首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possible interaction of the phosphate moiety of pyridoxal phosphate with a guanidinium group in glutamate apodecarboxylase was investigated. The holoenzyme is not inactivated significantly by incubation with butanedione, glyoxal, methylglyoxal, or phenylglyoxal. However, the apoenzyme is inactivated by these arginine reagents in time-dependent processes. Phenylgloxal inactivates the apoenzyme most rapidly. The inactivation follows pseudo-first-order kinetics at high phenylglyoxal to apoenzyme ratios. The rate of inactivation is proportional to phenylglyoxal concentration, increases with increasing pH, and is also dependent on the type of buffer present. The rate of inactivation of the apoenzyme by phenylglyoxal is fastest in bicarbonate — carbonate buffer and increases with increasing bicarbonate — carbonate concentration. Phosphate, which inhibits the binding of pyridoxal phosphate to the apoenzyme, protects the apodecarboxylase against inactivation by phenylglyoxal. When the apodecarboxylase is inactivated with [14C]phenylglyoxal, approximately 1.6 mol of [14C]phenylglyoxal is incorporated per mol subunit. The phenylglyoxal is thought to modify an arginyl residue at or near the pyridoxal phosphate binding site of glutamate apodecarboxylase.  相似文献   

2.
Homogenization of rat liver in Hepes (N-2-hydroxyethylpiperazine-N′-2-ethane-sulfonic acid), MOPS (2-[N-morpholino]ethanesulfonic acid), Na phosphate, Pipes (piperazine-N,N′-bis[2-ethanesulfonic acid]), TEA (triethanolamine), TES (N-tris[hydroxymethyl]-methyl-2-aminoethanesulfonic acid), Tricine (N-tris-[hydroxymethyl]methylglycine), or Tris (tris[hydroxymethyl]aminomethane), and subsequent assay for supernatant total and holo tyrosine aminotransferase activity using these buffers yields apparent enzyme concentrations which vary depending upon the buffer composition, the ionic strength, and the fold-dilution of the supernatant. A precipitous decrease in the apparent holoenzyme concentration results from a slight dilution of the supernatant with most of the buffers. Some of the dilution effects may be due to dissociation of pyridoxal phosphate from the apoenzyme or to competition between the buffer and pyridoxal phosphate for association with the enzyme. The percentage of the apparent total enzyme which exists as holoenzyme varies from 3% for supernatant prepared in Na phosphate buffer up to 94% for that prepared in Hepes. Inactivation of total enzyme activity occurs to a similar extent resulting from incubation of liver homogenates prepared with Na phosphate, Hepes, or Pipes. The residual apparent holoenzyme activity observed when assayed in the presence of Na phosphate may be due to reaction of an enzyme other than tyrosine aminotransferase. The data provide a basis for explaining the large variation in reported percentage holoenzyme and should also serve as a warning for other holoenzyme assays which use pyridoxal phosphate as a cofactor.  相似文献   

3.
Glutamate decarboxylase from a mouse brain P2 fraction undergoes a twofold activation in the presence of 0.5 mM ATP. No such stimulation by ATP occurs if the enzyme is assayed in the presence of excess pyridoxal phosphate as cofactor. The ATP-induced stimulation is almost completely eliminated if the enzyme is dialysed before its assay. [lambda-32P]ATP present during the enzyme measurement is converted to [32P]pyridoxal phosphate. These results demonstrate that the activation produced by ATP is the result of the generation of cofactor during the course of the assay. This phenomenon may be a reflection of a control mechanism of glutamate decarboxylase activity.  相似文献   

4.
Diaminopimelate decarboxylase has been characterized in extracts of Bacillus subtilis and resolved from aspartokinases I and II. Under certain conditions, the enzyme is specifically inhibited by physiological concentrations of L-lysine, but less specificity and altered kinetics of inhibition are observed if lower ionic strengths are employed in the assay procedure. Diaminopimelate decarboxylase can be desensitized to lysine inhibition by either lowering the pH or diluting the enzyme in Tris buffer in the absence of pyridoxal phosphate. Evidence is presented to incidate that, under proper conditions, lysine inhibition involves an interaction of the amino acid with the enzyme rather than competition for available pyridoxal phosphate in the assay. Lysine, by affecting the level of meso-diaminopimelate, may thus regulate its biosynthesis through sequential feedback inhibition. Analysis of the diaminopimelate decarboxylase of 15 revertants of mutants that had originally lacked diaminopimelate decarboxylase activity indicates that as little as 5% of the specific activity of enzyme observed in the wild-type strain is sufficient to permit normal growth rates. In the growing cell, diaminopimelate decarboxylase may therefore exist largely in an inhibited state.  相似文献   

5.
In traditional cell-free protein synthesis reactions, the energy source (typically phosphoenolpyruvate (PEP) or creatine phosphate) is the most expensive substrate. However, for most biotechnology applications glucose is the preferred commercial substrate. Previous attempts to use glucose in cell-free protein synthesis reactions have been unsuccessful. We have now developed a cell-free protein synthesis reaction where PEP is replaced by either glucose or glucose-6-phosphate (G6P) as the energy source, thus allowing these reactions to compete more effectively with in vivo protein production technologies. We demonstrate high protein yields in a simple batch-format reaction through pH control and alleviation of phosphate limitation. G6P reactions can produce high protein levels ( approximately 700 microg/mL of chloramphenical acetyl transferase (CAT)) when pH is stabilized through replacement of the HEPES buffer with Bis-Tris. Protein synthesis with glucose as an energy source is also possible, and CAT yields of approximately 550 mug/mL are seen when both 10 mM phosphate is added to alleviate phosphate limitations and the Bis-Tris buffer concentration is increased to stabilize pH. By following radioactivity from [U-(14)C]-glucose, we find that glucose is primarily metabolized to the anaerobic products, acetate and lactate. The ability to use glucose as an energy source in cell-free reactions is important not only for inexpensive ATP generation during protein synthesis, but also as an example of how complex biological systems can be understood and exploited through cell-free biology.  相似文献   

6.
The relative effects of perfusate alkaline phosphatase activity and net water absorption on 2 microM pyridoxal 5'-phosphate (PLP) luminal disappearance from rat jejunum were studied in a single-pass, in vivo perfused intestinal segment model. Perfusate consisted of unlabeled PLP in buffer (pH = 7.4). Net water flux was monitored by inclusion of [3H]polyethylene glycol. PLP was measured by the [14C]tyrosine apodecarboxylase assay. Single and multiple regression analysis of results during perfusion of 2 microM PLP in Krebs bicarbonate buffer demonstrated no correlation between perfusate alkaline phosphatase activity and net water absorption and significant correlations between PLP luminal disappearance and both perfusate alkaline phosphatase activity and net water absorption. Correlation for the latter was improved when disappearance results were corrected for variations in perfusate alkaline phosphatase activity. When perfusate buffers were selected to yield divergent rates of net water absorption, the one associated with greater net water absorption was also associated with greater PLP disappearance. That this could not be explained by changes in perfusate alkaline phosphatase activity was demonstrated both by assessment of the rate of decay of PLP added in vitro to exited perfusate incubated at 37 degrees C and by measurement of alkaline phosphatase activity under conditions defined by the buffers using a modified spectrophotometric assay. Conclusions were: (1) In vivo PLP luminal disappearance correlates significantly with both perfusate alkaline phosphatase activity and net water absorption; (2) these two factors appear to act as independent variables; and (3) future studies on PLP intestinal absorption will need to take both of these variables into account in the interpretation of results.  相似文献   

7.
Acetylcholinesterase activity was assayed in the absence and presence of pyridoxal 5−phosphate. If substrate hydrolysis was measured by the pH-stat method, its rate was not significantly affected by pyridoxal 5′-phosphate. In the spectrophotometric assay, however, this compound led to an apparent decrease in rate. The discrepancy between the two assays is explained by stray-light artefacts produced by pyridoxal 5′-phosphate at the wavelenghts of the spectrophotometric assay.  相似文献   

8.
The presence of l-dopa decarboxylase has been demonstrated in poppy latex utilising l-dopa-1-[14C] and l-dopa-3-[14Cl] as substrates. The enzyme appeared to have maximum activity at pH 7.2 and showed both substrate and pyridoxal phosphate inhibition. The substrates l-tyrosine, l-phenylalanine and l-histidine were also decarboxylated. l-dopa decarboxylase was found to occur solely in the latex supernatant fraction. The possible involvement of this enzyme in alkaloid biosynthesis in the latex is discussed.  相似文献   

9.
1. Polyamine concentrations were decreased in rats fed on a diet deficient in vitamin B-6. 2. Ornithine decarboxylase activity was decreased by vitamin B-6 deficiency when assayed in tissue extracts without addition of pyridoxal phosphate, but was greater than in control extracts when pyridoxal phosphate was present in saturating amounts. 3. In contrast, the activity of S-adenosylmethionine decarboxylase was not enhanced by pyridoxal phosphate addition even when dialysed extracts were prepared from tissues of young rats suckled by mothers fed on the vitamin B-6-deficient diet. 4. S-Adenosylmethionine decarboxylase activities were increased by administration of methylglyoxal bis(guanylhydrazone) (1,1'-[(methylethanediylidine)dinitrilo]diguanidine) to similar extents in both control and vitamin B-6-deficient animals. 5. The spectrum of highly purified liver S-adenosylmethionine decarboxylase did not indicate the presence of pyridoxal phosphate. After inactivation of the enzyme by reaction with NaB3H4, radioactivity was incorporated into the enzyme, but was not present as a reduced derivative of pyridoxal phosphate. 6. It is concluded that the decreased concentrations of polyamines in rats fed on a diet containing vitamin B-6 may be due to decreased activity or ornithine decarboxylase or may be caused by an unknown mechanism responding to growth retardation produced by the vitamin deficiency. In either case, measurements of S-adenosylmethionine decarboxylase and ornithine decarboxylase activity under optimum conditions in vitro do not correlate with the polyamine concentrations in vivo.  相似文献   

10.
The stereochemistry for hydrogen removal from pyridoxamine 5'-phosphate with liver pyridoxine (pyridoxamine)-5'-phosphate oxidase was examined to determine whether or not there are significant steric constraints at the substrate region of the active site of the oxidase. For this, pyridoxal 5'-phosphate was reduced with tritium-labeled sodium borohydride in ammoniacal solution to yield racemically labeled [4',4'-3H]pyridoxamine 5'-phosphate which was then chemically or enzymatically oxidized to [4'-3H]pyridoxal 5'-phosphate. This latter was used as coenzyme with either L-aspartate (L-glutamate) aminotransferase and L-glutamate or L-glutamate decarboxylase and alpha-methyl-DL-glutamate to generate [4'-3H]pyridoxamine 5'-phosphate known to be labeled in the R-position. Reaction of the oxidase with the pro-R as well as the pro-R,S-labeled substrates followed by isolation of [4'-3H]pyridoxal 5'-phosphate and 3H2O revealed only half the radioactivity was abstracted from the original substrate in either case. Hence, the oxidase is not stereospecific and equally well catalyzes removal of either pro-R or pro-S hydrogen from the 4-methylene of pyridoxamine 5'-phosphate.  相似文献   

11.
Abstract— The kinetic behavior of glutamate decarboxylase from mouse brain was analyzed in a wide range of glutamate and pyridoxal 5′-phosphate concentrations, approaching three limit conditions: (I) in the absence of glutamate-pyridoxal phosphate Schiff base; (II) when all glutamate is trapped in the form of Schiff base; (III) when all pyridoxal phosphate is trapped in the form of Schiff base. The experimental results in limit condition (I) are consistent with the existence of two different enzyme activities, one dependent and the other independent of free pyridoxal phosphate. The results obtained in limit conditions (II) and (III) give further support to this postulation. These data show that the free pyridoxal phosphate-dependent activity can be abolished when either all substrate or all cofactor are in the form of Schiff base. The free pyridoxal phosphate-independent activity is also abolished when all substrate is trapped as Schiff base, but it is not affected by the conversion of free pyridoxal phosphate into the Schiff base. A kinetic and mechanistic model for brain glutamate decarboxylase activity, which accounts for these observations as well as for the results of previous dead end-inhibition studies, is postulated. Computer simulations of this model, using the experimentally obtained kinetic constants, reproduced all the observed features of the enzyme behavior. The possible implications of the kinetic model for the regulation of the enzyme activity are discussed.  相似文献   

12.
The pyridoxal form of the alpha subform of cytosolic aspartate aminotransferase (EC 2.6.1.1) is fully active and binds pyridoxal 5'-phosphate via an aldimine formation with Lys-258 whereas the gamma subform is virtually inactive and lacks the aldimine linkage. Comparison of 1H NMR spectra between the alpha and gamma subforms suggested that peak 1 of the alpha subform at 8.89 ppm contains a resonance assignable to the internal aldimine 4'-H. Reaction with a reagent that cleaves or modifies the internal aldimine bond [(amino-oxy)acetate, L-cysteinesulfinate, NH2OH, NaBH4, or NaCNBH3] caused the disappearance of a resonance line at 8.89 ppm that possessed a broad line width and corresponded in intensity to a single proton. These reagents were also used successfully for the identification of the aldimine 4'-H resonance in the mitochondrial isoenzyme. In contrast to the cytosolic isoenzyme whose resonance for the 4'-H did not show any detectable change in chemical shift with pH, the corresponding resonance in the mitochondrial isoenzyme exhibited pH-dependent chemical shift change (8.84 ppm at pH 5 and 8.67 ppm at pH 8) with a pK value of 6.3, reflecting the interisozymic difference in the microenvironment provided for the internal aldimine. Validity of the signal assignment was further shown by the two findings: the resonance assigned to the 4'-H emerged upon conversion of the pyridoxamine into the pyridoxal form, and the resonance appeared upon reconstitution of the apoenzyme with [4'-1H]pyridoxal phosphate but not with [4'-2H]pyridoxal phosphate.  相似文献   

13.
Diaminopimelate decarboxylase of sporulating bacteria   总被引:6,自引:4,他引:2       下载免费PDF全文
The meso-diaminopimelate (DAP) decarboxylase of Bacillus licheniformis, a pyridoxal phosphate-requiring enzyme, was stabilized in vitro by 0.15 m sodium phosphate buffer (pH 7.0) containing 1 mm 2,3-dimercaptopropan-1-ol, 100 mug of pyridoxal phosphate per ml, and 3 mm DAP. When the meso-DAP concentration was varied, the enzyme in cell-free extracts of B. licheniformis exhibited Michaelis-Menten kinetics. Pyridoxal phosphate was the only pyridoxine derivative which acted as a cofactor. The enzyme was subject to both inhibition and repression by l-lysine. The inhibitory effect of lysine was on the K(m) (meso-DAP). A maximum repression of about 20% was obtained. No significant inhibition or activation was produced by cadaverine, dipicolinic acid, phenylalanine, pyruvate, ethylenediamine-tetraacetate, adenosine triphosphate, adenosine diphosphate, or adenosine monophosphate. When B. licheniformis was grown in an ammonium lactate-glucose-salts medium, an increase in DAP decarboxylase specific activity occurred during cellular growth with a maximal specific activity at the end of the exponential phase. As soon as growth ceased, the specific activity of the enzyme decreased to approximately one-half of the maximal specific activity and remained at this level thereafter. When B. cereus was grown in complex media, there was an increase in DAP decarboxylase specific activity up to the end of the exponential phase. Thereafter, the specific activity decreased to a nondetectable level in 4 hr. Dipicolinic acid synthesis was first detected 15 min later and was essentially complete after an additional 2.5 hr. The significance of the disappearance of DAP decarboxylase in B. cereus was discussed with regard to control of dipicolinic acid and spore mucopeptide biosynthesis.  相似文献   

14.
Rat embryo fibroblasts (REF52 cells) and the simian virus 40 transformed derivative (WT6 Ag6) were employed to characterize phospholipase D (PLD) activity in normal and transformed cells. In cells prelabeled with [3H]myristic acid or [3H]glycerol and treated with 12-O-tetradecanoylphorbol-13-acetate (TPA, 50 ng/ml medium) or vasopressin (VP, 100 ng/ml medium) in the presence of ethanol, the formation of labeled phosphatidylethanol (PEt) was 3- to 5-fold higher in REF52 cells than in the transformed cells. The transphosphatidylation of phosphatidylcholine (PC) to PEt was further examined in cell-free assay systems. Results demonstrated that the formation of PEt in the cell-free assays was dependent on the mode of substrate presentation and the source of the PC. With endogenous membrane-bound substrate, the formation of [3H]myristoyl-PEt was 5-fold higher in homogenates derived from normal cells as compared to transformed cell homogenates. In experiments using exogenous labeled PC isolated from either REF52 or transformed cells as substrate, cell-free PLD activity differed greatly with regard to the source of the PC. The formation of PEt from REF52-derived PC was approx. 4-fold higher as compared to PEt formed with PC derived from the transformed cells, irrespective of enzyme source. The results demonstrate that PLD in intact nontransformed fibroblasts is activatable by TPA and VP to a greater extent than in the transformed counterpart. The results from cell-free assays suggest that PLD activity is more dependent on the type of PC substrate than on the source of the enzyme.  相似文献   

15.
Abstract— It was demonstrated after intraperitoneal and intracerebral injections of [1,4-14C]-putrescine.2 HCl that GABA is formed in vivo in the trout brain via a pathway in which glutamic acid is not an intermediate. Intraperitoneal and intracerebral injections of both thiosemicarbazide and 3-mercaptopropionic acid had no measurable effects on GABA concentration, transformation of glutamic acid into GABA in vivo , or on glutamate de-carboxylase activity in the brain within the first 3 h after the application of the inhibitors. Only a small decrease in concentration of pyridoxal phosphate was noticed in the fish brain after thiosemicarbazide administration. The relatively high concentrations of pyridoxal phosphate in the trout brain may be one of the reasons for the ineffectiveness of thiosemicarbazide in inhibiting glutamate decarboxylase in vivo. After intracerebral injections of [1-14C]GABA, a half-life of 7 h was determined for GABA. The slow turnover rate of GABA in trout brain, which can be assumed from this observation, may give a further explanation of the ineffectiveness of the glutamate decarboxylase inhibitors in lowering the GABA content ot fish brain within a few hours.  相似文献   

16.
The optimal assay conditions and the trend with time in culture (28 days) of arginine decarboxylase (ADE; EC 4.1.1.19), omithine decarboxylase (ODC; EC 4.1.1.17) and diamine oxidase (DAO; EC 1.4.3.6) activities in habituated (H) and normal (N) auxin- and cytokinin-requiring sugar beet callus were compared. Although the response to variations in buffer pH and EDTA and pyridoxal phosphate (PLP) concentrations varied for ADC and ODC activities between the two callus types, pH 8.3, 50 μ M PLP and 5 m M EDTA were generally optimal or near-optimal for both H and N callus. In most cases the addition of ornithine or arginine in the ADC and ODC assays, respectively, given to block the interconversion between the two substrates, resulted in lower 14CO2 recovery. DAO activity was very differently affected in H and N callus by the presence of polyvinylpyrrolidone in the extration buffer. However, in both cases, this activity increased with time in culure. ADC activity was always predominant in both cell lines and always higher in N callus. In the latter, ADC activity rose sharply between days 14 and 21 and then leveled off while in H callus it incresed steadily from day 14 onwards. ODC activity was also higher in N callus and peaked sharply on day 21 while in H callus it was not detectable in the second half of the culture period. In both cell lines this activity was low or nil on day 28. 3,4-[14C]-methionine incorporation into ethylene and polyamines was also compared in N and H callus. In the latter, ethylene synthesis was lower and [14C]-spermidine formation higher than in N callus. This is in accord with the significantly higher spermidine titres found in H callus.  相似文献   

17.
Several buffer compositions with a wide range of pH values have been reported for radiometric assay of tyrosine hydroxylase (TH) in biological samples. Assay sensitivity becomes a prime concern while analyzing TH in minute samples like tissue biopsies or discrete regions of rodent brain wherein lower enzyme levels are anticipated due to smaller sample sizes. It was therefore rationalized to evaluate relative affinities of three commonly used assay buffers (sodium phosphate, sodium acetate, and Tris-acetate) with TH enzyme activity. The impact of buffer pH and cofactor concentration on the sensitivity of TH assay was also investigated. Striata from rats or mice were homogenized, respectively, with 1.0 or 0.5 ml of the assay buffer containing 0.5% Triton X-100. The supernatants (200 microl) were incubated (20 min, 37 degrees C) with 0.8 microCi [3H] L-tyrosine, 1.5 mM DL-6-methyl-5,6,7,8-tetrahydropterine (6-MPH4), 100 U catalase, and 1.0 microM dithiothreitol in a total volume of 300 microl. The reaction was terminated by 1-ml suspension of activated charcoal in 0.1 M HCl. After centrifugation, 200-microl aliquots were mixed with 5 ml of cocktail for quantitation of [3H] H2O in supernatant. The results showed significant impact of pH rather than the buffer composition on the sensitivity of TH assay. An optimal pH range was found to be 5.5-6.0, whereas TH activity was significantly inhibited at pH 5.0 and pH 6.8 (F = 55.09, P = 0.000). A significantly high TH activity was observed with 1.5 mM 6-MPH4, whereas higher concentrations (3.0-4.5 mM) inhibited TH activity (F = 7.47, P = 0.005). Analysis of serially diluted striatal homogenates showed a significant correlation between TH activity and sample amount. The assay reaction was linear for 20- and 30-min incubation for rat and mice striata, respectively.  相似文献   

18.
Rat liver carbamoyl phosphate synthetase is shown to be inhibited by anions competitively with acetylglutamate (the allosteric activator of the enzyme) with a potency decreasing in the order NO3- greater than SO4(2-) greater than Cl- approximately HCO3-. Inhibition by chloride accounts for most of the inhibition reported [Lund, P., and Wiggins, D. (1987) Biochem. J. 243, 273-276] in Tris buffer. Mes, acetate, and isethionate give little or no inhibition and phosphate inhibits noncompetitively. Plots of the KA value for acetylglutamate versus the concentration of chloride or nitrate are curved upward and binding assays demonstrate that the inhibitory anions displace acetylglutamate from the enzyme. Thus, the anions may compete with the carboxyls of acetylglutamate for positive charges at the binding site. Of the organic anions found in the mitochondrial matrix, alpha-ketoglutarate, malate, succinate, and citrate increase substantially the KA for acetylglutamate. Changes in the concentrations of ATP, HCO3-, NH4+, and Mg2+, and high concentrations of protein (60 mg/ml serum albumin) influence the KA value. Changes in the concentration of the enzyme have no effect. Under assay conditions approaching the ionic, buffer, and substrate concentrations expected to occur in the mitochondrial matrix, the KA value for acetylglutamate is 27 microM and the Vmax is decreased about 50%. These results indicate that physiological changes in the level of acetylglutamate significantly influence the degree of activation of carbamoyl phosphate synthetase in vivo.  相似文献   

19.
Analogues of pyridoxal and of pyridoxal phosphate in which the 4-CHO group is replaced with CH = CH2 were synthesized and were found to be potent inhibitors of pyridoxal kinase and pyridoxine phosphate oxidase of rat liver. They also inhibited the growth of mouse Sarcoma 180 and mammary adenocarcinoma TA3 in cell culture. Saturation of the vinyl double bond, replacement of the 5-CH2OH with methyl, methylation of the phenolic hydroxyl, or conversion to the N-oxide resulted in diminution or loss of all these activities. Similarly, the introduction of a beta-methyl group into the vinyl analogues of pyridoxal reduced all these inhibitory activities. The 4-vinyl anatogue of pyridoxal was shown to be a substrate of pyridoxal kinase and the product a potent inhibitor of pyridoxine oxidase, competing with pyridoxal phosphate. The affinity of this phosphorylated pyridoxal analogue to some apoenzymes varied greatly, indicating striking differences among the cofactor binding sites of these enzymes. The growth inhibitory effects of these analogues on cells in culture correlated well with their effects on pyridoxal kinase and pyridoxine phosphate oxidase in cell-free systems.  相似文献   

20.
By inhibiting aromatic L-amino-acid decarboxylase (EC 4.1.1.28) in rat brain striatal synaptosomes, we have been able to measure dihydroxyphenylalanine production via high performance liquid chromatography-electrochemical oxidation. This dihydroxyphenylalanine assay was compared to a standard radioisotopic assay of catecholamine synthesis (14CO2 production from L-[1-14C]tyrosine) in terms of (1) units of activity, (2) effects of known inhibitory and stimulatory agents, and (3) effects of the calcium chelator, EGTA. The units of activity in the dihydroxyphenylalanine assay were 40% greater than the units in the radioisotopic assay, indicating a mixing of labeled and endogenous tyrosine pools before conversion of the labeled tyrosine to labeled dihydroxyphenylalanine. The inhibition of synthesis produced by either 3-iodotyrosine or 3,4-dihydroxyphenylethylamine was similar in the two assays, as was the stimulation produced by 8-bromo cyclic AMP. The calcium chelator, EGTA, also activated synthesis to the same extent in the two assays, indicating that the increase observed in the radioisotopic assay is not an artifact of altered precursor specific activity. These data thus indicate the general utility of the synaptosomal dihydroxyphenylalanine synthesis assay, and also demonstrate the specific advantages of this assay for analyzing the effects of agents such as EGTA, which can alter tissue catecholamine precursor levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号