIB) during proline-deprivation, prevented stimulation of proline uptake, whereas those transported by systems Ly+ or L exclusively were ineffective. The stimulation of the transport-rate in deprived cells could be reversed by subsequent exposure to proline or other substrates of system A. L6 cells, deprived of proline for 6 hours, retained the stimulation of transport after detachment from the monolayers with trypsin. Uptake rates were comparable in suspended and attached cells in monolayer culture. Thus, amino acid-depreivation of L6 cells results in an adaptive increase in proline uptake, which is not due to unstirred layers but appears to be mediated by other mechanisms of selective transport regulation.  相似文献   

12.
13.
Methionine had been observed to interact with two principal transport systems for amino acids in mammalian cells, the A and L systems. The present study of methionine transport and of exchange processes through system A arose in the course of a study to define the specificity of a transinhibition effect caused by cysteine.Methionine uptake through two transport systems in the S37 cell was confirmed by the occurrence of a biphasic double-reciprocal plot for labeled methionine uptake. Preloading cells with methionine stimulated labeled histidine uptake through both systems A and L. Efflux of labeled methionine from cells was stimulated by histidine in a biphasic manner, so that both systems A and L can be used for exchange when methionine is the intracellular amino acid. Aminocycloheptanecarboxylic acid elicited exchange efflux of labeled methionine only through system L. α-Aminoisobutyric acid and N-methyl-α-aminoisobutyric acid both stimulated efflux of labeled N-methyl-α-aminoisobutyric acid from S37 cells. These findings are interpreted a showing that transport system A is capable of functioning as an exchange system depending upon the identity of intracellular and extracellular substrates available.  相似文献   

14.
Effectors of amino acid transport processes in animal cell membranes   总被引:1,自引:0,他引:1  
Various effectors, which act upon ion gradients, protein synthesis, membrane components or cellular functional groups, have been employed to provide insights into the nature of amino acid-membrane transport processes in animal cells. Such effectors, for example, include ions, hormones, metabolites and various organic reagents and their judicious use has allowed the following list of conclusions. Sodium ion has been found to stimulate amino acid transport in a wide variety of cell systems, although depending on the tissue and/or substrate, this ion may have no effect on such transport, or even inhibit it. Amino acid transport can be stimulated in some cell systems by other ions such as K+, Li+, H+ or Cl-. Both H+ and K+ have been found to be inhibitory in other systems. Amino acid transport is dependent in many cell systems upon an inwardly directed Na+ gradient and is stimulated by a membrane potential (negative cell interior). In some cell systems an inwardly directed Cl- and H+ gradient or an outwardly directed K+ gradient can energize transport. Structurally dissimilar effectors such as ouabain, Clostridium enterotoxin, aspirin and amiloride inhibit amino acid transport presumably through dissipation of the Na+ gradient. Inhibition by certain sugars or metabolic intermediates of the tricarboxylic acid cycle may compete with the substrate for the energy of the Na+ gradient or interact with the substrate at the carrier level either allosterically or at a common site. Stimulation of transport by other sugars or intermediates may result from their catabolism to furnish energy for transport. Insulin and glucagon stimulate transport of amino acids in a variety of cell systems by a mechanism which involves protein synthesis. Microtubules may be involved in the regulation of transport by insulin or glucagon. Some reports also suggest that insulin has a direct effect on membranes. In addition, a number of growth hormones and factors have stimulatory effects on amino acid transport which are also mediated by protein synthesis. Steroid hormones have been noted to enhance or diminish transport of amino acids depending on the nature of the hormone. These agents appear to function at the level of protein synthesis. While stimulation may involve increased carrier synthesis, inhibition probably involves synthesis of a labile protein which either decreases the rate of synthesis or increases the rate of degradation of a component of the transport system.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Sn-1,2-diacylglycerols (DAG) and ionized-free calcium can act as intracellular second messengers for cell activation. Traditionally, T-lymphocyte activation is assessed by measurements of DNA synthesis or lymphokine production, but these responses require several days to occur and involve multiple intermediary regulatory steps. In contrast, we have found that T-lymphocytes demonstrate rapid enhancement of A-(alanine-favoring) system amino acid uptake when treated with DAG or ionomycin. A 30-40% increase in the initial velocity of uptake (vi) of the synthetic A-system specific amino acid, methylamino-isobutyric acid (MeAIB), was measured following 5 min of exposure to DAG or ionomycin. The vi was enhanced 60% from 12 to 19 mumol/liter cell water per min after 30 min exposure of T-cells to optimal concentrations of dioctanoylglycerol (30 microM), oleoylacetylglycerol (30 microM), or ionomycin (5 microM) (P less than .01 for each agent). A 50-fold excess of non-radioactive MeAIB inhibited 80% of [14C]MeAIB uptake in both unstimulated and stimulated cells, indicating that uptake remained largely carrier-mediated on treatment with these agents. Cycloheximide, 100 micrograms/ml, inhibited protein synthesis but did not block the A-system amino acid transport enhancement induced by DAG or ionomycin. The DAG-induced increase in the vi was blocked 40% with 100 microM H-7, an inhibitor of protein kinase C. H-7 treatment did not inhibit the ionomycin-induced A-system enhancement. A marked increase in cytoplasmic free calcium was measured when T-lymphocytes were exposed to ionomycin but not on DAG exposure, and the A-system effect of ionomycin but not DAG was blocked by extracellular EGTA. These data are compatible with two pathways for rapid enhancement of A-system amino acid uptake in T-lymphocytes. DAG stimulation is mediated via protein kinase C whereas ionomycin produces an A-system effect of similar magnitude independent of protein kinase C by an increase in cytoplasmic calcium.  相似文献   

16.
17.
Patients with kappa L chain expressing chronic lymphocytic leukemia (CLL) frequently have leukemia cells reactive with a murine mAb, designated 17.109. Raised against a monoclonal IgM rheumatoid factor autoantibody, this mAb recognizes a major kappa-L chain-associated cross reactive Id, designated 17.109-CRI. Molecular studies reveal that the 17.109-CRI in CLL is a serologic marker for expression of a conserved kappa L chain V region gene (V Kappa gene) of the V Kappa 3 subgroup, designated Humkv325. We isolated an upstream gene fragment of Humkv325 to examine for Ig gene rearrangements of this and other closely related V Kappa 3 genes by Southern analyses. Consistent with Humkv325 encoding the 17.109-CRI, we find that the genomic DNA from all 17.109-reactive leukemia cell populations have gene rearrangements that are detected using this probe. In addition, we observe V Kappa 3 gene rearrangements frequently in the genomic DNA of lambda L chain-expressing leukemia cells. Of the genomic DNA from 33 lambda-L chain-expressing CLL samples, 8 (24%) had additional nongerm-line bands detected with the Humkv325 probe. Consistent with these bands representing Ig gene rearrangements, the additional band in each but one sample also hybridized with probes specific for the J Kappa region and/or the kappa-deleting element. Using the polymerase chain reaction (PCR), we examined the genomic DNA from all lambda L chain-expressing CLL for V Kappa 3 gene rearrangements to J Kappa and/or Kde. PCR on each DNA sample with V Kappa 3 gene rearrangements detected by Southern analysis generated gene fragments that hybridized specifically with oligonucleotides corresponding to framework or CDR of the Humkv325 gene. Nucleic acid sequence analyses of representative samples confirmed that these DNA contained abortive Humkv325 gene rearrangements. PCR for rearranged V Kappa 3 genes in the DNA of other lambda-L chain-expressing CLL either did not generate any PCR product or produced fragments that failed to hybridize with all Humkv325 oligonucleotide probes. Nucleic acid sequence analyses of the latter demonstrated that these represent abortive V Kappa gene rearrangements involving another conserved V Kappa 3 gene, designated Vg. These studies indicate that Humkv325 and Vg frequently may undergo Ig gene rearrangement independent of their expression. As such, the frequent use of Humkv325 in CLL may be secondary, in part, to an enhanced propensity of this V Kappa 3 gene to undergo genetic rearrangement during B cell ontogeny.  相似文献   

18.
Methionine had been observed to interact with two principal transport systems for amino acids in mammalian cells, the A and L systems. The present study of methionine transport and of exchange processes through system A arose in the course of a study to define the specificity of a transinhibition effect caused by cysteine. Methionine uptake through two transport systems in the S37 cell was confirmed by the occurrence of a biphasic double-reciprocal plot for labeled methionine uptake. Preloading cells with methionine stimulated labeled histidine uptake through systems A and L. Efflux of labeled methionine from cells was stimulated by histidine in a biphasic manner, so that bothe systems A and L can be used for exchange when methionine is the intracellular amino acid. Aminocycloheptanecarboxylic acid elicited exchange efflux of labeled methionine only through system L. ALPHA-Aminoisobutyric acid and N-methyl-alpha-aminoisobutyric acid both stimulated efflux of labeled N-methyl-alpha-aminoisobutyric acid from S37 cells. These findings are interpreted a showing that transport system A is capable of functioning as an exchange system depending upon the identity of intracellular and extracellular substrates available.  相似文献   

19.
20.
Summary Optimum conditions have been established for the measurement of amino acid transport by human lymphoblastoid cell lines using a membrane-filtration technique. The parameters we found to be important for the reproducibility of the method are: the types and combination of filters, the strength of the vacuum applied to the filters and the density of the cultures at the time of harvesting and during uptake and filtration. We found that bovine serum albumin added to phosphate buffered saline (PBS) glucose in which the cells are washed, resuspended and assayed is essential for the maintenance of viability, the prevention of clumping and the retention of the accumulated amino acid. Using this procedure we have characterized two transport systems for the neutral amino acids; an A and an L system, which are similar but not identical to the A and L systems characterized in rodent cell lines. These A and L systems have characteristically lower Km's and Vm's for alanine and phenylalanine, when compared to rodent cell lines. In addition, we find α-AIB to be a poor competitor of alanine and phenylalanine uptake. This work was supported by Grant No. CA18644, awarded by the National Cancer Institute, Department of Health, Education and Welfare, and from a grant from the National Science Foundation under Grant No. PCM 76-24328.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号